首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Farmers in Africa have long adapted to climatic and other risks by diversifying their farming activities. Using a multi‐scale approach, we explore the relationship between farming diversity and food security and the diversification potential of African agriculture and its limits on the household and continental scale. On the household scale, we use agricultural surveys from more than 28,000 households located in 18 African countries. In a next step, we use the relationship between rainfall, rainfall variability, and farming diversity to determine the available diversification options for farmers on the continental scale. On the household scale, we show that households with greater farming diversity are more successful in meeting their consumption needs, but only up to a certain level of diversity per ha cropland and more often if food can be purchased from off‐farm income or income from farm sales. More diverse farming systems can contribute to household food security; however, the relationship is influenced by other factors, for example, the market orientation of a household, livestock ownership, nonagricultural employment opportunities, and available land resources. On the continental scale, the greatest opportunities for diversification of food crops, cash crops, and livestock are located in areas with 500–1,000 mm annual rainfall and 17%–22% rainfall variability. Forty‐three percent of the African cropland lacks these opportunities at present which may hamper the ability of agricultural systems to respond to climate change. While sustainable intensification practices that increase yields have received most attention to date, our study suggests that a shift in the research and policy paradigm toward agricultural diversification options may be necessary.  相似文献   

2.

Background

In Sub-Saharan Africa, 40% of children under five years in age are chronically undernourished. As new investments and attention galvanize action on African agriculture to reduce hunger, there is an urgent need for metrics that monitor agricultural progress beyond calories produced per capita and address nutritional diversity essential for human health. In this study we demonstrate how an ecological tool, functional diversity (FD), has potential to address this need and provide new insights on nutritional diversity of cropping systems in rural Africa.

Methods and Findings

Data on edible plant species diversity, food security and diet diversity were collected for 170 farms in three rural settings in Sub-Saharan Africa. Nutritional FD metrics were calculated based on farm species composition and species nutritional composition. Iron and vitamin A deficiency were determined from blood samples of 90 adult women. Nutritional FD metrics summarized the diversity of nutrients provided by the farm and showed variability between farms and villages. Regression of nutritional FD against species richness and expected FD enabled identification of key species that add nutrient diversity to the system and assessed the degree of redundancy for nutrient traits. Nutritional FD analysis demonstrated that depending on the original composition of species on farm or village, adding or removing individual species can have radically different outcomes for nutritional diversity. While correlations between nutritional FD, food and nutrition indicators were not significant at household level, associations between these variables were observed at village level.

Conclusion

This study provides novel metrics to address nutritional diversity in farming systems and examples of how these metrics can help guide agricultural interventions towards adequate nutrient diversity. New hypotheses on the link between agro-diversity, food security and human nutrition are generated and strategies for future research are suggested calling for integration of agriculture, ecology, nutrition, and socio-economics.  相似文献   

3.
This paper examines how oil palm migrant farmers in Papua New Guinea are responding to shortages of land for food gardening. Despite rapid population growth and planting nearly all of their land to oil palm, virtually all families continue to grow sufficient food for their families. The paper outlines the diverse range of adaptive strategies that households have employed to maintain food security, involving both intensification and innovation in farming systems. While gains from intensification have been significant and built resilience, they have been incremental, whereas innovation has been transformative and led to large gains in resilience. The adoption of more flexible land access arrangements on state leasehold land that ‘revive’ and adapt indigenous systems of land sharing and exchange that operated through kinship networks on customary land are innovative; they have increased the supply of land for food gardening thereby reducing risk for individual households and the broader smallholder community. The paper highlights the value of understanding farmer-driven innovations and the role of indigenous institutions and cultural values in sustaining and enhancing household food security.  相似文献   

4.
Approximately 925 million people are undernourished and almost 90% of these people live in Sub-Saharan Africa (SSA), Asia and the Pacific. Sub-Saharan Africa, in particular, continues to have the highest proportion of chronically hungry individuals, where 1 in 3 (ca. 240 million) are undernourished in terms of both food quantity and nutrition. The threat of substantial changes in climate raises concerns about future capacity to sustain even current levels of food availability because climate change will impact food security most severely in regions where undernourishment is already problematic. Estimates of future climate change impacts on crops vary widely, particularly in Africa, due in part to a lack of agricultural and meteorological data. To more accurately predict future climate change impacts on food security we must first precisely assess the impact of climate change drivers on crops of food insecure regions. Recent advances in biofortification, a substantial yield gap, and an inherent potential to respond positively to globally increasing CO2 levels are synergistic and encouraging for cassava in an otherwise bleak global view of the future of food security in the developing world.  相似文献   

5.
Pollinators are critical for food security; however, their contribution to the pollination of locally important crops is still unclear, especially for non-bee pollinators. We reviewed the diversity, conservation status, and role of bee and non-bee pollinators in 83 different crops described either as important for the global food market or of local importance. Bees are the most commonly recorded crop floral visitors. However, non-bee pollinators are frequently recorded visitors to crops of local importance. Non-bee pollinators in tropical ecosystems include nocturnal insects, bats, and birds. Importantly, nocturnal pollinators are neglected in current diurnal-oriented research and are experiencing declines. The integration of non-bee pollinators into scientific studies and conservation agenda is urgently required for more sustainable agriculture and safeguarding food security for both globally and locally important crops.  相似文献   

6.
Agriculture is now facing the ‘perfect storm’ of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic‐assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change.  相似文献   

7.
Two of the greatest challenges currently facing humanity are the potential consequences of climate change and the actual consequences of reduced agricultural diversity. This paper considers the consequences of both climate change and reduced agricultural diversity on global food security and nutrition. The inextricable link between climate change and crop diversity is examined, particularly in the context of crop production in Africa where most agricultural diversity exists and where climate change will have most impact. The Green Revolution, often seen as a model for increasing global agricultural productivity, is reconsidered in terms of its failure to make a significant impact in hostile tropical environments such as those of much of Africa. An alternative or, at least, a complementary strategy, is advocated where we might better harness the huge repository of indigenous plant species cultivated and conserved by local communities for many generations across variable climates. An example is given of multidisciplinary research on bambara groundnut (Vigna subterranea), an ancient grain legume grown, cooked, processed and traded mainly by subsistence women farmers in sub-Saharan Africa. The experience gained on bambara groundnut is considered as a basis for similar efforts on many other potentially useful underutilised food crops in the climates of the future.  相似文献   

8.
作物野生近缘种的保护与利用   总被引:8,自引:0,他引:8  
作物野生近缘种将是保证下一世纪粮食充足的重要因素。近30余年来国际国内非常重视作物野生种质资源的搜集、保存、鉴定、评价和利用的研究。我国作物野生近缘种特别丰富,同时受威胁非常严重。因此,加大力度开展作物及其野生近缘种种质资源的遗传多样性、保存技术、种质创新和利用的研究是刻不容缓的。  相似文献   

9.
Decaëns  T.  Jiménez  J.J. 《Plant and Soil》2002,240(1):133-143
This study was carried out in the Eastern Plains of Colombia and assessed the impact of agricultural intensification on the structure of earthworm communities. Earthworms were hand-sorted in a variety of agroecosystems of increasing intensity, from natural savanna to pastures and annual crops. An agricultural intensification index was used to rank systems along an intensification gradient, i.e. from native savanna to pastures and annual crops. Earthworm biomass, specific richness and Shannon index sharply decreased along the gradient. The disappearance of some species in cultivated systems was mostly attributed to the lack of recovery of populations after major perturbations like e.g. tillage. The more resistant species were those presenting high surface mobility (i.e. high colonisation capacity) or high population growth potential (i.e. high ability of population recovering after perturbation). Sensitive species disappeared after pasture establishment but richness was recovered in a period of about 3 years. In 17 year-old pastures, the community has regained its initial diversity and present very high biomass due to the presence of abundant populations of an anecic species. On the opposite side, annual crops had deep detrimental impacts that were more accentuated in the rotations (i.e. systems that were tilled twice a year) and were still present in a 2 year-old fallow.  相似文献   

10.
In light of the growing concern over the potentially devastating impacts on biodiversity and food security of climate change and the massively growing world population, taking action to conserve crop wild relatives (CWR), is no longer an option — it is a priority. Crop wild relatives are species closely related to crops, including their progenitors, many of which have the potential to contribute beneficial traits to crops, such as pest or disease resistance, yield improvement or stability. They are a critical component of plant genetic resources for food and agriculture (PGRFA), have already made major contributions to crop production and are vital for future food security; their systematic conservation in ways that ensure their continuing availability for use is therefore imperative. This is a complex, interdisciplinary, global issue that has been addressed by various national and international initiatives. Drawing on the lessons learnt from these initiatives we can now propose a global approach to CWR conservation, the key elements of which are: (1) estimating global CWR numbers, (2) assessment of the global importance of CWR diversity, (3) current conservation status, (4) threats to CWR diversity, (5) systematic approaches to CWR conservation, (6) CWR informatics, and (7) enhancing the use of CWR diversity.  相似文献   

11.
Cassava is the second most important staple food crop in terms of per capita calories consumed in Africa and holds potential for climate change adaptation. Unfortunately, productivity in East and Central Africa is severely constrained by two viral diseases: cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). CBSD was first reported in 1936 from northeast Tanzania. For approximately 70 years, CBSD was restricted to coastal East Africa and so had a relatively low impact on food security compared with CMD. However, at the turn of the 21st century, CBSD re‐emerged further inland, in areas around Lake Victoria, and it has since spread through many East and Central African countries, causing high yield losses and jeopardizing the food security of subsistence farmers. This recent re‐emergence has attracted intense scientific interest, with studies shedding light on CBSD viral epidemiology, sequence diversity, host interactions and potential sources of resistance within the cassava genome. This review reflects on 80 years of CBSD research history (1936–2016) with a timeline of key events. We provide insights into current CBSD knowledge, management efforts and future prospects for improved understanding needed to underpin effective control and mitigation of impacts on food security.  相似文献   

12.
Growing prosperity in the South is accompanied by human diets that will claim more natural resources per capita. This reality, combined with growing populations, may raise the global demand for food crops two- to four-fold within two generations. Considering the large volume of natural resources and potential crop yields, it seems that this demand can be met smoothly. However, this is a fallacy for the following reasons. (i) Geographic regions differ widely in their potential food security: policy choices for agricultural use of natural resources are limited in Asia. For example, to ensure national self-sufficiency and food security, most of the suitable land (China) and nearly all of the surface water (India) are needed. Degradation restricts options further. (ii) The attainable level of agricultural production depends also on socio-economic conditions. Extensive poverty keeps the attainable food production too low to achieve food security, even when the yield gap is wide, as in Africa. (iii) Bio-energy, non-food crops and nature compete with food crops for natural resources. Global and regional food security are attainable, but only with major efforts. Strategies to achieve alternative aims will be discussed. <br>  相似文献   

13.
Many ant species are highly invasive and are a significant component of disturbed ecosystems. They can have a major suppressive effect upon indigenous invertebrates, including other ants. Despite overwhelming circumstantial evidence for the ecological resourcefulness of many ants, there appears to be no experimental evidence illustrating the habitat breadth of a potentially invasive ant species. We demonstrate here that a particularly opportunistic and locally dominant ant Anoplolepis custodiens, which is a major indigenous African pest, overrides habitat structure to maintain its population level. We compared A. custodiens activity, morphology, foraging behaviour and ant species diversity in artificially established surrogate habitats (cover crops) in a vineyard containing an ample food resource in the form of the honeydew-producing mealybug Planococcus ficus. These cover crops were chosen so as to create highly altered habitats. The ant's ability to overcome these potentially suppressive habitat conditions hinged on its tight mutualism with the mealybug, and on its chasing away mealybug parasitoids. This ant species is predicted to be a latent invasive beyond Africa. It is unlikely to be impeded once it has established a foothold in a variety of novel habitats. It could locally invade to obtain food resources in a wide range of habitat types. Furthermore, in agricultural systems, cover crops are unlikely to control such an ant. Potential invasives such as this ant should be flagged as important quarantine suspects.  相似文献   

14.
In the context of environmental and socio-economic changes, the agriculture of Sub-Saharan African countries will have to ensure food security of the population, while reducing its environmental footprint. The biophysical and social systems of agricultural production are complex. Innovative agricultural practices will be based on an intensification of ecological processes that determine the functioning of the soil–plant system, farmers’ fields and agro-ecosystems. This ecological engineering approach is useful to take up the challenge of Sub-Saharan agricultures in the future, as shown in researches conducted by IESOL International Joint Lab “Intensification of agricultural soils in West Africa” (ISRA, UCAD, TU, OU, INERA, IRD).  相似文献   

15.
Trees have a different impact on soil properties than annual crops, because of their longer residence time, larger biomass accumulation, and longer-lasting, more extensive root systems. In natural forests nutrients are efficiently cycled with very small inputs and outputs from the system. In most agricultural systems the opposite happens. Agroforestry encompasses the continuum between these extremes, and emerging hard data is showing that successful agroforestry systems increase nutrient inputs, enhance internal flows, decrease nutrient losses and provide environmental benefits: when the competition for growth resources between the tree and the crop component is well managed. The three main determinants for overcoming rural poverty in Africa are (i) reversing soil fertility depletion, (ii) intensifying and diversifying land use with high-value products, and (iii) providing an enabling policy environment for the smallholder farming sector. Agroforestry practices can improve food production in a sustainable way through their contribution to soil fertility replenishment. The use of organic inputs as a source of biologically-fixed nitrogen, together with deep nitrate that is captured by trees, plays a major role in nitrogen replenishment. The combination of commercial phosphorus fertilizers with available organic resources may be the key to increasing and sustaining phosphorus capital. High-value trees, ''Cinderella'' species, can fit in specific niches on farms, thereby making the system ecologically stable and more rewarding economically, in addition to diversifying and increasing rural incomes and improving food security. In the most heavily populated areas of East Africa, where farm size is extremely small, the number of trees on farms is increasing as farmers seek to reduce labour demands, compatible with the drift of some members of the family into the towns to earn off-farm income. Contrary to the concept that population pressure promotes deforestation, there is evidence that demonstrates that there are conditions under which increasing tree planting is occurring on farms in the tropics through successful agroforestry as human population density increases. <br>  相似文献   

16.
Although considerable achievements in the global reduction of hunger and poverty have been made, progress in Africa so far has been very limited. At present, a third of the African population faces widespread hunger and chronic malnutrition and is exposed to a constant threat of acute food crisis and famine. The most affected are rural households whose livelihood is heavily dependent on traditional rainfed agriculture. Rainfall plays a major role in determining agricultural production and hence the economic and social well being of rural communities. The rainfall pattern in sub-Saharan Africa is influenced by large-scale intra-seasonal and inter-annual climate variability including occasional El Ni?o events in the tropical Pacific resulting in frequent extreme weather event such as droughts and floods that reduce agricultural outputs resulting in severe food shortages. Households and communities facing acute food shortages are forced to adopt coping strategies to meet the immediate food requirements of their families. These extreme responses may have adverse long-term, impacts on households' ability to have sustainable access to food as well as the environment. The HIV/AIDS crisis has also had adverse impacts on food production activities on the continent. In the absence of safety nets and appropriate financial support mechanisms, humanitarian aid is required to enable households effectively cope with emergencies and manage their limited resources more efficiently. Timely and appropriate humanitarian aid will provide households with opportunities to engage in productive and sustainable livelihood strategies. Investments in poverty reduction efforts would have better impact if complemented with timely and predictable response mechanisms that would ensure the protection of livelihoods during crisis periods whether weather or conflict-related. With an improved understanding of climate variability including El Ni?o, the implications of weather patterns for the food security and vulnerability of rural communities have become more predictable and can be monitored effectively. The purpose of this paper is to investigate how current advances in the understanding of climate variability, weather patterns and food security could contribute to improved humanitarian decision-making. The paper will propose new approaches for triggering humanitarian responses to weather-induced food crises.  相似文献   

17.
Theories of agrarian change in Africa normally treat agricultural intensification as a linear unidirectional process that gradually engulfs entire agrarian systems as human population increases. Focusing on soil management practices, this paper disputes the alleged uniformity of intensification and argues that periodic, contrary processes may occur simultaneously. Written and oral historical data, and survey data describing current farmers' practices and perceptions of change in densely settled Maragoli, western Kenya, are used to support this argument. Farmers' soil fertility management practices have changed in response to migration, social differentiation, and economic change, and the interplay between changing social and ecological conditions. Despite rapid population growth, Luhya farmers manage their soils both more and less intensively in response to this interplay and create a heterogeneous pattern of management in space and time. The implications of this variability for contemporary applied agricultural research in the region are assessed.  相似文献   

18.
Cowpea (Vigna unguiculata L. Walp.) is a legume crop that is resilient to hot and drought‐prone climates, and a primary source of protein in sub‐Saharan Africa and other parts of the developing world. However, genome resources for cowpea have lagged behind most other major crops. Here we describe foundational genome resources and their application to the analysis of germplasm currently in use in West African breeding programs. Resources developed from the African cultivar IT97K‐499‐35 include a whole‐genome shotgun (WGS) assembly, a bacterial artificial chromosome (BAC) physical map, and assembled sequences from 4355 BACs. These resources and WGS sequences of an additional 36 diverse cowpea accessions supported the development of a genotyping assay for 51 128 SNPs, which was then applied to five bi‐parental RIL populations to produce a consensus genetic map containing 37 372 SNPs. This genetic map enabled the anchoring of 100 Mb of WGS and 420 Mb of BAC sequences, an exploration of genetic diversity along each linkage group, and clarification of macrosynteny between cowpea and common bean. The SNP assay enabled a diversity analysis of materials from West African breeding programs. Two major subpopulations exist within those materials, one of which has significant parentage from South and East Africa and more diversity. There are genomic regions of high differentiation between subpopulations, one of which coincides with a cluster of nodulin genes. The new resources and knowledge help to define goals and accelerate the breeding of improved varieties to address food security issues related to limited‐input small‐holder farming and climate stress.  相似文献   

19.
Smyth  Stuart J.  McHughen  Alan  Entine  Jon  Kershen  Drew  Ramage  Carl  Parrott  Wayne 《Transgenic research》2021,30(5):601-612

Genetically modified (GM) organisms and crops have been a feature of food production for over 30 years. Despite extensive science-based risk assessment, the public and many politicians remain concerned with the genetic manipulation of crops, particularly food crops. Many governments have addressed public concern through biosafety legislation and regulatory frameworks that identify and regulate risks to ensure human health and environmental safety. These domestic regulatory frameworks align to international scientific risk assessment methodologies on a case-by-case basis. Regulatory agencies in 70 countries around the world have conducted in excess of 4400 risk assessments, all reaching the same conclusion: GM crops and foods that have been assessed provide no greater risk to human health or the environment than non-GM crops and foods. Yet, while the science regarding the safety of GM crops and food appears conclusive and societal benefits have been globally demonstrated, the use of innovative products have only contributed minimal improvements to global food security. Regrettably, politically-motivated regulatory barriers are currently being implemented with the next genomic innovation, genome editing, the implications of which are also discussed in this article. A decade of reduced global food insecurity was witnessed from 2005 to 2015, but regrettably, the figure has subsequently risen. Why is this the case? Reasons have been attributed to climate variability, biotic and abiotic stresses, lack of access to innovative technologies and political interference in decision making processes. This commentary highlights how political interference in the regulatory approval process of GM crops is adversely affecting the adoption of innovative, yield enhancing crop varieties, thereby limiting food security opportunities in food insecure economies.

  相似文献   

20.
Legumes, with their unique ability to fix atmospheric nitrogen, play a vital role in ensuring future food security and mitigating the effects of climate change because they use less fossil energy and produce less greenhouse gases compared with N-fertilized systems. Grain legumes are second only to cereal crops as a source of human and animal food, and they contribute approximately one third of the protein consumed by the human population. The productivity of seed crops, such as grain legumes, is dependent on flowering. Despite the genetic variation and importance of flowering in legume production, studies of the molecular pathways that control flowering in legumes are limited.Recent advances in genomics have revealed that legume flowering pathways are divergent from those of such model species as Arabidopsis thaliana. Here, we discuss the current understanding of flowering time regulation in legumes and highlight the unique and conserved features of floral evocation in legumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号