首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This study involves a biomechanical evaluation of a prospective injectable treatment for degenerative discs. The high osmolarity of the non-degenerated nucleus pulposus attracts water contributing to the hydrostatic behavior of the tissue. This intradiscal pressure is known to drop as fluid is exuded from the matrix due to compressive loading. The objective of this study was to compare the changes in intradiscal pressure in control and genipin cross-linked intervertebral discs. Thirty bovine lumbar motion segments were randomly divided into a phosphate-buffered saline control group and a 0.33% genipin group and soaked at room temperature for 2 days. A needle pressure sensor was held in the center of the disc while short-term and static creep compressive loads were applied. The control group demonstrated a 25% higher average intradiscal pressure compared to genipin-treated discs under 750 N compressive load (p=0.029). Depressurization during static compressive creep was 56% higher in the control than in the genipin group (p=0.014). These results suggest cross-linking induced changes in the poroelastic properties of the involved tissues affected the mechanics of compressive load support in the disc with lower levels of nucleus pressure, a corresponding decrease in the elastic expansion of the annulus, and an increased axial compressive loading of the inner and outer annulus tissues. It is possible that concurrent changes in hydraulic permeability and proteoglycan retention known to be associated with genipin cross-linking were also contributors to poroelastic changes. Reduction of peak pressures and moderation of pressure fluctuations could be beneficial relative to discogenic pain.  相似文献   

2.
Solid–fluid interactions play an important role in mediating viscoelastic behaviour of biological tissues. In the intervertebral disc, water content is governed by a number of factors, including age, disease and mechanical loads, leading to changes in stiffness characteristics. We hypothesized that zonal stress distributions depend on load history, or the prior stresses experienced by the disc. To investigate these effects, rat caudal motion segments were subjected to compressive creep biomechanical testing in vitro using a protocol that consisted of two phases: a Prestress Phase (varied to represent different histories of load) followed immediately by an Exertion Phase, identical across all Prestress groups. Three analytical models were used to fit the experimental data in order to evaluate load history effects on gross and zonal disc mechanics. Model results indicated that while gross transient response was insensitive to load history, there may be changes in the internal mechanics of the disc. In particular, a fluid transport model suggested that the role of the nucleus pulposus in resisting creep during Exertion depended on Prestress conditions. Separate experiments using similarly defined load history regimens were performed to verify these predictions by measuring intradiscal pressure with a fibre optic sensor. We found that the ability for intradiscal pressure generation was load history-dependent and exhibited even greater sensitivity than predicted by analytical models. A 0.5?MPa Exertion load resulted in 537.2?kPa IDP for low magnitude Prestress compared with 373.7?kPa for high magnitude Prestress. Based on these measurements, we developed a simple model that may describe the pressure-shear environment in the nucleus pulposus. These findings may have important implications on our understanding of how mechanical stress contributes to disc health and disease etiology.  相似文献   

3.

Purpose

Currently, no studies exist, which attest the suitability of the ovine intervertebral disc as a biomechanical in vivo model for preclinical tests of new therapeutic strategies of the human disc. By measuring the intradiscal pressure in vivo, the current study attempts to characterize an essential biomechanical parameter to provide a more comprehensive physiological understanding of the ovine intervertebral disc.

Methods

Intradiscal pressure (IDP) was measured for 24 hours within the discs L2-L3 and L4-L5 via a piezo-resistive pressure sensor in one merino sheep. The data were divided into an activity and a recovery phase and the corresponding average pressures for both phases were determined. Additionally, IDPs for different static and dynamic activities were analyzed and juxtaposed to human data published previously. After sacrificing the sheep, the forces corresponding to the measured IDPs were examined ex vivo in an axial compression test.

Results

The temporal patterns of IDP where pressure decreased during activity and increased during rest were comparable between humans and sheep. However, large differences were observed for different dynamic activities such as standing up or walking. Here, IDPs averaged 3.73 MPa and 1.60 MPa respectively, approximately two to four times higher in the ovine disc compared to human. These IDPs correspond to lower ex vivo derived axial compressive forces for the ovine disc in comparison to the human disc. For activity and rest, average ovine forces were 130 N and 58 N, compared to human forces of 400-600 N and 100 N, respectively.

Conclusions

In vivo IDPs were found to be higher in the ovine than in the human disc. In contrast, axial forces derived ex vivo were markedly lower in comparison to humans. Both should be considered in future preclinical tests of intradiscal therapies using the sheep. The techniques used in the current study may serve as a protocol for measuring IDP in a variety of large animal models.  相似文献   

4.
Physiological stresses are fundamental to biomechanical testing, mechanobiological analyses, implant design, and tissue engineering. The purpose of this study was to design, fabricate, and evaluate compressive stress sensors packaged for extended, in vivo implantation in the annulus of the intervertebral disc. A commercial microelectromechanical systems (MEMS) pressure sensor die was selected as the active element for a custom stress sensor. The sensor die was modified and packaged to protect the electrical system from the biochemical and biomechanical environment. Completed sensors were calibrated under hydrostatic pressure and solid contact compression. Calibrations were performed before and after 8 weeks of in vivo implantation in a porcine disc. For the two reported sensors, stress and voltage were linearly correlated over a range of 0–1.8 MPa with less than 5% change in sensitivity. Sensitivity to solid contact stress was within 10% of that from hydrostatic pressure. In contrast to most previous studies, in which disc pressure was measured in the fluidic nucleus pulposus, these sensors may be used to measure in vivo dynamic compressive stresses in the annulus at magnitudes typical of the musculoskeletal system in a large animal over a relatively long post-operative time.  相似文献   

5.
A novel technique to measure in vitro disc pressures in human cervical spine specimens was developed. A miniature pressure transducer was used and an insertion technique was designed to minimise artefacts due to insertion. The technique was used to measure the intradiscal pressure in cervical spines loaded in pure axial compression. The resulting pressure varied linearly with the applied compressive force with coefficients of determination (r(2)) greater than 0.99 for each of the four specimens. Peak pressures between 2.4 and 3.5MPa were recorded under 800N of compression.  相似文献   

6.
We assessed the repeatability and accuracy of a relatively new, resistance-based sensor (Tekscan 6900) for measuring lumbar spine facet loads, pressures, and contact areas in cadaver specimens. Repeatability of measurements in the natural facet joint was determined for five trials of four specimens loaded in pure moment (+/- 7.5 N m) flexibility tests in axial rotation and flexion-extension. Accuracy of load measurements in four joints was assessed by applying known compressive loads of 25, 50, and 100 N to the natural facet joint in a materials testing machine and comparing the known applied load to the measured load. Measurements of load were obtained using two different calibration approaches: linear and two-point calibrations. Repeatability for force, pressure, and area (average of standard deviation as a percentage of the mean for all trials over all specimens) was 4-6% for axial rotation and 7-10% for extension. Peak resultant force in axial rotation was 30% smaller when calculated using the linear calibration method. The Tekscan sensor overestimated the applied force by 18 +/- 9% (mean+/-standard deviation), 35 +/- 7% and 50 +/- 9% for compressive loads of 100, 50, and 25 N, respectively. The two-point method overestimated the loads by 35 +/- 16%, 45 +/- 7%, and 56 +/- 10% for the same three loads. Our results show that the Tekscan sensor is repeatable. However, the sensor measurement range is not optimal for the small loads transmitted by the facets and measurement accuracy is highly dependent on calibration protocol.  相似文献   

7.
Intervertebral disc degeneration involves changes in the spinal anatomical structures. The mechanical relevance of the following changes was investigated: disc height, endplate sclerosis, disc water content, permeability and depressurisation. A poroelastic nonlinear finite element model of the L4-L5 human spine segments was employed. Loads represented a daily cycle (500 N compression combined with flexion-extension motion for 16 h followed by 200 N compression for 8 h). In non-degenerative conditions, the model predicted a diurnal axial displacement of 1.32 mm and a peak intradiscal pressure of 0.47 MPa. Axial displacement, facet force and range of motion in flexion-extension are decreased by decreasing disc height. By decreasing the initial water content, axial displacement, facet force and fluid loss were all reduced. Endplate sclerosis did not have a significant influence on the calculated results. Depressurisation determined an increase of the disc effective stress, possibly inducing failure. Degenerative instability was not calculated in any simulations.  相似文献   

8.
A new method for determining facet loads during in vitro spine loading using strain gauges and a neural networks solution method was investigated. A test showed that the new solution method was more robust than and as accurate as a previously presented graphical solution method for computing facet loads using surface strain. The technique was subsequently utilized to assess facet loads at L1-L2 during flexibility testing [7.5Nm pure moments in flexion (FL), extension (EX), right and left axial rotation (AR), and right and left lateral bending (LB)], and stiffness testing (FL-EX with 400N compressive follower load) of six human lumbar spine segments (T12-L2). In contrast to other techniques, such as thin film sensors or pressure-sensitive film, the strain-gauge method leaves the facet joint capsule intact during data collection, presumably allowing more natural load transmission. During flexibility tests, the mean (+/-standard deviation) calculated facet loads (in N) were 46.1+/-41.3 (FL), 51.5+/-39.0 (EX), 70.3+/-43.2 (AR-contralateral side), 31.3+/-33.4 (AR-ipsilateral side), 30.6+/-29.1 (LB-contralateral side), and 32.0+/-44.4 (LB-ipsilateral side). During stiffness tests, the calculated facet loads were 45.5+/-40.4 (upright), 46.6+/-41.9 (full FL), and 75.4+/-39.0 (full EX), corresponding to an equivalent of 11.4%, 11.6%, and 18.8% of the compressive follower load (upright, full FL and EX, respectively). The error associated with this technique, which was below 11N for loads up to 125N, is comparable to that reported with other techniques. The new method shows promise for assessing facet load during in vitro spine testing, an important parameter when evaluating new implant systems and surgical techniques.  相似文献   

9.
Different modes of load applications are used to simulate flexion and extension of the upper body. It is not clear which loading modes deliver realistic results and allow the comparison of different studies.In a numerical study, a validated finite element model of the lumbar spine, ranging from the vertebra L1 to the disc L5–S1 was employed. Each of six different loading modes was studied for simulating flexion and extension, including pure moments, an eccentric axial force, using a wedged fixture, and applying upper body weight plus follower load plus muscle forces. Intersegmental rotations, intradiscal pressures and facet joint contact forces were calculated. Where possible, results were compared to data measured in vivo.The results of the loading modes studied show a large variance for some values. Outcome measures such as flexion angle and intradiscal pressure differed at a segment by up to 44% and 88%, respectively, related to their maximum values. Intradiscal pressure is mainly determined by the magnitude of the applied compressive force. For flexion maximum contact forces between 0 and 69 N are predicted in each facet joint for different loading modes. For both flexion and extension, applying upper body weight plus follower load plus muscle forces as well as a follower load together with a bending moment delivers results which agreed well with in vivo data from the literature.Choosing an adequate loading mode is important in spine biomechanics when realistic results are required for intersegmental rotations, intradiscal pressure and facet joint contact forces. Only then will results of different studies be comparable.  相似文献   

10.
The mechanical behaviour of the intervertebral disc highly depends on the content and transport of interstitial fluid. It is unknown, however, to what extent the time-dependent behaviour can be attributed to osmosis. Here we investigate the effect of both mechanical and osmotic loading on water content, nucleus pressure and disc height. Eight goat intervertebral discs, immersed in physiological saline, were subjected to a compressive force with a pressure needle inserted in the nucleus. The loading protocol was: 10 N (6 h); 150 N (42 h); 10 N (24 h). Half-way the 150 N-phase (24 h), we eliminated the osmotic gradient by adding 26% poly-ethylene glycol to the surrounding fluid. For 62 additional discs, we determined the water content of both nucleus and annulus after 6, 24, 48, or 72 h. The compressive load was initially counterbalanced by the hydrostatic pressure in the nucleus. The load forced 4.3% of the water out of the nucleus, which reduced nucleus pressure by 44(±6)%. Reduction of the osmotic gradient disturbed the equilibrium disc height, and a significant loss of annulus water content was found. Remarkably, pressure and water content of the nucleus pulposus remained unchanged. This shows that annulus water content is important in the response to axial loading. After unloading, in the absence of an osmotic gradient, there was substantial viscoelastic recovery of 53(±11)% of the disc height, without a change in water content. However, for restoration of the nucleus pressure and for full restoration of disc height, restoration of the osmotic gradient was needed.  相似文献   

11.
The structure of the disc is both complex and inhomogeneous, and it functions as a successful load-bearing organ by virtue of the integration of its various structural regions. These same features also render it impossible to assess the failure strength of the disc from isolated tissue samples, which at best can only yield material properties. This study investigated the intrinsic failure strength of the intact bovine caudal disc under a simple mode of internal hydrostatic pressure. Using a hydraulic actuator, coloured hydrogel was injected under monitored pressure into the nucleus through a hollow screw insert which passed longitudinally through one of the attached vertebrae. Failure did not involve vertebra/endplate structures. Rather, failure of the disc annulus was indicated by the simultaneous manifestation of a sudden loss of gel pressure, a flood of gel colouration appearing in the outer annulus and audible fibrous tearing. A mean hydrostatic failure pressure of 18+/-3 MPa was observed which was approximated as a thick-wall hoop stress of 45+/-7 MPa. The experiment provides a measurement of the intrinsic strength of the disc using a method of internal hydrostatic loading which avoids any disruption of the complex architecture of the annular wall. Although the disc in vivo is subjected to a much more complex pattern of loading than is achieved using simple hydrostatic pressurization, this latter mode provides a useful tool for investigating alterations in intrinsic disc strength associated with prior loading history or degeneration.  相似文献   

12.
Labrum pathology may contribute to early joint degeneration through the alteration of load transfer between, and the stresses within, the cartilage layers of the hip. We hypothesize that the labrum seals the hip joint, creating a hydrostatic fluid pressure in the intra-articular space, and limiting the rate of cartilage layer consolidation. The overall cartilage creep consolidation of six human hip joints was measured during the application of a constant load of 0.75 times bodyweight, or a cyclic sinusoidal load of 0.75+/-0.25 times bodyweight, before and after total labrum resection. The fluid pressure within the acetabular was measured. Following labrum resection, the initial consolidation rate was 22% greater (p=0.02) and the final consolidation displacement was 21% greater (p=0.02). There was no significant difference in the final consolidation rate. Loading type (constant vs. cyclic) had no significant effect on the measured consolidation behaviour. Fluid pressurisation was observed in three of the six hips. The average pressures measured were: for constant loading, 541+/-61kPa in the intact joint and 216+/-165kPa following labrum resection, for cyclic loading, 550+/-56kPa in the intact joint and 195+/-145kPa following labrum resection. The trends observed in this experiment support the predictions of previous finite element analyses. Hydrostatic fluid pressurisation within the intra-articular space is greater with the labrum than without, which may enhance joint lubrication. Cartilage consolidation is quicker without the labrum than with, as the labrum adds an extra resistance to the flow path for interstitial fluid expression. However, both sealing mechanisms are dependent on the fit of the labrum against the femoral head.  相似文献   

13.
Magnetic resonance (MR) imaging has been widely used to evaluate the thickness and volume of articular cartilage both in vivo and in vitro. While morphological information on the cartilage can be obtained using MR images, image processing for extracting geometric boundaries of the cartilage may introduce variations in the thickness of the cartilage. To evaluate the variability of using MR images to construct finite element (FE) knee cartilage models, five investigators independently digitized the same set of MR images of a human knee. The topology of cartilage thickness was determined using a minimal distance algorithm. Less than 8 percent variation in cartilage thickness was observed from the digitized data. The effect of changes in cartilage thickness on contact stress analysis was then investigated using five FE models of the knee. One FE model (average FE model) was constructed using the mean values of the digitized contours of the cartilage, and the other four were constructed by varying the thickness of the average FE model by +/- 5 percent and +/- 10 percent, respectively. The results demonstrated that under axial tibial compressive loading (up to 1,400 N), variations of cartilage thickness caused by digitization of MR images may result in a difference of approximately 10 percent in peak contact stresses (surface pressure, von Mises stress, and hydrostatic pressure) in the cartilage. A reduction of cartilage thickness caused increases of contact stresses, while an increase of cartilage thickness reduced contact stresses. Furthermore, the effect of variation of material properties of the cartilage on contact stress analysis was investigated. The peak contact stress increased almost linearly with the Young's modulus of the cartilage. The peak von Mises stress was dramatically reduced when the Poisson,s ratio was increased from 0.05 to 0.49 under an axial compressive load of 1,400 N, while peak hydrostatic pressure was dramatically increased. Peak surface pressure was also increased with the Poisson's ratio, but with a lower magnitude compared to von Mises stress and hydrostatic pressure. In conclusion, the imaging process may cause 10 percent variations in peak contact stress, and the predicted stress distribution is sensitive to the accuracy of the material properties of the cartilage model, especially to the variation of Poisson's ratio.  相似文献   

14.
Low back mechanics are important to quantify to study injury, pain and disability. As in vivo forces are difficult to measure directly, modeling approaches are commonly used to estimate these forces. Validation of model estimates is critical to gain confidence in modeling results across populations of interest, such as people with lower-limb amputation. Motion capture, ground reaction force and electromyographic data were collected from ten participants without an amputation (five male/five female) and five participants with a unilateral transtibial amputation (four male/one female) during trunk-pelvis range of motion trials in flexion/extension, lateral bending and axial rotation. A musculoskeletal model with a detailed lumbar spine and the legs including 294 muscles was used to predict L4-L5 loading and muscle activations using static optimization. Model estimates of L4-L5 intervertebral joint loading were compared to measured intradiscal pressures from the literature and muscle activations were compared to electromyographic signals. Model loading estimates were only significantly different from experimental measurements during trunk extension for males without an amputation and for people with an amputation, which may suggest a greater portion of L4-L5 axial load transfer through the facet joints, as facet loads are not captured by intradiscal pressure transducers. Pressure estimates between the model and previous work were not significantly different for flexion, lateral bending or axial rotation. Timing of model-estimated muscle activations compared well with electromyographic activity of the lumbar paraspinals and upper erector spinae. Validated estimates of low back loading can increase the applicability of musculoskeletal models to clinical diagnosis and treatment.  相似文献   

15.
Under fast dynamic loading conditions (e.g. high-energy impact), the load rate dependency of the intervertebral disc (IVD) material properties may play a crucial role in the biomechanics of spinal trauma. However, most finite element models (FEM) of dynamic spinal trauma uses material properties derived from quasi-static experiments, thus neglecting this load rate dependency. The aim of this study was to identify hyperelastic material properties that ensure a more biofidelic simulation of the IVD under a fast dynamic compressive load. A hyperelastic material law based on a first-order Mooney-Rivlin formulation was implemented in a detailed FEM of a L2-L3 functional spinal unit (FSU) to represent the mechanical behavior of the IVD. Bony structures were modeled using an elasto-plastic Johnson-Cook material law that simulates bone fracture while ligaments were governed by a viscoelastic material law. To mimic experimental studies performed in fast dynamic compression, a compressive loading velocity of 1 m/s was applied to the superior half of L2, while the inferior half of L3 was fixed. An exploratory technique was used to simulate dynamic compression of the FSU using 34 sets of hyperelastic material constants randomly selected using an optimal Latin hypercube algorithm and a set of material constants derived from quasi-static experiments. Selection or rejection of the sets of material constants was based on compressive stiffness and failure parameters criteria measured experimentally. The two simulations performed with calibrated hyperelastic constants resulted in nonlinear load-displacement curves with compressive stiffness (7335 and 7079 N/mm), load (12,488 and 12,473 N), displacement (1.95 and 2.09 mm) and energy at failure (13.5 and 14.7 J) in agreement with experimental results (6551 ± 2017 N/mm, 12,411 ± 829 N, 2.1 ± 0.2 mm and 13.0 ± 1.5 J respectively). The fracture pattern and location also agreed with experimental results. The simulation performed with constants derived from quasi-static experiments showed a failure energy (13.2 J) and a fracture pattern and location in agreement with experimental results, but a compressive stiffness (1580 N/mm), a failure load (5976 N) and a displacement to failure (4.8 mm) outside the experimental corridors. The proposed method offers an innovative way to calibrate the hyperelastic material properties of the IVD and to offer a more realistic simulation of the FSU in fast dynamic compression.  相似文献   

16.
The objective of this study was to test the hypothesis that the human lumbosacral joint behaves differently from L1-L5 joints and provides primary moment-rotation responses under pure moment flexion and extension and left and right lateral bending on a level-by-level basis. In addition, range of motion (ROM) and stiffness data were extracted from the moment-rotation responses. Ten T12-S1 column specimens with ages ranging from 27 to 68 years (mean: 50.6+/-13.2) were tested at a load level of 4.0 N m. Nonlinear flexion and extension and left and right lateral bending moment-rotation responses at each spinal level are reported in the form of a logarithmic function. The mean ROM was the greatest at the L5-S1 level under flexion (7.37+/-3.69 degrees) and extension (4.62+/-2.56 degrees) and at the L3-L4 level under lateral bending (4.04+/-1.11 degrees). The mean ROM was the least at the L1-L2 level under flexion (2.42+/-0.90 degrees), L2-L3 level under extension (1.58+/-0.63 degrees), and L1-L2 level under lateral bending (2.50+/-0.75 degrees). The present study proved the hypothesis that L5-S1 motions are significantly greater than L1-L5 motions under flexion and extension loadings, but the hypothesis was found to be untrue under the lateral bending mode. These experimental data are useful in the improved validation of FE models, which will increase the confidence of stress analysis and other modeling applications.  相似文献   

17.
This paper presents the first reported measurements of lumbar intervertebral disc pressure in vivo during spinal manipulation. A pressure transducer was inserted into the nucleus pulposus of one normal-appearing lumbar disc in an asymptomatic adult volunteer. Pressures were recorded during several body positions and maneuvers, then during spinal manipulation, and lastly during a repetition of the preintervention body positions. Baseline pressures in the prone and side-lying positions measured 110 kPa and 150 kPa, respectively. During the manipulation, pressure rose to a peak of 890 kPa over 250 ms. Immediately following, pressures in the prone and side-lying positions measured 150 kPa and 165 kPa, respectively. These data do not support the hypotheses that manipulation can reduce a herniation by decreasing intradiscal pressure, or cause a herniation by raising pressure to failure levels. Further work may lead to a better understanding of this treatment method.  相似文献   

18.
A new six-degree-of-freedom force transducer has been manufactured, with the sensitivity to measure forces in the range +/-100 N and moments of up to +/-5 Nm. The transducer incorporates two mechanical components: shear forces and bending moments are measured via a strain-gauged tubular section whilst axial forces are transmitted to a cantilevered load cell. Both components are instrumented with 350 ohms strain gauge full bridge circuits and are temperature compensated. After calibration, measurement errors are less than +/-0.3 N for direct forces and +/-0.03 Nm for applied moments. In order to measure sub-maximal finger loads during activities of daily living, the transducer has been incorporated into several housings representing objects in domestic use: a jar, a tap, a key in a lock and a jug kettle.  相似文献   

19.
Presently, there is little consensus about how, or even if, axial preload should be incorporated in spine flexibility tests in order to simulate the compressive loads naturally present in vivo. Some preload application methods are suspected of producing unwanted “artefact” forces as the specimen rotates and, in doing so, influencing the resulting kinematics. The objective of this study was to quantitatively compare four distinct types of preload which have roots in contemporary experimental practice. The specific quantities compared were the reaction moments and forces resulting at the intervertebral disc and specimen kinematics. The preload types incorporated increasing amounts of caudal constraint on the preload application vector ranging from an unconstrained dead-load arrangement to an apparatus that allowed the vector to follow rotations of the specimen. Six human cadaveric spine segments were tested (1-L1/L2, 3-L2/L3, 1-L3/L4 and 1-L4/L5). Pure moments were applied to the specimens with each of the four different types of compressive preload. Kinematic response was measured using an opto-electronic motion analysis system. A six-axis load cell was used to measure reaction forces and moments. Artefact reaction moments and shear forces were significantly affected by preload application method and magnitude. Unconstrained preload methods produced high artefact moments and low artefact shear forces while more constrained methods did the opposite. A mechanical trade-off is suggested by our results, whereby unwanted moment can only be prevented at the cost of shear force production. When comparing spine flexibility studies, caution should be exercised to ensure preload was applied in a similar manner for all studies. Unwanted moments or forces induced as a result of preload application method may render the comparison of two seemingly similar studies inappropriate.  相似文献   

20.
Qin XM  He RR 《生理学报》2000,52(6):463-467
在23只隔离灌流颈动脉窦区的麻醉大鼠上,观察了链霉素(streptomycin,SM)对动脉压力感受器反射影响的离子机制。结果:(1)用SM(200μmol/L)隔离灌流大鼠颈动脉窦区时,压力感受器机能曲线向右上方移位,曲线最大斜率及反射性血压下降幅度均减小(P〈0.01),提示SM对压力感受器反射的抑制作用;(2)预先灌流高Ca^2+溶液(4mmol/L)后,可部分消除SM(200μmol/L)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号