首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amir R  Devor M 《Biophysical journal》2003,84(4):2181-2191
The cell soma of primary sensory neurons is electrically excitable, and is invaded by action potentials as they pass from the peripheral nerve, past the dorsal root ganglion (DRG) and toward the spinal cord. However, there are virtually no synapses in the DRG, and no signal processing is known to occur there. Why, then, are DRG cell somata excitable? We have constructed and validated an explicit model of the primary sensory neuron and used it to explore the role of electrical excitability of the cell soma in afferent signaling. Reduction and even elimination of soma excitability proved to have no detectable effect on the reliability of spike conduction past the DRG and into the spinal cord. Through-conduction is affected, however, by major changes in neuronal geometry in the region of the t-junction. In contrast to through-conduction, excitability of the soma and initial segment is essential for the invasion of afferent spikes into the cell soma. This implies that soma invasion has a previously unrecognized role in the physiology of afferent neurons, perhaps in the realm of metabolic coupling of the biosynthesis of signaling molecules required at the axon ends to functional demand, or in cell-cell interaction within sensory ganglia. Spike invasion of the soma in central nervous system neurons may play similar roles.  相似文献   

2.
Steps in the production of motoneuron spikes   总被引:4,自引:14,他引:4       下载免费PDF全文
1. Spikes evoked in spinal motoneurons by antidromic stimulation normally present an inflection in their rising phase. A similar inflection is present in spikes evoked by direct stimulation with short pulses. 2. In either case the inflection becomes less prominent if the motoneuron membrane is depolarized and more prominent when it is hyperpolarized. Both antidromic and direct spikes may fall from the level of the inflection thus evoking a "small spike" only if sufficient hyperpolarization is applied. Similar events occur when antidromic or direct spikes are evoked in the aftermath of a preceding spike. 3. Spikes evoked by direct stimuli applied shortly after firing of a "small spike" may also become partially blocked at a critical stimulus interval. At shorter intervals, however, spike size again increases and no inflection can be detected in the rising phase. 4. When a weak direct stimulus evokes a small spike only, a stronger stimulus may evoke a full spike. Curves of the strength of the stimuli required for eliciting small or full spikes have been constructed in a number of conditions. 5. To explain the results it is assumed that threshold of the major portions of the soma membrane is higher than the threshold of the axon, the transition occurring over a finite area near the axon hillock. Following antidromic or direct stimulation, soma excitation is then initiated in the region of the axon hillock. Spread of activity towards the soma occurs at first slowly and with low safety factor. At this stage block may be easily evoked. Safety factor for propagation increases rapidly as the growing impulse involves larger and larger areas of the soma membrane so that, once the critical areas are excited, activation of the remaining portions of the soma membrane will suddenly occur.  相似文献   

3.
In cortical neurons, spikes are initiated in the axon initial segment. Seen at the soma, they appear surprisingly sharp. A standard explanation is that the current coming from the axon becomes sharp as the spike is actively backpropagated to the soma. However, sharp initiation of spikes is also seen in the input–output properties of neurons, and not only in the somatic shape of spikes; for example, cortical neurons can transmit high frequency signals. An alternative hypothesis is that Na channels cooperate, but it is not currently supported by direct experimental evidence. I propose a simple explanation based on the compartmentalization of spike initiation. When Na channels are placed in the axon, the soma acts as a current sink for the Na current. I show that there is a critical distance to the soma above which an instability occurs, so that Na channels open abruptly rather than gradually as a function of somatic voltage.  相似文献   

4.
The effects of strychnine on Aplysia R2 neurons were evaluated using simultaneous intracellular recordings of the soma and axon potentials. 1 mM strychnine produced a slight enlargement of the somatic spike and a large increase of the axon spike duration. Following direct stimulation, the soma displayed depolarizing afterpotentials ( DAPs ) which might trigger extra-spikes, both produced electronically by long-lasting axon spikes. Cobalt suppressed both the axon spike lengthening and the somatic extra-spikes or DAPs , and induced large depolarizing shifts in the soma. The region of largest spike lengthening (proximal axon) had a large density of Ca channels. The different effects of strychnine on the soma and on the axon were assumed to result from a selective blockage of the V-dependent K channels which would predominate in the axon whereas Ca-activated K channels would predominate in the soma.  相似文献   

5.
A study has been made of Aplysia nerve cells, mainly in the pleural ganglia, in which the main axon divides into at least two branches in the neighbourhood of the soma. Conduction between these branches was investigated by intracellular recordings from the soma following antidromic stimulation via the nerves containing the axonal branches. It has been shown that transmission between separate branches need not involve discharge of the soma but only of the axonal region between the soma and the origin of the branches. In some cells, the spike may fail to invade the other axonal branch, whereas transmission in the opposite direction is readily achieved. Often spikes in none of the branches are transmitted to the others, unless facilitated. Indications about the geometry of the neuron in the vicinity of the soma may be obtained from the study of the relative size of the A spikes originated in different branches. These observations, together with the presence of different sizes of A spikes, produced by orthodromic stimulation, provide evidence that spikes initiated at separate axonal "trigger zones" of Aplysia neurons may be conducted selectively to the effectors or other neurons innervated by the particular branch.  相似文献   

6.
This series of three papers presents data on a system of neurons, the large supramedullary cells (SMC) of the puffer, Spheroides maculatus, in terms of the physiological properties of the individual cells, of their afferent and efferent connections, and of their interconnections. Some of these findings are verified by available anatomical data, but others suggest structures that must be sought for in the light of the demonstration that these cells are not sensory neurons. Analysis on so broad a scale was made possible by the accessibility of the cells in a compact cluster on the dorsal surface of the spinal cord. Simultaneous recordings were made intracellularly and extracellularly from individual cells or from several, frequently with registration of the afferent or efferent activity as well. The passive and active electrical properties of the SMC are essentially similar to those of other neurons, but various response characteristics have been observed which are related to different excitabilities of different parts of the neuron, and to specific anatomical features. The SMC produce spikes to direct stimuli by intracellular depolarization, or by indirect synaptic excitation from many afferent paths, including tactile stimulation of the skin. Responses that were evoked by intracellular stimulation of a single cell cause an efferent discharge bilaterally in many dorsal roots, but not in the ventral. Sometimes several distinct spikes occurred in the same root, and behaved independently. Thus, a number of axons are efferent from each neuron. They are large unmyelinated fibers which give rise to the elevation of slowest conduction in the compound action potential of the dorsal root. A similar component is absent in the ventral root action potential. Antidromic stimulation of the axons causes small potentials in the cell body, indicating that the antidromic spikes are blocked distantly to the soma, probably in the axon branches. The failure of antidromic invasion is correlated with differences in excitability of the axons and the neurite from which they arise. As recorded in the cell body, the postsynaptic potentials associated with stimulation of afferent fibers in the dorsal roots or cranial nerves are too small to discharge the soma spike. The indirect spike has two components, the first of which is due to the synaptically initiated activity of the neurite and which invades the cell body. The second component is then produced when the soma is fired. The neurite impulse arises at some distance from the cell body and propagates centrifugally as well as centripetally. An indirect stimulus frequently produces repetitive spikes which are observed to occur synchronously in all the cells examined at one time. Each discharge gives rise to a large efferent volley in each of the dorsal roots and cranial nerves examined. The synchronized responses of all the SMC to indirect stimulation occur with slightly different latencies. They are due to a combination of excitation by synaptic bombardment from the afferent pathways and by excitatory interconnections among the SMC. Direct stimulation of a cell may also excite all the others. This spread of activity is facilitated by repetitive direct excitation of the cell as well as by indirect stimulation.  相似文献   

7.
Summary Cobalt backfills were used to demonstrate a population of approximately 50 paired interneurons in the 6th abdominal ganglion of the crayfish,Procambarus clarkii. Intracellular recordings from somata were used to study the response properties of individual interneurons, which were subsequently injected with Lucifer yellow. This report deals with 22 identified mechanosensory interneurons, which were each studied 2 to 20 times. (The total number of cells studied was 177). All but two of the interneurons could be assigned to one of two homogeneous classes, based on their receptive field sizes and four other consistent features: amplitude of soma spikes, duration of afterdischarge, presence of postsynaptic inhibition, and structure of the neuropilar processes. Unisegmental interneurons (Type I) (n=9) had excitatory receptive fields restricted to one segment, small soma spikes, little afterdischarge, and received extensive postsynaptic inhibition from contralateral and occasionally anterior sensory fields. All of these interneurons had a large diameter neuropilar segment (integrating segment) that was separated from the main axon by a constricted region. Multisegmental interneurons (Type II) (n=11) had excitatory receptive fields of at least six hemisegments (one half of the abdomen), large (sometimes overshooting) soma spikes, prolonged afterdischarge, and little evidence of postsynaptic inhibition. These interneurons lacked any expanded region of the dendritic tree that could be called an integrating segment. Anomalous interneurons (n=2) had multisegmental receptive fields, but in all other respects they resembled unisegmental interneurons, although their soma spikes were somewhat larger in amplitude.We hypothesize that the fundamental difference between the two main kinds of interneurons is that Type II interneurons have multiple spike initiating sites distributed throughout their dendritic trees, with any site being capable of initiating a spike that propagates to the main axon, while Type I interneurons have a single spike initiating site. The properties of anomalous interneurons are consistent with them having a single spike initiating site in each of several ganglia.  相似文献   

8.
In the Squilla heart ganglion, the pacemaker is located in the rostral group of cells. After spontaneous firing ceased, the electrophysiological properties of these cells were examined with intracellular electrodes. Cells respond to electrical stimuli with all-or-none action potentials. Direct stimulation by strong currents decreases the size of action potentials. Comparison with action potentials caused by axonal stimulation and analysis of time relations indicate that with stronger currents the soma membrane is directly stimulated whereas with weaker currents the impulse first arises in the axon and then invades the soma. Spikes evoked in a neuron spread into all other neurons. Adjacent cells are interconnected by electrotonic connections. Histologically axons are tied with the side-junction. B spikes of adjacent cells are blocked simultaneously by hyperpolarization or by repetitive stimulation. Experiments show that under such circumstances the B spike is not directly elicited from the A spike but is evoked by invasion of an impulse or electrotonic potential from adjacent cells. On rostral stimulation a small prepotential precedes the main spike. It is interpreted as an action potential from dendrites.  相似文献   

9.
In Hermissenda type-B photoreceptors, the spike is generated in the axon and back-propagated to the soma, resulting in smaller somatic spikes. Experimentally, blocking the A-type K+ current (IK,A) results in broadening of somatic spikes. Similarly, in a compartmental model of the photoreceptor, reducing the maximum A-type K+ conductance (gK,Amax) results in broadening of somatic spikes. However, simulations predict that little or no broadening of axonal spikes occurs when gK,Amax is reduced. The results can be explained by the voltage-dependent properties of IK,A and the different potential ranges that the somatic and axonal spike traverse. Because of the steeper I-V curve and faster activation of the K+ channels at higher potentials, the recruitment of additional K+ channels in the axon is able to compensate for the decrease in K+ conductance, yielding less spike broadening. These results also support the idea that spike duration in the axon may not be reliably inferred based upon recordings collected from the soma. Action Editor: Jonathan D. Victor  相似文献   

10.
Although the timing of single spikes is known to code for time-varying features of a sensory stimulus, it remains unclear whether time is also exploited in the neuronal coding of the spatial structure of the environment, where nontemporal stimulus features are fundamental. This report demonstrates that, in the whisker representation of rat cortex, precise spike timing of single neurons increases the information transmitted about stimulus location by 44%, compared to that transmitted only by the total number of spikes. Crucial to this code is the timing of the first spike after whisker movement. Complex, single neuron spike patterns play a smaller, synergistic role. Timing permits very few spikes to transmit high quantities of information about a behaviorally significant, spatial stimulus.  相似文献   

11.
Although feeding in Aplysia is mediated by a central pattern generator (CPG), the activity of this CPG is modified by afferent input. To determine how afferent activity produces the widespread changes in motor programs that are necessary if behavior is to be modified, we have studied two classes of feeding sensory neurons. We have shown that afferent-induced changes in activity are widespread because sensory neurons make a number of synaptic connections. For example, sensory neurons make monosynaptic excitatory connections with feeding motor neurons. Sensori-motor transmission is, however, regulated so that changes in the periphery do not disrupt ongoing activity. This results from the fact that sensory neurons are also electrically coupled to feeding interneurons. During motor programs sensory neurons are, therefore, rhythmically depolarized via central input. These changes in membrane potential profoundly affect sensori-motor transmission. For example, changes in membrane potential alter spike propagation in sensory neurons so that spikes are only actively transmitted to particular output regions when it is behaviorally appropriate. To summarize, afferent activity alters motor output because sensory neurons make direct contact with motor neurons. Sensori-motor transmission is, however, centrally regulated so that changes in the periphery alter motor programs in a phase-dependent manner.  相似文献   

12.

Background

Action potentials are the essential unit of neuronal encoding. Somatic sequential spikes in the central nervous system appear various in amplitudes. To be effective neuronal codes, these spikes should be propagated to axonal terminals where they activate the synapses and drive postsynaptic neurons. It remains unclear whether these effective neuronal codes are based on spike timing orders and/or amplitudes.

Methodology/Principal Findings

We investigated this fundamental issue by simultaneously recording the axon versus soma of identical neurons and presynaptic vs. postsynaptic neurons in the cortical slices. The axons enable somatic spikes in low amplitude be enlarged, which activate synaptic transmission in consistent patterns. This facilitation in the propagation of sequential spikes through the axons is mechanistically founded by the short refractory periods, large currents and high opening probability of axonal voltage-gated sodium channels.

Conclusion/Significance

An amplification of somatic incomplete spikes into axonal complete ones makes sequential spikes to activate consistent synaptic transmission. Therefore, neuronal encoding is likely based on spike timing order, instead of graded analogues.  相似文献   

13.
Cortical pyramidal cells fire single spikes and complex spike bursts. However, neither the conditions necessary for triggering complex spikes, nor their computational function are well understood. CA1 pyramidal cell burst activity was examined in behaving rats. The fraction of bursts was not reliably higher in place field centers, but rather in places where discharge frequency was 6-7 Hz. Burst probability was lower and bursts were shorter after recent spiking activity than after prolonged periods of silence (100 ms-1 s). Burst initiation probability and burst length were correlated with extracellular spike amplitude and with intracellular action potential rising slope. We suggest that bursts may function as "conditional synchrony detectors," signaling strong afferent synchrony after neuronal silence, and that single spikes triggered by a weak input may suppress bursts evoked by a subsequent strong input.  相似文献   

14.
The contribution of axonal activity to the ionic currents which generate bursting pacemaker activity was studied by using the two-electrode voltage-clamp technique in Aplysia bursting neuron somata in conjunction with intraaxonal voltage recordings. Depolarizing voltage-clamp pulses applied to bursting cell somata triggered axonal action potentials. The voltage-clamp current recording exhibited transient inward current "notches" corresponding to each of the axonal spikes. The addition of 50 microM tetrodotoxin (TTX) to the bathing medium blocked the fast axonal spikes and current notches, revealing a slower axonal spike which was blocked by the replacement of external Ca2+ with Co2+. The inward current evoked by applying a depolarizing voltage-clamp pulse in the soma is distorted by the occurrence of the axonal Ca2+ spike. Elimination of the axonal spike, by injecting hyperpolarizing current into the axon, changes both the time course and the magnitude of the inward current. The axonal Ca2+ spikes are followed by a series of Ca2+-dependent afterpotentials: a rapid postspike hyperpolarization, a depolarizing afterpotential (DAP) and, finally, a long-lasting postburst hyperpolarization. The long-lasting hyperpolarization is not blocked by 50 mM external tetraethyl ammonium, an effective blocker of Ca2+-activated K+ current [IK(Ca)], and does not appear to reverse at EK. Hence, the axonal long-lasting hyperpolarization may not be due to IK(Ca). Somatic voltage-clamp pulses in bursting neurons are followed by a slow inward tail current, which is sometimes coincident with a DAP in the axon. In some cells, the amplitude of the slow inward tail current is greatly reduced if axonal spikes and DAPs are prevented by hyperpolarization of the axon, while, in other cells, elimination of axonal activity has little effect. Therefore, the slow inward tail current is not necessarily an artifact of poor voltage-clamp control over the axonal membrane potential but probably results from the activation of an ionic conductance mechanism located partly in the axon and partly in the soma.  相似文献   

15.
The ability of the soma of a spinal dorsal horn neuron, a spinal ventral horn neuron (presumably a motoneuron), and a hippocampal pyramidal neuron to generate action potentials was studied using patch-clamp recordings from rat spinal cord slices, the "entire soma isolation" method, and computer simulations. By comparing original recordings from an isolated soma of a dorsal horn neuron with simulated responses, it was shown that computer models can be adequate for the study of somatic excitability. The modeled somata of both spinal neurons were unable to generate action potentials, showing only passive and local responses to current injections. A four- to eightfold increase in the original density of Na(+) channels was necessary to make the modeled somata of both spinal neurons excitable. In contrast to spinal neurons, the modeled soma of the hippocampal pyramidal neuron generated spikes with an overshoot of +9 mV. It is concluded that the somata of spinal neurons cannot generate action potentials and seem to resist their propagation from the axon to dendrites. In contrast, the soma of the hippocampal pyramidal neuron is able to generate spikes. It cannot initiate action potentials in the intact neurons, but it can support their back-propagation from the axon initial segment to dendrites.  相似文献   

16.
The behavior of the antidromic spike and the origin of the axonal spike evoked by direct stimulation of the soma were studied with the aid of the Hodgkin-Hexley equation. It is suggested that the mechanisms responsible for electrical excitation of the axon are qualitatively and quantitatively similar to those described by Hodgkin and Huxley for the squid axon. The amplitude of the antidromic spike diminishes rapidly close to the soma. In the example studied, only subthreshod changes of membrane potential take place in the soma. During direct stimulation of the soma the site of primary origin of the axonal spike depends on the strength of the stimulating current. With an increase in its strength the site of primary generation of the spike moves closer to the soma.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 7, No. 4, pp. 422–427, July–August, 1975.  相似文献   

17.
Single neurons in the cerebral cortex are immersed in a fluctuating electric field, the local field potential (LFP), which mainly originates from synchronous synaptic input into the local neural neighborhood. As shown by recent studies in visual and auditory cortices, the angular phase of the LFP at the time of spike generation adds significant extra information about the external world, beyond the one contained in the firing rate alone. However, no biologically plausible mechanism has yet been suggested that allows downstream neurons to infer the phase of the LFP at the soma of their pre-synaptic afferents. Therefore, so far there is no evidence that the nervous system can process phase information. Here we study a model of a bursting pyramidal neuron, driven by a time-dependent stimulus. We show that the number of spikes per burst varies systematically with the phase of the fluctuating input at the time of burst onset. The mapping between input phase and number of spikes per burst is a robust response feature for a broad range of stimulus statistics. Our results suggest that cortical bursting neurons could play a crucial role in translating LFP phase information into an easily decodable spike count code.  相似文献   

18.
A train of action potentials (a spike train) can carry information in both the average firing rate and the pattern of spikes in the train. But can such a spike-pattern code be supported by cortical circuits? Neurons in vitro produce a spike pattern in response to the injection of a fluctuating current. However, cortical neurons in vivo are modulated by local oscillatory neuronal activity and by top-down inputs. In a cortical circuit, precise spike patterns thus reflect the interaction between internally generated activity and sensory information encoded by input spike trains. We review the evidence for precise and reliable spike timing in the cortex and discuss its computational role.  相似文献   

19.
A stochastic spike train analysis technique is introduced to reveal the correlation between the firing of the next spike and the temporal integration period of two consecutive spikes (i.e., a doublet). Statistics of spike firing times between neurons are established to obtain the conditional probability of spike firing in relation to the integration period. The existence of a temporal integration period is deduced from the time interval between two consecutive spikes fired in a reference neuron as a precondition to the generation of the next spike in a compared neuron. This analysis can show whether the coupled spike firing in the compared neuron is correlated with the last or the second-to-last spike in the reference neuron. Analysis of simulated and experimentally recorded biological spike trains shows that the effects of excitatory and inhibitory temporal integration are extracted by this method without relying on any subthreshold potential recordings. The analysis also shows that, with temporal integration, a neuron driven by random firing patterns can produce fairly regular firing patterns under appropriate conditions. This regularity in firing can be enhanced by temporal integration of spikes in a chain of polysynaptically connected neurons. The bandpass filtering of spike firings by temporal integration is discussed. The results also reveal that signal transmission delays may be attributed not just to conduction and synaptic delays, but also to the delay time needed for temporal integration. Received: 3 March 1997 / Accepted in revised form: 6 November 1997  相似文献   

20.
外周感觉神经元通过动作电位序列对信号进行编码,这些动作电位序列经过突触传递最终到达脑部。但是各种脉冲序列如何通过神经元之间的化学突触进行传递依然是一个悬而未决的问题。研究了初级传入A6纤维与背角神经元之间各种动作电位序列的突触传递过程。用于刺激的规则,周期、随机脉冲序列由短簇脉冲或单个脉冲构成。定义“事件”(event)为峰峰问期(intefspike interval)小于或等于规定阈值的最长动作电位串,然后从脉冲序列中提取事件间间期(interevent interval,IEI)。用时间,IEI图与回归映射的方法分析IEI序列,结果表明在突触后输出脉冲序列中可以检测到突触前脉冲序列的主要时间结构特征,特别是在短簇脉冲作为刺激单位时。通过计算输入与输出脉冲序列的互信息,发现短簇脉冲可以更可靠地跨突触传递由输入序列携带的神经信息。这些结果表明外周输入脉冲序列的主要时间结构特征可以跨突触传递,在突触传递神经信息的过程中短簇脉冲更为有效。这一研究在从突触传递角度探索神经信息编码方面迈出了一步。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号