首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogels which release their contents in response to glucose concentration were prepared by immobilizing glucose oxidase (GOD) into β-cyclodextrin grafted polyethyleneimine hydrogels (PEI-βCD hydrogel). For the tight immobilization, hydrophobically modified GOD (HmGOD) was prepared by reacting GOD with palmitic acid-N-hydroxysuccinimide ester (PA-NHS) in the molar ratio of 1:40. According to trinitrobenzene sulfonic acid (TNBS) assay, five palmitic acids were covalently attached to one GOD molecule. The activity of HmGOD was about 76% of native enzyme. The swelling ratios of HmGOD loaded hydrogels increased from about 960% to 1190% in 24h, when glucose concentration was varied from 0 to 100mg/dl. The % release in 48 h of fluorescein isothiocyanate dextran increased from about 53% to 89%, when glucose concentration was varied in the same range. Gluconic acid, produced by the enzymatic reaction, would protonate and swell the PEI-βCD hydrogel, leading to a higher release.  相似文献   

2.
Glucose oxidase (GOD) and catalase (CAT) were simultaneously co-immobilized onto magnesium silicate (Florisil®) by covalent coupling. Glucose was added in immobilization mixture and hydrogen peroxide, which is the substrate of CAT, was produced in coupling mixture during immobilization time. Therefore, co-immobilization of GOD and CAT was carried out in the presence of both their substrates: glucose and hydrogen peroxide, respectively. The effect of glucose concentration in immobilization mixture on activities of GOD and CAT of co-immobilized samples were investigated. Maximum GOD and CAT activities were determined for samples co-immobilized in the presence of 15 and 20 mM glucose, respectively. Co-immobilization of GOD and CAT in the presence of their substrates highly improved the activity and reusability of both enzymes.  相似文献   

3.
The surface functionalization of an electrically conductive polypyrrole film (PPY) with a viologen, (N-(2-carboxyl-ethyl)-N'-(4-vinyl-benzyl)-4,4'-bipyridinium dichloride, or CVV) for the covalent immobilization of glucose oxidase (GOD) has been carried out. The viologen was first synthesized and graft polymerized on PPY film. It then served as an anchor via its carboxyl groups for the covalent immobilization of GOD. The surface composition of the as-functionalized substrates was characterized by X-ray photoelectron spectroscopy (XPS). The effects of the CVV monomer concentration on the CVV-graft polymer concentration and the amount of GOD immobilized on the surface were investigated. The activity of the immobilized GOD was compared with that of free GOD and the kinetic effects were also obtained. The cyclic voltammetric (CV) response of the GOD-functionalized PPY substrates was studied in a phosphate buffer solution under an argon atmosphere. The CV results support the mechanism in which CVV acts as a mediator to transfer electron between the electrode and enzyme, and hence regenerating the enzyme in the enzymatic reaction with glucose. High sensitivity and linear response of the enzyme electrode was observed with glucose concentration ranging from 0 to 20 mM.  相似文献   

4.
The reaction between glucose and methylene blue, catalyzed by glucose oxidase (GOD)was analysed calorimetrically. The amount of heat produced under saturating methylene blue concentrations ( > 10?2 mol/1)was measured with glucose concentration and time as parameters (kinetic procedure) Kinetic constants (pseudo one substrate kinetics) were derived from the experimental data: KM(glucose)= 1.18 × 10?3 mol/l and Vmax = 0.085 J/mg GOD min (3.89 · 10?6 mol/mg GOD min) Comparison of caloric with optical measurements gave an enthalpy of reaction of 22.52 kJ/mol. Considering the observed substrate inhibition, glucose determinations are possible up to glucose concentrations of 0.1 mol/l.  相似文献   

5.
Glucose oxidase (GOD) and catalase (CAT) were simultaneously co-immobilized onto magnesium silicate (florisil) by covalent coupling. Glucose was added in immobilization mixture and hydrogen peroxide which is the substrate of CAT was produced in coupling mixture during immobilization time. Therefore, co-immobilization of GOD and CAT was carried out in presence of both their substrate: glucose and hydrogen peroxide, respectively. The effect of glucose concentration in immobilization mixture on activities of GOD and CAT of co-immobilized samples were investigated. Maximum GOD and CAT activities were determined for samples co-immobilized in presence of 15 and 20 mM glucose, respectively. Co-immobilization of GOD and CAT in presence of their substrates highly improved the activity and reusability of both enzymes.  相似文献   

6.
Aspergillus-derived FAD-dependent glucose dehydrogenases (FADGDHs) were screened from fungal genomic databases, primarily by searching for putative homologues of the Aspergillus niger-derived glucose oxidase (GOD). Focusing on a GOD active-site motif, putative proteins annotated as belonging to the glucose methanol choline (GMC) oxidoreductase family were selected. Phylogenetic analysis of these putative proteins produced a GOD clade, which includes the A. niger and Penicillium amagasakiens GODs, and a second clade made up of putative proteins showing 30–40% homology with GOD. The genes encoding the proteins from the second clade were functionally expressed in Escherichia coli, resulting in dye-mediated glucose dehydrogenase (GDH) activity but not GOD activity. These results suggest that the putative proteins belonging to the second clade are FADGDHs. The 3D structure models of these FADGDHs were compared with the 3D structure of GOD.  相似文献   

7.
Glucose oxidase (GOD) immobilized long period grating (LPG) fibers have been proposed for the specific and sensitive detection of glucose. The treatment of LPG fibers with aminopropyl triethoxysilane has induced biding sites for the subsequent GOD immobilization. Field emission scanning electron microscopy, confocal laser scanning microscopy, infrared spectroscopy and Raman spectroscopy have provided detailed evidences about the effectiveness of the adopted biofunctionalization methodology. The enzyme activity is conserved during the immobilization step. Fabricated LPG sensor was tested on different glucose solutions to record the transmission spectra on an optical spectrum analyzer. The wavelength shifts in the transmission spectra are linearly correlated with the glucose concentration in the range of 10-300 mg dL(-1). The fabricated sensor gives fast response and is demonstrated to be of practical utility by determining glucose contents in blood samples. Proposed technique can further be extended to develop LPG fiber based novel, sensitive and label free nanosensors for disease diagnosis and clinical analysis.  相似文献   

8.
An immobilized multienzyme- and cathodic amperometry-based biosensor for sucrose was constructed for the analysis of food and fermentation samples. The multienzyme system, comprising invertase, mutarotase and glucose oxidase (GOD), was immobilized by using glutaraldehyde as cross-linking agent. Operating parameters of the biosensor for the estimation of sucrose in the range 1–10% were standardized. Response surface methodology (RSM) based on three-factor, three-variable design was used to evaluate the effect of important variables (concentration of enzymes, (varied in the range invertase (10–50 IU), mutarotase (5–105 IU) and GOD (1–9 IU)) on the response of biosensor. In the range of parameters studied, response time decreased with decrease in the invertase and with increase in mutarotase and GOD. Mutarotase concentration above 75 IU was found to result in an increased response time due to inhibition of mutarotase by its product -D-glucose. The optimal conditions achieved for the analysis of sucrose were: invertase 10 IU, mutarotase 40 IU, and GOD 9 IU. With these conditions, the predicted and actual experimental response time values were 2.26 and 2.35 min respectively, showing good agreement.  相似文献   

9.
Various strains of Aspergillus niger were screened for extracellular glucose oxidase (GOD) activity. The most effective producer, strain FS-3 (15.9 U mL–1), was mutagenized using UV-irradiation or ethyl methane sulfonate. Of the 400 mutants obtained, 32 were found to be resistant to 2-deoxy d-glucose, and 17 of these exhibited higher GOD activities (from 114.5 to 332.1%) than the original FS-3 strain. Following determination of antifungal resistance of the highest producing mutants, four mutants were selected and used in protoplast fusions in three different intraspecific crosses. All fusants showed higher activities (from 285.5 to 394.2%) than the original strain. Moreover, of the 30 fusants isolated, 19 showed higher GOD activity than their corresponding higher-producing parent strain.  相似文献   

10.
11.
The electrochemical performance of a new glucose biosensor is reported. The glucose biosensor is developed using glucose oxidase (GOD) and ferrocene encapsulated palladium (Pd)-linked organically modified sol-gel glass (ORMOSIL) material incorporated within graphite paste electrode. The ORMOSIL material incorporated within graphite paste electrode behaves as an excellent electrocatalyst for the oxidation of enzymatically reduced GOD. The electrochemical behavior of new glucose biosensor has been examined by cyclic volammetry and amperometric measurements. The bioelectrocatalysis of ORMOSIL embedded within graphite paste as a function of storage time and varying concentration of ORMOSIL is reported. The initial amperometric response on glucose sensing is recorded to be 145 microA at 15% (w/w) concentration of the ORMOSIL which is decreased to 20 microA at 5% of the same keeping GOD concentration constant. The variation of electrochemical behavior of the ORMOSIL embedded within graphite paste as a function of time has also been studied based on cyclic voltammetry. The voltammograms showing the reversible electrochemistry of ORMOSIL encapsulated ferrocene is changed into a plateau shape as a function of time, however, the electrocatalytic behavior is still retained. The practical usability of new glucose sensor has been compared with earlier developed glucose sensor. The sensitivity, response time and linearity of the new glucose biosensor are found to be excellent over earlier reported glucose biosensor. The amperometric response, calibration curve and practical applications of new glucose sensor are reported.  相似文献   

12.
结合蔗糖转化酶(INV)酶管与葡萄糖氧化酶(GOD)-葡萄糖变旋酶(MUT)双酶电极构成一种新的蔗糖传感器。该传感器可以分别用于蔗糖及葡萄糖的测定。蔗糖经酶管作用产生α-D-葡萄糖,再用COD-MUT双酶电极定糖。若是样品中蔗糖和葡萄糖共存,比较样品流经不同路径(Ws和Wg)时传感器的响应值,可以排除葡萄糖对蔗糖测定的干扰。传感器的最适pH和温度范围分别为:5.0—6.5和30—40℃。在稳态法实验中,传感器的线性范围为:2.5×10~(-4)—5×10~(-3)mol/L。传感器的重复性很好,CV<1%。该传感器在用于测定发酵培养基(含葡萄糖)的蔗糖含量,平均回收率为97.9%。传感器与糖度计法测定的相关系数为0.997。传感器至少可以稳定使用8天以上。  相似文献   

13.
This study investigated a new glucose sensor prepared by electrochemical polymerization of pyrrole with polyanion/poly(ethylene glycol) (PEG)/glucose oxidase (GOD) conjugate dopants. GOD was coupled to a strong polyanion, poly(2-acrylamido-2-methylpropane sulfonic acid) (AMPS) via PEG spacer to effectively and reproducibly immobilize GOD within a polypyrrole matrix onto a Pt electrode surface. PEGs with four different chain lengths (1000, 2000, 3000, and 4000) were used as spacers to study the spacer length effect on enzyme immobilization and electrode function. After conjugation, more than 90% of the GOD bioactivity was preserved and the bioactivity of the conjugated GOD increased with longer PEG spacers. The resulting polyanion/PEG/GOD conjugate was used as a dopant for electropolymerizing pyrrole. The activity of the immobilized enzyme on the electrode ranged from 119 to 209 mU cm(-2) and the bioactivity increased with the use of longer PEG spacers. The amperometric response of the enzyme electrode was linear up to 20 mM glucose concentration with a sensitivity ranging from 180 to 270 nA mM(-1) cm(-2). The kinetic parameters Michaelis-Menten constant (K(M)(app)) and maximum current density (j(max)) depended on the amount of active enzyme, level of substrate diffusion, and PEG spacer length. An increase in the electrical charge passed during polymerization (thus, increasing polypyrrole thickness) to 255 mC cm(-2) increased the sensitivity of the enzyme electrode because of the greater amount of incorporated enzyme. However, although the amount of incorporated GOD continued to increase when the charge increased above 255 mC cm(-2), the sensitivity began to decline gradually. The condition for preparing the enzyme electrode was optimized at 800 mV potential with a dopant concentration of 1 mg ml(-1).  相似文献   

14.
In order to eliminate the interference of impurities, such as ascorbic acid, a noninterference polypyrrole glucose biosensor was constructed with a four-electrode cell consisting of a polypyrrole film electrode, a polypyrrole-glucose oxidase electrode, a counter electrode and a reference electrode. The pure catalytic current of glucose oxidase (GOD) can be obtained from the difference between response currents of two working electrodes with and without GOD. The effects of potential, pH and temperature on analytical performance of the glucose biosensor were discussed. The optimum pH and apparent activation energy of enzyme-catalyzed reaction are 5.5 and 25 kJ mol(-1), respectively. The response current of the biosensor increases linearly with the increasing glucose concentration from 0.005 to 20.0 mmol dm(-3). The results show the glucose biosensor with under 2% of relative deviation has good ability of anti-interference. The glucose biosensor was also characterized with FT-IR and UV-vis spectra.  相似文献   

15.
In this paper, it was found that glucose oxidase (GOD) has been stably immobilized on glassy carbon electrode modified by ordered mesoporous silica-SBA-15 and Nafion. The sorption behavior of GOD immobilized on SBA-15 matrix was characterized by transmission electron microscopy (TEM), ultraviolet–visible (UV–vis), FTIR, respectively, which demonstrated that SBA-15 can facilitate the electron exchange between the electroactive center of GOD and electrode. The direct electrochemistry and electrocatalysis behavior of GOD on modified electrode were characterized by cyclic voltammogram (CV) which indicated that GOD immobilized on Nafion and SBA-15 matrices displays direct, nearly reversible and surface-controlled redox reaction with an enhanced electron transfer rate constant of 3.89 s−1 in 0.1 M phosphate buffer solution (PBS) (pH 7.12). Furthermore, it was also discovered that, in the absence of O2, GOD immobilized on Nafion and SBA-15 matrices can produce a wide linear response to glucose in the positive potential range. Thus, Nafion/GOD-SBA-15/GC electrode is hopeful to be used in the third non-mediator's glucose biosensor. In addition, GOD immobilized on SBA-15 and Nafion matrices possesses an excellent bioelectrocatalytic activity for the reduction of O2. The Nafion/GOD-SBA-15/GC electrode can be utilized as the cathode in biofuel cell.  相似文献   

16.
Calcium carbonate nanoparticles (nano-CaCO3) may be a promising material for enzyme immobilization owing to their high biocompatibility, large specific surface area and their aggregation properties. This attractive material was exploited for the mild immobilization of glucose oxidase (GOD) in order to develop glucose amperometric biosensor. The GOD/nano-CaCO3-based sensor exhibited a marked improvement in thermal stability compared to other glucose biosensors based on inorganic host matrixes. Amperometric detection of glucose was evaluated by holding the modified electrode at 0.60 V (versus SCE) in order to oxidize the hydrogen peroxide generated by the enzymatic reaction. The biosensor exhibited a rapid response (6s), a low detection limit (0.1 microM), a wide linear range of 0.001-12 mM, a high sensitivity (58.1 mAcm-2M-1), as well as a good operational and storage stability. In addition, optimization of the biosensor construction, the effects of the applied potential as well as common interfering compounds on the amperometric response of the sensor were investigated and discussed herein.  相似文献   

17.
In this study, a new chemiluminescence (CL) flow-through biosensor for glucose was developed by immobilizing glucose oxidase (GOD) and horseradish peroxidase (HRP) on the eggshell membrane with glutaraldehyde as a cross-linker. The CL detection involved enzymatic oxidation of glucose to D-gluconic acid and hydrogen peroxide (H2O2) and then H2O2 oxidizing luminol to produce CL emission in the presence of HRP. The immobilization condition (e.g., immobilization time, GOD/HRP ratio, glutaraldehyde concentration) was studied in detail. It showed good storage stability at 4 degrees C over a 5-month period. The proposed biosensor exhibited short response time, high sensitivity, easy operation, and simple sensor assembly, and the proposed biosensor was successfully applied to the determination of glucose in human serum.  相似文献   

18.
Yin B  Yuan R  Chai Y  Chen S  Cao S  Xu Y  Fu P 《Biotechnology letters》2008,30(2):317-322
A glucose biosensor based on layer-by-layer (LBL) self-assembling of chitosan and glucose oxidase (GOD) on a Prussian blue film was developed. First, Prussian blue was deposited on a cleaned gold electrode then chitosan and GOD were assembled alternately to construct a multilayer film. The resulting amperometric glucose biosensor exhibited a fast response time (within 10 s) and a linear calibration range from 6 μM to 1.6 mM with a detection limit of 3.1 μM glucose (s/n = 3). With the low operating potential, the biosensor showed little interference to the possible interferents, including ascorbic acid, acetaminophen and uric acid, indicating an excellent selectivity.  相似文献   

19.
A new strategy for fabricating glucose biosensor was presented by layer-by-layer assembled chitosan (CS)/gold nanoparticles (GNp)/glucose oxidase (GOD) multilayer films modified Pt electrode. First, a cleaned Pt electrode was immersed in poly(allylamine) (PAA), and then transferred to GNp, followed by the adsorption of GOD (GOD/GNp/PAA/Pt). Second, the GOD/GNp/PAA/Pt electrode was immersed in CS, and then transferred to GNp, followed by the adsorption of GOD (GOD/GNp/CS/GOD/GNp/PAA/Pt). Third, different layers of multilayer films modified Pt electrodes were assembled by repeating the second process. Film assembling and characterization were studied by quart crystal microbalance, and properties of the resulting glucose biosensors were measured by electrochemical measurements. The results confirmed that the assembling process of multilayer films was simple to operate, the immobilized GOD displayed an excellent catalytic property to glucose, and GNp in the biosensing interface efficiently improved the electron transfer between analyte and electrode surface. The amperometric response of the biosensors uniformly increased from one to six layers of multilayer films, and then reached saturation after the seven layers. Among the resulting biosensors, the biosensor based on the six layers of multilayer films was best. It showed a wide linear range of 0.5-16 mM, with a detection limit of 7.0 microM estimated at a signal-to-noise ratio of 3, fast response time (within 8s). Moreover, it exhibited good reproducibility, long-term stability and interference free. This method can be used for constructing other thin films, which is a universal immobilization method for biosensor fabrication.  相似文献   

20.
In this work, a novel chemiluminescence (CL) flow biosensor for glucose was proposed. Glucose oxidase (GOD), horseradish peroxidase (HRP) and gold nanoparticles were immobilized with sol-gel method on the inside surface of the CL flow cell. The CL detection involved enzymatic oxidation of glucose to d-gluconic acid and H(2)O(2), and then the generated H(2)O(2) oxidizing luminol to produce CL emission in the presence of HRP. It was found that gold nanoparticles could remarkably enhance the CL respond of the glucose biosensor. The enhanced effect was closely related to the sizes of gold colloids, and the smaller the size of gold colloids had the higher CL respond. The immobilization condition and the CL condition were studied in detail. The CL emission intensity was linear with glucose concentration in the range of 1.0 x 10(-5)molL(-1) to 1.0 x 10(-3)molL(-1), and the detection limit was 5 x 10(-6)molL(-1) (3sigma). The apparent Michaelis-Menten constant of GOD in gold nanoparticles/sol-gel matrix was evaluated to be 0.3mmolL(-1), which was smaller than that of GOD immobilized in sol-gel matrix without gold nanoparticles. The proposed biosensor exhibited short response time, easy operation, low cost and simple assembly, and the proposed biosensor was successfully applied to the determination of glucose in human serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号