首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contact hypersensitivity (CHS) is a CD8 T cell-mediated response to hapten skin sensitization and challenge. The points at which IL-1R signaling is required during this complex, multistep immune response have not been clearly delineated. The role of IL-1R signaling during 2, 4 dinitro-1-fluorobenezene (DNFB) sensitization to induce hapten-specific CD8 effector T cells and in the trafficking of the effector T cells to the DNFB challenge site to elicit the response were investigated using IL-1R deficient mice. DNFB-sensitized IL-1R(-/-) mice had low CHS responses to hapten challenge that were caused in part by marked decreases in hapten-specific CD8 T cell development to IL-17- and IFN-γ-producing cells during sensitization. Hapten-primed wild type CD8 T cell transfer to naive IL-1R(-/-) mice did not result in T cell activation in response to hapten challenge, indicating a need for IL-1R signaling for the localization or activation, or both, of the CD8 T cells at the challenge site. Decreased CD8 T cell priming in sensitized IL-1R(-/-) mice was associated with marked decreases in hapten-presenting dendritic cell migration from the sensitized skin to draining lymph nodes. Transfer of hapten-presenting dendritic cells from wild type donors to naive IL-1R(-/-) mice resulted in decreased numbers of the dendritic cells in the draining lymph nodes and decreased priming of hapten-specific CD8 T cells compared with dendritic cell transfer to naive wild type recipients. These results indicate that IL-1R signaling is required at multiple steps during the course of sensitization and challenge to elicit CHS.  相似文献   

2.
We have shown previously that an early complement C5-dependent cascade is required to recruit T cells to elicit 24-h contact sensitivity (CS) responses. In this paper, we have characterized molecular events of this early required cascade by biochemically analyzing extracts of mouse ears undergoing elicitation of CS. Chemotactic activity was found after local Ag challenge, in CS ear extracts early (by 1 h), in CS ear extracts late (through 24 h), in previously immunized mice, but not in ears of vehicle-immunized or non-immune-challenged mice. The early chemotactic activity at 2 h was likely caused by C5a, because it was neutralized in vitro by anti-C5a Ab, was inactive on C5aR-deficient (C5aR-/-) macrophages, and was absent in C5-deficient mice. The activity was present in T cell-deficient mice, but elaboration was Ag-specific. This T cell-independent, Ag-specific elaboration of C5a early in CS ear responses likely led to T cell recruitment, because subsequent local IFN-gamma mRNA and protein expression, as markers of T cell arrival and activation, began by 4 h after Ag challenge. In contrast to early C5a chemotactic activity, late chemotactic activity 24 h after Ag challenge was unaffected by anti-C5, was active on C5aR-/- macrophages, was T cell-dependent, and by ELISA appeared largely due to chemokines (macrophage-inflammatory protein-1alpha and -1beta, IFN-gamma-inducible protein-10, and monocyte chemoattractant protein-1). Importantly, early generation of C5a was required for T cell recruitment because C5aR-/- mice had absent 24-h CS. Taken together, these findings indicate an important linkage of C5a as a component of early activated innate immunity that is required for later elicitation of acquired T cell immunity, probably by facilitating the initial recruitment of T cells into the Ag-challenged local site in CS responses.  相似文献   

3.
The linker for activation of T cells (LAT) and the non-T cell activation linker (NTAL) are two transmembrane adapters which organize IgE receptor (FcepsilonRI) signaling complexes in mast cells. LAT positively regulates, whereas NTAL negatively regulates mast cell activation. We previously found that the four distal tyrosines of LAT can generate negative signals. We show here that two of these tyrosines provide two binding sites for SHIP1, that LAT recruits SHIP1 in vivo, and that SHIP1 recruitment is enhanced in NTAL-deficient cells. We show that NTAL negatively regulates mast cell activation by decreasing the recruitment, by LAT, of molecules involved in FcepsilonRI-dependent positive signaling. We show that NTAL also decreases the recruitment of SHIP1 by LAT, leading to an increased phosphorylation of the antiapoptotic molecule Akt, and positively regulates mast cell survival. We finally show that the positive effect of NTAL on Akt phosphorylation and mast cell survival requires LAT. Our data thus document the mechanisms by which LAT and NTAL can generate both positive and negative signals which differentially regulate mast cell activation and survival. They also provide molecular bases for the recruitment of SHIP1 in FcepsilonRI signaling complexes. SHIP1 is a major negative regulator of mast cell activation and, hence, of allergic reactions.  相似文献   

4.
Contact hypersensitivity (CHS) is a T cell-mediated, Ag-specific skin inflammation induced by skin exposure to haptens in sensitized individuals. Th1/T cytotoxic 1 cells are effector cells of CHS, whereas Th2/T regulatory CD4(+) T cells have down-regulating properties. We have previously shown that CHS to 2,4-dinitrofluorobenzene is mediated by specific CD8(+) effector cells, whose cytolytic activity is mandatory for induction of skin inflammation. In this study, using immunohistochemistry and RT-PCR analysis, we show that CD8(+) T cells are rapidly recruited into the skin at the site of hapten challenge before the onset of clinical and histological signs of skin inflammation. This early CD8(+) T cell recruitment is concomitant with: 1) transient IFN-gamma mRNA expression suggesting local activation of effector cells; and 2) induction of keratinocyte (KC) apoptosis which gradually increased to a maximum at the peak of the CHS response. Alternatively, skin infiltration of CD4(+) T cells occurred later and coincided with the peak of the CHS reaction and the beginning of the resolution of skin inflammation. Mice deficient in CD8(+) T cells did not develop CHS, whereas mice deficient in CD4(+) T cells developed an enhanced inflammatory response with increased numbers of CD8(+) T cells recruited in the skin associated with massive KC apoptosis. These data show that CHS is due to the early and selective recruitment in the skin of CD8(+) T cytotoxic 1 effector cells responsible for KC apoptosis.  相似文献   

5.
Regulation of the inflammatory response in asthma by mast cell products   总被引:13,自引:0,他引:13  
In airways, mast cells lie adjacent to nerves, blood vessels and lymphatics, which highlights their pivotal importance in regulating allergic inflammatory processes. In asthma, mast cells are predominantly activated by IgE receptor cross linking. In response to activation, preformed mediators that are stored bound to proteoglycans, for example, TNF-alpha, IL-4, IL-13, histamine, tryptase and chymase, are released. New synthesis of arachidonic acid metabolites (leukotriene C4 (LTC4), leukotriene B4 (LTB4) and prostaglandin D2 (PGD2)) and further cytokines is stimulated. Mediators from degranulating mast cells are critical to the pathology of the asthmatic lung. Mast cell proteases stimulate tissue remodelling, neuropeptide inactivation and enhanced mucus secretion. Histamine stimulates smooth muscle cell contraction, vasodilatation and increased venular permeability and further mucus secretion. Histamine induces IL-16 production by CD8+ cells and airway epithelial cells; IL-16 is an important early chemotactic factor for CD4+ lymphocytes. LTC4, LTB4 and PGD2 affect venular permeability and can regulate the activation of immune cells. The best characterized mast cell cytokine in asthmatic inflammation is TNF-alpha, which induces adhesion molecules on endothelial cells and subsequent transmigration of inflammatory leucocytes. IL-13 is critical to development of allergic asthma, although its mode of action is less clear.  相似文献   

6.
Using noncompetitive methodologies comparing CD43(+/+) and CD43(-/-) mice, it has been reported that CD43(-/-) leukocytes exhibit reduced recruitment efficiency to sites of inflammation. More recent analyses demonstrate that CD43 on activated T cells can function as an E-selectin ligand (E-SelL) in vitro, suggesting that CD43 might promote rolling interactions during recruitment of leukocytes and account for the reported recruitment deficits in CD43(-/-) T cells and neutrophils in vivo. Internally controlled competitive in vivo methods using fluorescent tracking dyes were applied to compare recruitment efficiency of CD43(+/+) vs CD43(-/-) activated T cells to inflamed skin and of peripheral blood neutrophils to inflamed peritoneum. A simple CFSE perfusion method was developed to distinguish arterial/venous vasculature and confirm appropriate extravasation through venules in a Con A-induced cutaneous inflammation model. In vivo recruitment of peripheral blood neutrophils to inflamed peritoneum was core 2 GlcNAcT-I dependent, but recruitment efficiency was not influenced by absence of CD43. There were also no significant differences in core 2 GlcNAcT-I-dependent, selectin-dependent, cutaneous recruitment of activated T cells from CD43(+/+) and congenic CD43(-/-) mice in either B6 or P-selectin(-/-) recipients despite biochemical confirmation that a CD43-specific E-SelL was present on activated T cells. We conclude that recruitment of neutrophils and activated T cells in these in vivo models is not influenced by CD43 expression and that if CD43 on activated T cells performs an E-SelL function in vivo, it contributes in a limited physiological context.  相似文献   

7.
PECAM is a molecule used specifically during the diapedesis step when neutrophils and monocytes leave the blood compartment. Anti-PECAM reagents, such as Abs and soluble fusion proteins, block diapedesis both in vivo and in vitro. However, the PECAM knockout mouse in C57BL/6 strain has no serious defects in most models of inflammation. We show in this study that the same PECAM knockout backcrossed into the FVB/n strain clearly has reduced leukocyte emigration in two models of inflammation. Furthermore, we show that anti-PECAM reagents can block leukocyte emigration in several other wild-type strains of mice like FVB/n, SJL, and the outbred strain Swiss Webster. This clearly shows that the C57BL/6 strain is uniquely able to compensate for the loss of PECAM function. Murine models of inflammatory disease that have been studied using C57BL/6 mice should be re-evaluated using FVB/n or other mouse strains to determine whether PECAM plays a role in those models.  相似文献   

8.
Treatment of strain 2 guinea pigs with ultraviolet b (uvb) (280-320 nm) radiation or methoxsalen, followed by ultraviolet a (uva) (320-400 nm) radiation, decreased the contact hypersensitivity (CHS) reaction to sensitizing agents applied subsequently to unirradiated sites. The decreased reactivity could be transferred to syngeneic animals and appeared to be caused by antigen-specific suppressor T lymphocytes. Ultraviolet b irradiation of sensitized animals did not affect elicitation of CHS in unirradiated skin.  相似文献   

9.
10.
11.
Our study has examined the synthesis of platelet activating factor (PAF; 1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine) and of structurally related molecules by an enriched preparation (greater than 70%) of the human lung mast cell (HLMC) in response to immunologic stimulation. Upon activation with anti-IgE, HLMC incorporated exogenously provided acetate into a phospholipid that migrated with authentic PAF on TLC. The formation of this product in HLMC occurred concomitantly with histamine and leukotriene C4 release. Further analysis of this phospholipid revealed that 1-acyl-2-acetyl-sn-glycero-3-phosphocholine (GPC) and not 1-alkyl-2-acetyl-GPC was the major 1-radyl-2-acetyl-GPC subclass formed during cell activation. The presence of 1-alkyl-2-acetyl-GPC was confirmed by negative ion chemical ionization mass spectrometry. In addition to this product, anti-IgE-stimulated HLMC synthesized relatively small quantities of another 2-acetylated phospholipid migrating on TLC between phosphatidylcholine and phosphatidylinositol. The chromatographic characteristics of this product suggested that it is a subclass of 1-radyl-2-acetyl-sn-glycero-3-phosphoethanolamine. The catabolism of both 1-acyl-2-acetyl-GPC and 1-alkyl-2-acetyl-GPC was next examined to determine if the predominant formation of 1-acyl-2-acetyl-GPC over 1-alkyl-2-acetyl-GPC were metabolized by the HLMC at similar rates. There was, however, a qualitative difference in the metabolic products derived from the two phospholipids. 1-Alkyl-2-acetyl-GPC was rapidly inactivated by removal of the acetate moiety at the sn-2 position followed by rapid reacylation with arachidonate. By contrast, 1-acyl-2-acetyl-GPC was catabolized mainly by removal of the fatty acyl moiety at the sn-1 position. These data demonstrate the natural occurrence of PAF and at least two structurally similar molecules in anti-IgE stimulated HLMC. Furthermore, an analog containing an ester linkage at the sn-1 position, 1-acyl-2-acetyl-GPC, appears to be the major acetylated product synthesized under these conditions.  相似文献   

12.
Several recent reports have suggested that binding monomeric IgE (mIgE) to its type 1 receptor, Fc epsilon RI, on mast cells induces important responses. These observations contradict the notion that it is the aggregation of this receptor that is essential for initiating mast cell response. In the present study, we suggest that the most probable causes for the reported observations are the experimental protocol used combined with the high expression levels of the Fc epsilon RI by mast cells. Specifically, we suggest using the published data and physicochemical calculations that the exceptionally high number of cell surface Fc epsilon RI-bound monoclonal IgE yields, in the two-dimensions of the cells' membranes, a situation where even a low affinity of these mIgE for epitopes on their own structure or on another cell surface component may lead to their aggregation. Hence, we hypothesize that the reported response to mIgE binding is a result of such an Fc epsilon RI-IgE induced aggregation.  相似文献   

13.
Summary The N-quaternized derivative of dimethyl-POPOP (termed Q4) induces a bluish-green fluorescent reaction in mast cell granules from paraffin sections and cell smears, in addition to a previously described bluish-white fluorescent reaction in chromatin DNA. The chromatin reaction was abolished by staining the samples either with Mayer's Haematoxylin before Q4 treatment or by Q4 treatment at pH 1.5. The reaction in mast cell granules was absent after substrate methylation. The staining sequence Haematoxylin-Eosin-Q4 also worked well in paraffin sections, allowing the observation of the current histological image under bright-field illumination as well as double-colour emission under fluorescence microscopy. The sequence is proposed as a new diagnostic procedure for demonstrating mast cell granules.  相似文献   

14.
We have examined the pathway of rhinovirus interaction with soluble intercellular adhesion molecule 1 (sICAM-1). Binding of sICAM-1 to rhinovirus serotypes 3 and 14 gives particles with sedimentation coefficients from 145 to 120S, depending on the amount of sICAM-1 bound. The formation of 120S particles is faster and more extensive at a neutral pH than at an acidic pH. A large number of receptors (> 30) can bind to human rhinovirus 3 without disruption. Disruption by sICAM-1 of rhinovirus that yields 80S particles is strongly temperature dependent and is antagonized by a low pH. Interestingly, sICAM-1 remains bound to the viral capsid after RNA is released, although in smaller amounts than those observed for the native virus. We have found heterogeneity both between and within 80S particle preparations in the VP4 content and number of bound receptors. The ability of the virus to remain bound to its receptor during the uncoating process may facilitate the transport of the viral genome into the cytoplasm in vivo.  相似文献   

15.
16.
Spermidine/spermine N(1)-acetyltransferase (SSAT) is the key enzyme with regard to the maintenance of intracellular polyamine levels. It is an inducible enzyme, which may participate in adaptive responses to environmental stress. However, little is known regarding its responses to oxygen or nutrient deficiencies. Using microarray assays, we discovered that SSAT was enhanced under both oxygen- and iron-deficient conditions. However, RT-PCR revealed that the SSAT mRNA was not induced; rather, an mRNA variant was newly expressed. In this variant, the splicing-in of 110 bases induces early termination, generating a truncated isoform which lacks catalytic motifs. The variant expression occurs in other cancer cells and was irrelevant to both hypoxia-inducible factor 1 and to the redox state. We attempted to determine its role, using stable cell-lines. The expressed isoform was found to promote cell survival under iron-deficient conditions and blocked the cleavage of poly(ADP-ribose) polymerase. This isoform may contribute to the progression of tumors of a more malignant phenotype under poor conditions and may constitute a potential target for anticancer therapy.  相似文献   

17.
In this study, a murine model of granulomatous experimental autoimmune thyroiditis (G-EAT) was used to determine the role of TGFbeta1 in fibrosis initiated by an autoimmune inflammatory response. The fibrotic process was evaluated by staining thyroid tissue for collagen, alpha-smooth muscle actin, TGFbeta1, and angiotensin-converting enzyme (ACE), and measuring serum thyroxine in mice given anti-TGFbeta1 or the ACE inhibitor lisinopril. The role of particular inflammatory cells in fibrosis was tested by depletion experiments, and the cytokine profile in thyroids was examined by RT-PCR. Neutralization of TGFbeta1 by anti-TGFbeta1 or lisinopril resulted in less collagen deposition and less accumulation of myofibroblasts, and levels of active TGFbeta1 and ACE were reduced in thyroids of treated mice compared with those of untreated controls. Other profibrotic molecules, such as platelet-derived growth factor, monocyte chemotactic protein-1, and IL-13, were also reduced in thyroids of anti-TGFbeta1- and lisinopril-treated mice compared with those of controls. Confocal microscopy showed that CD4(+) T cells and macrophages expressed TGFbeta1. Fibrosis was reduced by injection of anti-CD4 mAb on day 12, when G-EAT was very severe (4-5+). Together, these results suggest a critical role for TGFbeta1 in fibrosis initiated by autoimmune-induced inflammation. Autoreactive CD4(+) T cells may contribute to thyroid fibrosis through production of TGFbeta1. This G-EAT model provides a new model to study how fibrosis associated with autoimmune damage can be inhibited.  相似文献   

18.
This report defines a methodology for the production and characterization of an antigen-specific, monoclonal T cell hybrid-derived suppressor T cell factor (TsF) that suppresses the passive transfer of 2,4-dinitrofluorobenzene (DNFB) contact hypersensitivity. Fusion of T cells from BALB/c (H-2d) mice tolerized with syngeneic DNP-spleen cells to BW 5147 thymoma cells resulted in several hybrids that constitutively produce a soluble regulatory molecule. One of these hybrids, 26.10.2, was subsequently cloned, and its soluble factor was characterized with respect to its antigen specificity, biochemical nature, MHC restriction pattern, and identity of its target cell. 26.10.2 TsF suppresses the passive transfer of delayed-type hypersensitivity (DTH) mediated by DNP- but not trinitrochlorobenzene- or oxazalone-primed DTH T cells (TDH) after a 1 hr incubation at 37 degrees C. In contrast, 26.10.2 TsF had no suppressive effect on secondary in vitro DNP-specific T cell proliferative responses. 26.10.2 TsF therefore represents an antigen-specific factor with effector (efferent-acting) function. The monoclonal TsF was shown to consist of a two-chain, disulfide-bonded molecule, and to bear a receptor(s) specific for DNP and determinants encoded by the I region of the H-2 complex. Effector suppressive activity of 26.10.2 TsF was restricted by Class I H-2Dd determinants. One cellular target of this monoclonal factor was shown to be the DNP-specific TDH cell, because DNFB-primed lymph node cells from cyclophosphamide-pretreated donors (lacking Ts-auxiliary (Ts-aux) cells) were efficiently suppressed. The TsF appears to focus on passively bound, TDH receptor-associated, DNP-Class I determinants, as suggested by the observation that freshly prepared, but not overnight cultured, DNP-specific TDH cells were susceptible to suppression.  相似文献   

19.
Induction of local photosensitised DNA damage has been used to study recruitment of repair factors, spatial organisation and subsequent stages of the repair processes. However, the damage induced by a focused laser beam interacting with a photosensitiser may not fully reflect the types of damage and repair encountered in cells of an animal under typical conditions in vivo. We report on two characteristic stages of recruitment of XRCC1 (a protein engaged in BER and SSB repair pathways), in response to low level DNA damage induced by visible light. We demonstrate that, when just a few DNA breaks are induced in a small region of the nucleus, the recruited XRCC1 is initially distributed uniformly throughout this region, and rearranges into several small stationary foci within minutes. In contrast, when heavy damage of various types (including oxidative damage) is induced in cells pre-sensitized with a DNA-binding drug ethidium bromide, XRCC1 is also recruited but fails to rearrange from the stage of the uniform distribution to the stage of several small foci, indicating that this heavy damage interferes with the progress and completion of the repair processes. We hypothesize that that first stage may reflect recruitment of XRCC1 to poly(ADP-ribose) moieties in the region surrounding the single-strand break, while the second-binding directly to the DNA lesions. We also show that moderate damage or stress induces formation of two types of XRCC1-containing foci differing in their mobility. A large subset of DNA damage-induced XRCC1 foci is associated with a major component of PML nuclear bodies - the Sp100 protein.  相似文献   

20.
The bacterial actin homologue MreB plays a key role in cell morphogenesis. In Bacillus subtilis MreB is essential under normal growth conditions and mreB mutants are defective in the control of cell diameter. However, the precise role of MreB is still unclear. Analysis of the lethal phenotypic consequences of mreB disruption revealed an unusual bulging phenotype that precedes cell death. A similar phenotype was seen in wild-type cells at very low Mg2+ concentrations. We found that inactivation of the major bi-functional penicillin-binding protein (PBP) PBP1 of B. subtilis restored the viability of an mreB null mutant as well as preventing bulging in both mutant and wild-type backgrounds. Bulging was associated with delocalization of PBP1. We show that the normal pattern of localization of PBP1 is dependent on MreB and that the proteins can physically interact using in vivo pull-down and bacterial two-hybrid approaches. Interactions between MreB and several other PBPs were also detected. Our results suggest that MreB filaments associate directly with the peptidoglycan biosynthetic machinery in B. subtilis as part of the mechanism that brings about controlled cell elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号