首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to test the hypothesis that cytoskeletal actin fragmentation is mediated through caspase-2, specifically examining the ability of a caspase-2 inhibitor to interfere with actin fragmentation, in comparison with a caspase-3 inhibitor. Cardiomyocytes were cultured from embryonic chick heart. The fine structural element of cellular F-actin was visualized by staining cardiomyocytes with NBD-phallacidin. Lovastatin induced a dramatic and concentration-dependent loss of intact F-actin. The selectivity of this effect of lovastatin was demonstrated by the absence of similar changes in F-actin when cardiomyocytes were treated with the apoptotic stimulus palmitate, the metabolism of which produces acetyl CoA, the early substrate of cholesterol synthesis, through the mevalonate pathway. FACS analysis of NBD-phallacidin-stained cells was used to quantify the amount of F-actin loss. Actin fragmentation produced by lovastatin was operative through a caspase-2 pathway, as the caspase-2 inhibitor, z-VDVAD-fmk, significantly blocked lovastatin-induced changes in F-actin, but the caspase-3 inhibitor, Ac-DEVD-CHO, did not. Interruption of the mevalonate pathway was in part responsible for lovastatin's action, as the downstream metabolite mevalonate partially reversed the effect of lovastatin on actin fragmentation. These data indicate a previously unrecognized link between cytoskeletal actin and caspase-2.  相似文献   

2.
We have previously shown that lovastatin induces apoptosis in spontaneously immortalized rat brain neuroblasts. Focal adhesion proteins and protein kinase Cdelta (PKCdelta) have been implicated in the regulation of apoptosis. We found that lovastatin exposure induced focal adhesion kinase, Crk-associated substrate (p130(Cas)), PKCdelta cleavage and caspase-3 activation in a concentration-dependent manner. Lovastatin effects were fully prevented by mevalonate. The cleavage of p130(Cas) was almost completely inhibited by z-DEVD-fmk, a specific caspase-3 inhibitor, and z-VAD-fmk, a broad spectrum caspase inhibitor, indicating that cleavage is mediated by caspase-3. In contrast, the lovastatin-induced cleavage of PKCdelta was only blocked by z-VAD-fmk suggesting that PKCdelta cleavage is caspase-dependent but caspase-3-independent. Additionally, z-VAD-fmk partially prevented lovastatin-induced neuroblast apoptosis. The present data show that lovastatin may induce neuroblast apoptosis by both caspase-dependent and independent pathways. These findings may suggest that the caspase-dependent component leading to the neuroblast cell death is likely to involve the cleavage of focal adhesion proteins and PKCdelta, which may be partially responsible for some biochemical features of neuroblast apoptosis induced by lovastatin.  相似文献   

3.
The HMG-CoA reductase inhibitor, lovastatin, blocks targeting of the Rho and Ras families of small GTPases to their active sites by inhibiting protein prenylation. Control NIH3T3 cells, and those overexpressing human cyclin E protein were treated with lovastatin for 24 h to determine the effects of cyclin E overexpression on lovastatin-induced growth arrest and cell rounding. Lovastatin treatment (10 microM) of control 3T3 cells resulted in growth arrest at G1 accompanied by actin stress fiber disassembly, cell rounding, and decreased active RhoA from the membranous protein fraction. By contrast, in NIH3T3 cells overexpressing cyclin E, lovastatin did not cause loss of RhoA from the membrane (active) protein fraction, actin stress fiber disassembly, cell rounding or growth arrest within 24 h. Analysis of cell cycle proteins showed that 24 h of lovastatin treatment in the control cells caused an elevation in the levels of the cyclin-dependent kinase inhibitor p27(kip1), inhibition of both cyclin E- and cyclin A-dependent kinase activity, and decreased levels of hyperphosphorylated retinoblastoma protein (pRb). By contrast, lovastatin treatment of the cyclin E overexpressors did not suppress either cyclin E- or cyclin A-dependent kinase activity, nor did it alter the level of maximally phosphorylated pRb, despite increased levels of p27(kip1). However, by 72 h, the cyclin E overexpressors rounded up but remained attached to the substratum, indicating a delayed response to lovastatin. In contrast with lovastatin, inactivation of membrane-bound Rho proteins (i.e., GTP-bound RhoA, RhoB, RhoC) with botulinum C3 transferase caused cell rounding and G1 growth arrest in both cell types but did not inhibit cyclin E-dependent histone kinase activity in the cyclin E overexpressors. In addition, 24 h of cycloheximide treatment caused depletion of RhoA from the membrane (active) fraction in neo cells, but in the cells overexpressing cyclin E, RhoA remained in the active (membrane-associated) fraction. Our observations suggest that (1) RhoA activation occurs downstream of cyclin E-dependent kinase activation, and (2) overexpression of cyclin E decreased the turnover rate of active RhoA.  相似文献   

4.
Rho family GTPases are critical molecular switches that regulate the actin cytoskeleton and cell function. In the current study, we investigated the involvement of Rho GTPases in regulating neuronal survival using primary cerebellar granule neurons. Clostridium difficile toxin B, a specific inhibitor of Rho, Rac, and Cdc42, induced apoptosis of granule neurons characterized by c-Jun phosphorylation, caspase-3 activation, and nuclear condensation. Serum and depolarization-dependent survival signals could not compensate for the loss of GTPase function. Unlike trophic factor withdrawal, toxin B did not affect the antiapoptotic kinase Akt or its target glycogen synthase kinase-3beta. The proapoptotic effects of toxin B were mimicked by Clostridium sordellii lethal toxin, a selective inhibitor of Rac/Cdc42. Although Rac/Cdc42 GTPase inhibition led to F-actin disruption, direct cytoskeletal disassembly with Clostridium botulinum C2 toxin was insufficient to induce c-Jun phosphorylation or apoptosis. Granule neurons expressed high basal JNK and low p38 mitogen-activated protein kinase activities that were unaffected by toxin B. However, pyridyl imidazole inhibitors of JNK/p38 attenuated c-Jun phosphorylation. Moreover, both pyridyl imidazoles and adenoviral dominant-negative c-Jun attenuated apoptosis, suggesting that JNK/c-Jun signaling was required for cell death. The results indicate that Rac/Cdc42 GTPases, in addition to trophic factors, are critical for survival of cerebellar granule neurons.  相似文献   

5.
6.
We have previously shown that lovastatin, an HMG-CoA reductase inhibitor, induces apoptosis in rat brain neuroblasts. c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) are implicated in regulation of neuronal apoptosis. In this work, we investigated the role of JNK and p38 MAPK in neuroblast apoptosis induced by lovastatin. We found that lovastatin induced the activation of JNK, but not p38 MAPK. It also induced c-Jun phosphorylation with a subsequent increase in activator protein-1 (AP-1) binding, AP-1-mediated gene expression and BimEL protein levels. The effects of lovastatin were prevented by mevalonate. Pre-treatment with iJNK-I (a selective JNK inhibitor) prevented the effect of lovastatin on both neuroblast apoptosis and the activation of the JNK cascade. Furthermore, we found that the activation of the JNK signalling pathway triggered by lovastatin is accompanied by caspase-3 activation which is also inhibited by iJNK-I pre-treatment. Finally, a specific inhibitor of p38 MAPK, SB203580, had no effect on lovastatin-induced neuroblast apoptosis. Taken together, our data suggest that the activation of the JNK/c-Jun/BimEL signalling pathway plays a crucial role in lovastatin-induced neuroblast apoptosis. Our findings may also contribute to elucidate the intracellular mechanisms involved in the central nervous system side effects associated with statin therapy.  相似文献   

7.
The mechanism of lovastatin-induced cell death was examined in three established human glioblastoma cell lines; U87, U251, and U138. Changes in potential modifiers of apoptosis, including Bcl-2 family proteins and MAP kinase targets after such lovastatin treatment, were evaluated. Lovastatin (5 microm) treatment causes extensive cell death in two of the cell lines, U87 and U251; but only minimal in a third, U138. Lovastatin-induced death occurs in correlation with significantly increased levels of the BH3-only protein, Bim. The up-regulation of Bim levels was directly associated with an increased incidence of apoptosis. Lovastatin treatment in U87 cells results in activation of targets of three major mitogen-activating protein kinase cascades including Erk1/2, JNK and p38. Changes in levels of Bim, as well as increase phosphorylation of Erk1/2, c-jun, and p38 are all prevented by co-incubation of lovastatin and the isoprenylation metabolite, geranylgeranyl pyrophosphate. Inhibition of the MAP kinase pathways failed to block the increased expression of Bim expression or cell death. Further elucidation of the mechanisms of lovastatin-induced up-regulation of Bim and apoptosis in glioblastoma cells are important in determining a potential role for lovastatin as a chemotherapy agent.  相似文献   

8.

Background

Anti-angiogenic activity is considered to play a key role in the statin-induced anti-tumor effects. We aimed to identify new targets underlying this pleiotropic effect of lovastatin.

Methodology/Principal Findings

We investigated the inhibitory effects of lovastatin on endothelial cell biology and angiogenesis in vitro. Lovastatin at high doses inhibited endothelial cell migration and tube formation. Using two-dimensional gel electrophoresis followed by mass spectrometry, we identified the up-regulation of the actin-binding protein transgelin 2 in endothelial cells following treatment with lovastatin. Changes in transgelin 2 levels were confirmed by Western blot and confocal microscopy. We further demonstrated that the Rho signaling inactivation and actin depolymerization contributed to the up-regulation of transgelin 2. The knockdown of transgelin 2 by siRNA dramatically enhanced endothelial migration and tube formation, and meanwhile attenuated the inhibitory effects of lovastatin on cell motility. Moreover, the lovastatin-induced inhibition of myosin light chain phosphorylation was also reversed by transgelin 2 knockdown. The activation of Rho GTPase in the absence of transgelin 2 may represent a mechanism underlying the regulation of phosphorylated myosin light chain by transgelin 2.

Conclusions/Significance

These results strongly imply a novel role for transgelin 2 in the angiostatic activities of lovastatin.  相似文献   

9.
Endogenous prenylation with sesquiterpene or diterpene isoprenoids facilitates membrane localization and functional activation of small monomeric GTP-binding proteins. A direct effect of isoprenoids on regulation of gene expression and protein stability has also been proposed. In this study, we determined the role of sesquiterpene or diterpene isoprenoids on the regulation of Rho G-protein expression, activation, and stability in human trabecular meshwork (TM) cells. In both primary and transformed human TM cells, limiting endogenous isoprenoid synthesis with lovastatin, a potent HMG-CoA reductase inhibitor, elicited marked increases in RhoA and RhoB mRNA and protein content. The effect of lovastatin was dose-dependent with newly synthesized inactive protein accumulating in the cytosol. Supplementation with geranylgeranyl pyrophosphate (GGPP) prevented, while inhibition of geranylgeranyl transferase-I mimicked, the effects of lovastatin on RhoA and RhoB protein content. Similarly, lovastatin-dependent increases in RhoA and RhoB mRNA expression were mimicked by geranylgeranyl transferase-I inhibition. Interestingly, GGPP supplementation selectively promoted the degradation of newly synthesized Rho proteins which was mediated, in part, through the 20S proteasome. Functionally, GGPP supplementation prevented lovastatin-dependent decreases in actin stress fiber organization while selectively facilitating the subcellular redistribution of accumulated Rho proteins from the cytosol to the membrane and increasing RhoA activation. Post-translational prenylation with geranylgeranyl diterpenes selectively facilitates the expression, membrane translocation, functional activation, and turnover of newly synthesized Rho proteins. Geranylgeranyl prenylation represents a novel mechanism by which active Rho proteins are targeted to the 20S proteasome for degradation in human TM cells.  相似文献   

10.
LIM-kinase 1 (LIMK1) and LIM-kinase 2 (LIMK2) regulate actin cytoskeletal reorganization via cofilin phosphorylation downstream of distinct Rho family GTPases. We report our findings that ROCK, a downstream protein kinase of Rho, specifically activates LIMK2 but not LIMK1 downstream of RhoA. LIMK1 and LIMK2 activities toward cofilin phosphorylation were stimulated by co-expression with the active form of ROCK (ROCK-Delta3), whereas full-length ROCK selectively activates LIMK2 but not LIMK1. Activation of LIMK2 by RhoA was inhibited by Y-27632, a specific inhibitor of ROCK, but Rac1-mediated activation of LIMK1 was not. ROCK directly phosphorylated the threonine 505 residue within the activation segment of LIMK2 and markedly stimulated LIMK2 activity. A LIMK2 mutant with replacement of threonine 505 by valine abolished LIMK2 activities for cofilin phosphorylation and actin cytoskeletal changes, whereas replacement by glutamate enhanced the protein kinase activity and stress fiber formation by LIMK2. These results indicate that ROCK directly phosphorylates threonine 505 and activates LIMK2 downstream of RhoA and that this phosphorylation is essential for LIMK2 to induce actin cytoskeletal reorganization. Together with the finding that LIMK1 is regulated by Pak1, LIMK1 and LIMK2 are regulated by different protein kinases downstream of distinct Rho family GTPases.  相似文献   

11.
We previously showed that lovastatin, an HMG-CoA reductase inhibitor, suppresses cell growth by inducing apoptosis in rat brain neuroblasts. Our aim was to study intracellular signalling induced by lovastatin in neuroblasts. Lovastatin significantly decreases the phosphoinositide 3-kinase (PI3-K) activity in a concentration-dependent manner. Expression of p85 subunit and its association with phosphotyrosine-containing proteins are unaffected by lovastatin. Lovastatin decreases protein kinase B (PKB)/Akt phosphorylation, and its downstream effectors, p70S6K and the eukaryotic initiation factor 4E (eIF4E) regulatory protein 1, 4E-BP1, in a concentration-dependent manner, and reduces p70S6K expression. Lovastatin effects are fully prevented with mevalonate. Only the highest dose of PI3-K inhibitors that significantly reduce PI3-K kinase activity induces apoptosis in neuroblasts but to a lower degree than lovastatin. In summary, this work shows that treatment of brain neuroblasts with lovastatin leads to an inhibition of the main pathway that controls cell growth and survival, PI3-K/PKB and the subsequent blockade of downstream proteins implicated in the regulation of protein synthesis. This work suggests that inactivation of the antiapoptotic PI3-K appears insufficient to induce the degree of neuroblasts apoptosis provoked by lovastatin, which must necessarily involve other intracellular pathways. These findings might contribute to elucidate the molecular mechanisms of some statins effects in the central nervous system.  相似文献   

12.
Morphogenesis of the Drosophila melanogaster embryo is associated with a dynamic reorganization of the actin cytoskeleton that is mediated by small GTPases of the Rho family. Often, Rho1 controls different aspects of cytoskeletal function in parallel, requiring a complex level of regulation. We show that the guanine triphosphate (GTP) exchange factor DRhoGEF2 is apically localized in epithelial cells throughout embryogenesis. We demonstrate that DRhoGEF2, which has previously been shown to regulate cell shape changes during gastrulation, recruits Rho1 to actin rings and regulates actin distribution and actomyosin contractility during nuclear divisions, pole cell formation, and cellularization of syncytial blastoderm embryos. We propose that DRhoGEF2 activity coordinates contractile actomyosin forces throughout morphogenesis in Drosophila by regulating the association of myosin with actin to form contractile cables. Our results support the hypothesis that specific aspects of Rho1 function are regulated by specific GTP exchange factors.  相似文献   

13.
14.
We have examined the role of endogenous 70-kDa S6 kinase (p70(S6K)) in actin cytoskeletal organization and cell migration in Swiss 3T3 fibroblasts. Association of p70(S6K) with the actin cytoskeleton was demonstrated by cosedimentation of p70(S6K) with F-actin and by subcellular fractionation in which p70(S6K) activity was measured in the F-actin cytoskeletal fraction. Immunocytochemical studies showed that p70(S6K), Akt1, PDK1, and p85 phosphoinositide 3-kinase (PI 3-kinase) were localized to the actin arc, a caveolin-enriched cytoskeletal structure located at the leading edge of migrating cells. Using a phospho-specific antibody to mammalian target of rapamycin (mTOR), we find that activated mTOR is enriched at the actin arc, suggesting that activation of the p70(S6K) signaling pathway is important to cell migration. Using the actin arc to assess migration, epidermal growth factor (EGF) stimulation was found to induce actin arc formation, an effect that was blocked by rapamycin treatment. We show further that actin stress fibers may function to down-regulate p70(S6K). Fibronectin stimulated stress fiber formation in the absence of growth factors and caused an inactivation of p70(S6K). Conversely, cytochalasin D and the Rho kinase inhibitor Y-27632, both of which cause stress fiber disruption, increased p70(S6K) activity. These studies provide evidence that the p70(S6K) pathway is important for signaling at two F-actin microdomains in cells and regulates cell migration.  相似文献   

15.
16.
Reorganization of the actin cytoskeleton in response to growth factor signaling, such as transforming growth factor beta (TGF-beta), controls cell adhesion, motility, and growth of diverse cell types. In Swiss3T3 fibroblasts, a widely used model for studies of actin reorganization, TGF-beta1 induced rapid actin polymerization into stress fibers and concomitantly activated RhoA and RhoB small GTPases. Consequently, dominant-negative RhoA and RhoB mutants blocked TGF-beta1-induced actin reorganization. Because Rho GTPases are known to regulate the activity of LIM-kinases (LIMK), we found that TGF-beta1 induced LIMK2 phosphorylation with similar kinetics to Rho activation. Cofilin and LIMK2 co-precipitated and cofilin became phosphorylated in response to TGF-beta1, whereas RNA interference against LIMK2 blocked formation of new stress fibers by TGF-beta1. Because the kinase ROCK1 links Rho GTPases to LIMK2, we found that inhibiting ROCK1 activity blocked completely TGF-beta1-induced LIMK2/cofilin phosphorylation and downstream stress fiber formation. We then tested whether the canonical TGF-beta receptor/Smad pathway mediates regulation of the above effectors and actin reorganization. Adenoviruses expressing constitutively activated TGF-beta type I receptor led to robust actin reorganization and Rho activation, whereas the constitutively activated TGF-beta type I receptor with mutated Smad docking sites (L45 loop) did not affect either actin organization or Rho activity. In line with this, ectopic expression of the inhibitory Smad7 inhibited TGF-beta1-induced Rho activation and cytoskeletal reorganization. Our data define a novel pathway emanating from the TGF-beta type I receptor and leading to regulation of actin assembly, via the kinase LIMK2.  相似文献   

17.
Mevalonate biosynthesis pathway is important in cell growth and survival and its blockade by 3-hydroxy-3-methylglutaryl CoA reductase inhibitors, statins, arrest brain neuroblasts growth and induce apoptosis. Translation is among the main biochemical mechanisms that controls gene expression and therefore cell growth or apoptosis. In the CNS, translation regulates synaptic plasticity. Thus, our aim was to investigate the effect of lovastatin in protein translation in rat neuroblasts of the CNS and the biochemical pathways involved. Lovastatin treatment in rat brain neuroblasts causes a significant time- and concentration-inhibition of protein synthesis, which is partially mediated by phosphatydilinositol 3-kinase/mammalian target of rapamycin (mTOR) pathway inhibition. Lovastatin treatment decreases the phosphorylation state of mTOR substrates, p70S6K and eukaryotic translation initiation factor (eIF) 4E-binding protein 1 and simultaneously increases eIF4E-binding protein 1 in a time-dependent manner. Concomitantly, lovastatin causes a decrease in eIF4G cellular amount, which is partially mediated by caspase(s) activity excluding caspase 3. These biochemical pathways affected by lovastatin might explain the protein translation inhibition observed in neuroblasts. Cycloheximide treatment, which blocked protein synthesis, does not induce neuroblasts apoptosis. Therefore, we suggest that lovastatin-induced protein synthesis inhibition might not contribute to the concomitant neuroblasts apoptosis previously observed.  相似文献   

18.
Clostridium difficile toxin A (TcdA) is one of two homologous glucosyltransferases that mono-glucosylate Rho GTPases. HT29 cells were challenged with wild-type and mutant TcdA to investigate the mechanism by which apoptosis is induced. The TcdA-induced re-organization of the actin cytoskeleton led to an increased number of cells within the G2/M phase. Depolymerization of the actin filaments with subsequent G2/M arrest, however, was not causative for apoptosis, as shown in a comparative study using latrunculin B. The activation of caspase-3, -8, and -9 strictly depended on the glucosylation of Rho GTPases. Apoptosis measured by flow cytometry was completely abolished by a pan-caspase inhibitor (z-VAD-fmk). Interestingly, cleavage of procaspase-3 and Bid was not inhibited by z-VAD-fmk, but was inhibited by the calpain/cathepsin inhibitor ALLM. Cleavage of procaspase-8 was susceptible to inhibition by z-VAD-fmk and to the caspase-3 inhibitor Ac-DMQD-CHO, indicating a contribution to the activation of caspase-3 in an amplifying manner. Although TcdA induced mitochondrial damage and cytochrome c release, p53 was not activated or up-regulated. A p53-independent apoptotic effect was also checked by treatment of HCT 116 p53−/− cells. In summary, TcdA-induced apoptosis in HT29 cells depends on glucosylation of Rho GTPases leading to activation of cathepsins and caspase-3.  相似文献   

19.
Vasopressin regulates water reabsorption in renal collecting duct principal cells by a cAMP-dependent translocation of the water channel aquaporin-2 (AQP2) from intracellular vesicles into the cell membrane. In the present work primary cultured inner medullary collecting duct cells were used to study the role of the proteins of the Rho family in the translocation of AQP2. Clostridium difficile toxin B, which inhibits all members of the Rho family, Clostridium limosum C3 toxin, which inactivates only Rho, and the Rho kinase inhibitor, Y-27632, induced both depolymerization of actin stress fibers and AQP2 translocation in the absence of vasopressin. The data suggest an inhibitory role of Rho in this process, whereby constitutive membrane localization is prevented in resting cells. Expression of constitutively active RhoA induced formation of actin stress fibers and abolished AQP2 translocation in response to elevation of intracellular cAMP, confirming the inhibitory role of Rho. Cytochalasin D induced both depolymerization of the F-actin cytoskeleton and AQP2 translocation, indicating that depolymerization of F-actin is sufficient to induce AQP2 translocation. Thus Rho is likely to control the intracellular localization of AQP2 via regulation of the F-actin cytoskeleton.  相似文献   

20.
Intermediary metabolites of cholesterol synthetic pathway are involved in cell proliferation. Lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, blocks mevalonate synthesis, and has been shown to inhibit mesangial cell proliferation associated with diverse glomerular diseases. Since inhibition of farnesylation and plasma membrane anchorage of the Ras proteins is one suggested mechanism by which lovastatin prevents cellular proliferation, we investigated the effect of lovastatin and key mevalonate metabolites on the activation of mitogen-activated protein kinase (MAP kinase) and Ras in murine glomerular mesangial cells. The preincubation of mesangial cells with lovastatin inhibited the activation of MAP kinase stimulated by either FBS, PDGF, or EGF. Mevalonic acid and farnesyl-pyrophosphate, but not cholesterol or LDL, significantly prevented lovastatin-induced inhibition of agonist-stimulated MAP kinase. Lovastatin inhibited agonist-induced activation of Ras, and mevalonic acid and farnesylpyrophosphate antagonized this effect. Parallel to the MAP kinase and Ras data, lovastatin suppressed cell growth stimulated by serum, and mevalonic acid and farnesylpyrophosphate prevented lovastatin-mediated inhibition of cellular growth. These results suggest that lovastatin, by inhibiting the synthesis of farnesol, a key isoprenoid metabolite of mevalonate, modulates Ras-mediated cell signaling events associated with mesangial cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号