首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmodium parasites cause malaria in mammalian hosts and are transmitted by Anopheles mosquitoes. Activated gametocytes in the mosquito midgut egress from erythrocytes followed by fertilization and zygote formation. Zygotes differentiate into motile invasive ookinetes, which penetrate the midgut epithelium before forming oocysts beneath the basal lamina. Ookinete development and traversal across the mosquito midgut wall are major bottlenecks in the parasite life cycle. In ookinetes, surface proteins and proteins stored in apical organelles have been shown to be involved in parasite-host interactions. A group of ookinete proteins that are predicted to have such functions are named PSOPs (putative secreted ookinete protein). PSOP1 is possibly involved in migration through the midgut wall, and here its subcellular localization was examined in ookinetes by immunoelectron microscopy. PSOP1 localizes to the micronemes of Plasmodium yoelii and Plasmodium berghei ookinetes, indicating that it is stored and possibly apically secreted during ookinete penetration through the mosquito midgut wall.  相似文献   

2.
Abstract Present understanding of the development of sexual stages of the human malaria parasites Plasmodium vivax and P.falciparum in the Anopheles vector is reviewed, with particular reference to the role of the mosquito midgut in establishing an infection. The sexual stages of the parasite, the gametocytes, are formed in human erythrocytes. The changes in temperature and pH encountered by the gametocyte induce gametogenesis in the lumen of the midgut. Macromolecules derived from mosquito tissue and second messenger pathways regulate events leading to fertilization. In An.tessellatus the movement of the ookinete from the lumen to the midgut epithelium is linked to the release of trypsin in the midgut and the peritrophic matrix is not a firm barrier to this movement. The passage of the P. vivax ookinete through the peritrophic matrix may take place before the latter is fully formed. The late ookinete development in P.falciparum requires chitinase to facilitate penetration of the peritrophic matrix. Recognition sites for the ookinetes are present on the midgut epithelial cells. N-acetyl glucosamine residues in the oligosaccharide side chains of An.tessellatus midgut glycoproteins and peritrophic matrix proteoglycan may function as recognition sites for P.vivax and P.falciparum ookinetes. It is possible that ookinetes penetrating epithelial cells produce stress in the vector. Mosquito molecules may be involved in oocyst development in the basal lamina, and encapsulation of the parasite occurs in vectors that are refractory to the parasite. Detailed knowledge of vector-parasite interactions, particularly in the midgut and the identification of critical mosquito molecules offers prospects for manipulating the vector for the control of malaria.  相似文献   

3.
The ookinete is a motile form of the malaria parasite that travels from the midgut lumen of the mosquito, invades the epithelial cells and settles beneath the basal lamina. The events surrounding cessation of ookinete motility and its transformation into an oocyst are poorly understood, but interaction between components of the basal lamina and the parasite surface has been implicated. Here we report that interactions occur between basal lamina constituents and ookinete proteins and that these interactions inhibit motility and are likely to be involved in transformation to an oocyst. Plasmodium berghei ookinetes bound weakly to microtitre plate wells coated with fibronectin and much more strongly to wells coated with laminin and collagen IV. A 1:1 mixture of collagen and laminin significantly enhanced binding. Binding increased with time of incubation up to 10 h and different components showed different binding profiles with time. Two parasite molecules were shown to act as ligands for basal lamina components. Western blots demonstrated that the surface molecule Pbs21 bound strongly to laminin but not to collagen IV whereas a 215 kDa molecule (possibly PbCTRP) bound to both laminin and collagen IV. Furthermore up to 90% inhibition of binding of ookinetes to collagen IV/laminin combination occurred if parasites were pre-incubated with anti-Pbs21 monoclonal antibody 13.1. Some transformation of ookinetes to oocysts occurred in wells coated with laminin or laminin/collagen IV combinations but collagen IV alone did not trigger transformation. No binding or transformation occurred in uncoated wells. Our data support the suggestion that ookinete proteins Pbs21 and a 215 kDa protein may have multiple roles including interactions with midgut basal lamina components that cause binding, inhibit motility and trigger transformation.  相似文献   

4.
When malaria parasites enter to mosquitoes, they fertilize and differentiate to zygotes and ookinetes. The motile ookinetes cross the midgut cells and arrive to the basement membranes where they differentiate into oocysts. The midgut epithelium is thus a barrier for ookinetes to complete their life cycle in the mosquitoes. The ookinetes develop gliding motility to invade midgut cells successfully, but the molecular mechanisms behind are poorly understood. Here, we identified a single molecule with guanylate cyclase domain and N-terminal P-type ATPase like domain in the rodent malaria parasite Plasmodium berghei and named it PbGCbeta. We demonstrated that transgenic parasites in which the PbGCbeta gene was disrupted formed normal ookinetes but failed to produce oocyst. Confocal microscopic analysis showed that the disruptant ookinetes remained on the surface of the microvilli. The disruptant ookinetes showed severe defect in motility, resulting in failure of parasite invasion of the midgut epithelium. When the disruptant ookinetes were cultured in vitro, they transformed into oocysts and sporozoites. These results demonstrate that PbGCbeta is essential for ookinete motility when passing through the midgut cells, but not for further development of the parasites.  相似文献   

5.
The P28 family of proteins are 28 kDa proteins expressed on the surface of sexual stages—zygote, ookinete and young oocyst stages—of Plasmodium species when the parasite resides inside the mosquito midgut. Together with P25 proteins, P28 proteins protect the parasite from the harsh proteolytic environment prevailing inside the mosquito midgut. Vaccines against these proteins induce antibodies in vertebrate hosts that are capable of inhibiting parasite development in the mosquito midgut, thus preventing transmission of the parasite from the mosquito to another human host. These transmission-blocking vaccines are helpful in reducing the burden caused by malaria, which affects 300–600 million, and kills 1–3 million, people annually. The purpose of this study was to structurally characterise six members of the P28 family of ookinete surface proteins with the help of homology modelling, to compare these proteins in terms of transmission blocking and host parasite interactions, and to analyse phylogenetic relationships within the P28 family and with the P25 family. Our results indicate that all the members of the P28 family studied have four EGF domains arranged in triangular fashion with a very big C loop present in EGF domain IV, which could serve as a diagnostic feature of the P28 family as this loop is absent in the P25 family of ookinete surface proteins. The models of the P28 family of ookinete surface proteins obtained may help in understanding the biology of the parasite inside the mosquito midgut, and in designing transmission-blocking vaccines against malaria in the absence of experimentally determined structures of these important surface proteins. An erratum to this article can be found at  相似文献   

6.
The site in the midguts of Anopheles pseudopunctipennis where the development of Plasmodium vivax circumsporozoite protein Vk210 phenotype is blocked was investigated, and compared to its development in An. albimanus. Ookinete development was similar in time and numbers within the blood meal bolus of both mosquito species. But, compared to An. pseudopunctipennis, a higher proportion of An. albimanus were infected (P=0.0001) with higher ookinete (P=0.0001) and oocyst numbers (P=0.0001) on their internal and external midgut surfaces, respectively. Ookinetes were located in the peritrophic matrix (PM), but neither inside epithelial cells nor on the haemocoelic midgut surface by transmission electron microscopy in 24h p.i.-An. pseudopunctipennis mosquito samples. In contrast, no parasites were detected in the PM of An. albimanus at this time point. These results suggest that P. vivax Vk210 ookinetes cannot escape from and are destroyed within the midgut lumen of An. pseudopunctipennis.  相似文献   

7.
Early sporogony of Plasmodium parasites involves 2 major developmental transitions within the insect vector, i.e., gametocyte-to-ookinete and ookinete-to-oocyst. This study compared the population dynamics of early sporogony among murine rodent Plasmodium (Plasmodium berghei, Plasmodium chabaudi, Plasmodium vinckei, and Plasmodium yoelii) developing within Anopheles stephensi mosquitoes. Estimates of absolute densities were determined for gametocytes, ookinetes, and oocysts for 108 experimental infections. Total losses throughout early sporogony were greatest in P. vinckei (ca. 250,000-fold loss), followed by P. yoelii (ca. 70,000-fold loss), P. berghei (ca. 45,000-fold loss), and P. chabaudi (ca. 15,000-fold loss). The gametocyte-to-ookinete transition represented the most severe population bottleneck. Numerical losses during this transition (ca. 3,000- to 30,000-fold, depending on species) were orders of magnitude greater than losses incurred during the ookinete-to-oocyst transition (3- to 14-fold). There were no significant correlations between gametocyte and ookinete densities. Significant correlations between ookinete and oocyst densities existed for P. berghei, P. chabaudi, and P. yoelii (but not for P. vinckei), and were best described by nonlinear functions (P. berghei = sigmoid, P. chabaudi = hyperbolic, P. yoelii = sigmoid), indicating that conversion of ookinetes to oocysts in these species is density dependent. The upper theoretical limit for oocyst density on the mosquito midgut for P. chabaudi and P. yoelii (ca. 300 oocysts per midgut) was higher than for P. berghei (ca. 30 oocysts per midgut). This study provides basic information about population processes that occur during the early sporogonic development of some common laboratory model systems of malaria.  相似文献   

8.
ABSTRACT We observed Plasmodium gallinaceum ookinetes in both intracellular and intercellular positions in the midgut epithelium of the mosquito Aedes aegypti. After epithelial cell invasion intracellular ookinetes lacked a parasitophorous vacuolar membrane and were surrounded solely by their own pellicle. Thus, the ookinete in the midgut epithelium of the mosquito differs from erythrocytic and hepatic stages in that the parasite in the vertebrate host is surrounded by a vacuole. The midgut epithelial cytoplasm around the apical end of invading ookinetes was replaced by fine granular material deprived of normal organelles. Membranous structure was observed within the fine granular area. Most ookinetes were seen intracellularly on the luminal side and intercellularly on the haemocoel side of the midgut epithelial cells. These observations suggest that the ookinete first enters into the midgut epithelial cell, then exits to the space between the epithelial cells and moves to the basal lamina where the ookinete develops to the oocyst.  相似文献   

9.
The events between the ingestion of Plasmodium berghei-infected mouse blood and the establishment of the ookinetes in the epithelium of the midgut in refractory (R) and susceptible (S) Anopheles atroparvus are described. Simultaneously fed, fully engorged female mosquitoes were randomly assigned to dissection at 22, 28, 32, 48 h and 10 days (controls) after the infective feed (post-infection: p.i.). Serial transverse sections of 6 micron were cut. Every 10th section was studied. The maturation of ookinetes was monitored at 16, 19 and 22 h p.i. The infections in R and S mosquitoes developed similarly with regard to the maturation of ookinetes and the number of mature ookinetes in the lumen of the midgut. The semiquantitative evaluation of the envelopment of the food bolus by the peritrophic layer showed that this layer cannot function as a physical barrier against migrating ookinetes. In the midgut epithelium the number of ookinetes decreased significantly with time in both R and S mosquitoes, but a similar number of penetrations was recorded for both types of mosquito. In S mosquitoes maximal 1% of the ookinetes present in the midgut formed an oocyst. In both R and S mosquitoes a substantial loss of parasites was found, first in the lumen of the midgut and second after penetration of the midgut epithelium by the mature ookinetes. Relatively few parasites develop into oocysts in S, but hardly any do so in R individuals. The factors in control of refractoriness are likely to operate on early oocyst development.  相似文献   

10.
We observed Plasmodium gallinaceum ookinetes in both intracellular and intercellular positions in the midgut epithelium of the mosquito Aedes aegypti. After epithelial cell invasion intracellular ookinetes lacked a parasitophorous vacuolar membrane and were surrounded solely by their own pellicle. Thus, the ookinete in the midgut epithelium of the mosquito differs from erythrocytic and hepatic stages in that the parasite in the vertebrate host is surrounded by a vacuole. The midgut epithelial cytoplasm around the apical end of invading ookinetes was replaced by fine granular material deprived of normal organelles. Membranous structure was observed within the fine granular area. Most ookinetes were seen intracellularly on the luminal side and intercellularly on the haemocoel side of the midgut epithelial cells. These observations suggest that the ookinete first enters into the midgut epithelial cell, then exists to the space between the epithelial cells and moves to the basal lamina where the ookinete develops to the oocyst.  相似文献   

11.
Once ingested by mosquitoes, malaria parasites undergo complex cellular changes. These include zygote formation, transformation of zygote to ookinete, and differentiation from ookinete to oocyst. Within the oocyst, the parasite multiplies into numerous sporozoites. Modulators of intracellular calcium homeostasis, MAPTAM, and TMB-8 blocked ookinete development as did the calmodulin (CaM) antagonists W-7 and calmidazolium. Ca(2+)/CaM-dependent protein kinase inhibitor KN-93 also blocked zygote elongation, while its ineffective analog KN-92 did not have such effect. In vitro both zygote and ookinete extracts efficiently phosphorylated autocamtide-2, a classic CaM kinase substrate, which could be blocked by calmodulin antagonists W-7 and calmidazolium and CaM kinase inhibitor KN-93. These results demonstrated the presence of calmodulin-dependent CaM kinase activity in the parasite. KN-93-treated parasites, however, expressed the ookinete-specific enzyme chitinase and the ookinete surface antigen Pgs28 normally, suggesting that the morphologically untransformed parasites are biochemically mature ookinetes. In mosquitoes, KN-93-treated parasites did not develop as oocysts, while KN-92-treated parasites produced similar numbers of oocysts as controls. These data suggested that in Plasmodium gallinaceum morphological development of zygote to ookinete, but not its biochemical maturation, relies on Ca(2+)/CaM-dependent protein kinase activity and demonstrated that the morphological differentiation is essential for the further development of the parasite in infected blood-fed mosquitoes.  相似文献   

12.
The mosquito midgut stages of malaria parasites are crucial for establishing an infection in the insect vector and to thus ensure further spread of the pathogen. Parasite development in the midgut starts with the activation of the intraerythrocytic gametocytes immediately after take‐up and ends with traversal of the midgut epithelium by the invasive ookinetes less than 24 h later. During this time period, the plasmodia undergo two processes of stage conversion, from gametocytes to gametes and from zygotes to ookinetes, both accompanied by dramatic morphological changes. Further, gamete formation requires parasite egress from the enveloping erythrocytes, rendering them vulnerable to the aggressive factors of the insect gut, like components of the human blood meal. The mosquito midgut stages of malaria parasites are unprecedented objects to study a variety of cell biological aspects, including signal perception, cell conversion, parasite/host co‐adaptation and immune evasion. This review highlights recent insights into the molecules involved in gametocyte activation and gamete formation as well as in zygote‐to‐ookinete conversion and ookinete midgut exit; it further discusses factors that can harm the extracellular midgut stages as well as the measures of the parasites to protect themselves from any damage.  相似文献   

13.
An essential, but poorly understood part of malaria transmission by mosquitoes is the development of the ookinetes into the sporozoite-producing oocysts on the mosquito midgut wall. For successful oocyst formation newly formed ookinetes in the midgut lumen must enter, traverse, and exit the midgut epithelium to reach the midgut basal lamina, processes collectively known as midgut invasion. After invasion ookinete-to-oocyst transition must occur, a process believed to require ookinete interactions with basal lamina components. Here, we report on a novel extracellular malaria protein expressed in ookinetes and young oocysts, named secreted ookinete adhesive protein (SOAP). The SOAP gene is highly conserved amongst Plasmodium species and appears to be unique to this genus. It encodes a predicted secreted and soluble protein with a modular structure composed of two unique cysteine-rich domains. Using the rodent malaria parasite Plasmodium berghei we show that SOAP is targeted to the micronemes and forms high molecular mass complexes via disulphide bonds. Moreover, SOAP interacts strongly with mosquito laminin in yeast-two-hybrid assays. Targeted disruption of the SOAP gene gives rise to ookinetes that are markedly impaired in their ability to invade the mosquito midgut and form oocysts. These results identify SOAP as a key molecule for ookinete-to-oocyst differentiation in mosquitoes.  相似文献   

14.
15.
Plasmodium parasites are fertilized in the mosquito midgut and develop into motile zygotes, called ookinetes, which invade the midgut epithelium. Here we show that a calcium-dependent protein kinase, CDPK3, of the rodent malarial parasite (Plasmodium berghei) is produced in the ookinete stage and has a critical role in parasite transmission to the mosquito vector. Targeted disruption of the CDPK3 gene decreased ookinete ability to infect the mosquito midgut by nearly two orders of magnitude. Electron microscopic analyses demonstrated that the disruptant ookinetes could not access midgut epithelial cells by traversing the layer covering the cell surface. An in vitro migration assay showed that these ookinetes lack the ability to migrate through an artificial gel, suggesting that this defect caused their failure to access the epithelium. In vitro migration assays also suggested that this motility is induced in the wild type by mobilization of intracellular stored calcium. These results indicate that a signalling pathway involving calcium and CDPK3 regulates ookinete penetration of the layer covering the midgut epithelium. Because humans do not possess CDPK family proteins, CDPK3 is a good target for blocking malarial transmission to the mosquito vector.  相似文献   

16.
The population dynamics of cultured Plasmodium falciparum parasites was examined during their sporogonic development in Anopheles gambiae mosquitoes. Estimates of absolute densities were determined for each life stage, and life tables were constructed for each of 38 experimental infections. Macrogametocyte and ookinete mortalities contributed equally to the overall mortality. On average, there was a 40-fold decrease in parasite numbers in the transition from the macrogametocyte to the ookinete stage, a 69-fold decrease in the transition from ookinete to oocyst stages, and a total net decrease in parasite numbers from macrogametocyte to oocyst stage of 2,754-fold (i.e., multiplicative). There was no relationship between macrogametocyte and ookinete densities due to the inherent variability in fertility among different gametocyte cultures. There was a curvilinear relationship (r2 = 0.66) between ookinete and oocyst densities. Above a threshold of about 30 ookinetes/mosquito, the oocyst yield per ookinete became increasingly greater with increasing ookinete density. There was a linear relationship (r2 = 0.73) between oocyst and sporozoite densities, with an average of 663 salivary gland sporozoites produced per oocyst. Sporozoite production per oocyst was not affected by oocyst density and virtually all oocyst infections resulted in sporozoite infections of the salivery glands. This quantitative study indicates that the sporogony of cultured P. falciparum in laboratory-infected A. gambiae is an inefficient process and that the ookinete is the key transitional stage affecting the probability of vector infectivity.  相似文献   

17.
The sporogonic development of Leucocytozoon smithi in its black fly vector was studied by light and electron microscopy and was compared with that of other haemosporidians. Within 18 to 24 h after ingestion of gametocytes by black flies, ookinetes passing through the midgut epithelium were observed. Intracellular migration of ookinetes resulted in the apparent disruption and degeneration of host cells. Intercellular migration also occurred as was evidenced by the presence of ookinetes between midgut cells. Transformation of ookinete to spherical oocyst occurred extracellularly in three different sites. Although most oocysts were found between the host cell basal membrane and the basal lamina, large numbers also were found attached to the external surface of the basal lamina, projecting into the hemocoel. Ectopic development of oocysts in the midgut epithelium between cells was observed much less frequently than development on the basal side of the midgut. The oocyst wall of dense granules, believed to be of parasite origin, was distinguishable from the basal lamina of the host's midgut epithelium. As in other Leucocytozoidae, the cytoplasm of the oocyst differentiated into a single sporoblastoid from which 30-50 sporozoites were formed. Beginning on the third day post infection, elongation of segregated dense sporoblastoid material associated with pellicle thickening led to the formation of the finger-like sporozoite buds which projected into the oocyst cavity. Sporozoites within mature oocysts and salivary glands were structurally similar to sporozoites as described for other haemosporidians.  相似文献   

18.
The sporogonic development of Leucocytozoon smithi in its black fly vector was studied by light and electron microscopy and was compared with that of other haemosporidians. Within 18 to 24 h after ingestion of gametocytes by black flies, ookinetes passing through the midgut epithelium were observed. Intracellular migration of ookinetes resulted in the apparent disruption and degeneration of host cells. Intercellular migration also occurred as was evidenced by the presence of ookinetes between midgut cells. Transformation of ookinete to spherical oocyst occurred extracellularly in three different sites. Although most oocysts were found between the host cell basal membrane and the basal lamina, large numbers also were found attached to the external surface of the basal lamina, projecting into the hemocoel. Ectopic development of oocysts in the midgut epithelium between cells was observed much less frequently than development on the basal side of the midgut. The oocyst wall of dense granules, believed to be of parasite origin, was distinguishable from the basal lamina of the host's midgut epithelium. As in other Leucocytozoidae, the cytoplasm of the oocyst differentiated into a single sporoblastoid from which 30–50 sporozoites were formed. Beginning on the third day post infection, elongation of segregated dense sporoblastoid material associated with pellicle thickening led to the formation of the finger-like sporozoite buds which projected into the oocyst cavity. Sporozoites within mature oocysts and salivary glands were structurally similar to sporozoites as described for other haemosporidians.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号