首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Adhikari BB  Wang K 《FEBS letters》2001,497(2-3):95-98
S100, a subfamily of the EF-hand type calcium sensing proteins, is implicated in many cellular functions including muscle contractility. Two isoforms, S100A1 and S100B, at 2-10 microM significantly inhibit active tension, stiffness and ATPase of skinned single rabbit psoas muscle fibers at sub-maximal (pCa approximately 6.1-5.6), but not at maximal levels of activation (pCa 4.0). S100A1 is a more potent inhibitor than S100B. Hill analysis of the ATPase-pCa and tension-pCa curves indicates that these proteins reduce calcium sensitivity and enhance the cooperativity toward calcium. We propose S100A1, and perhaps S100B, are viable candidates as physiological modulators of muscle contraction.  相似文献   

3.
S100A6 is a calcium binding protein expressed mainly in fibroblasts and epithelial cells. Interestingly, S100A6 is also present in extracellular fluids. Recently we have shown that S100A6 is secreted by WJMS cells and binds to integrin β1 (Jurewicz et al., 2014). In this work we describe for the first time the mechanism of S100A6 secretion and signaling pathways activated by the S100A6-integrin β1 complex. We show that colchicine suppressed the release of S100A6 into the cell medium, which indicates that the protein might be secreted via a tubulin–dependent pathway. By applying double immunogold labeling and immunofluorescence staining we have shown that S100A6 associates with microtubules in WJMS cells. Furthermore, results obtained from immunoprecipitation and proximity ligation assay (PLA), and from in vitro assays, reveal that S100A6 is able to form complexes with α and β tubulin in these cells, and that the S100A6-tubulin interaction is direct. We have also found that the S100A6 protein, due to binding to integrin β1, activates integrin-linked kinase (ILK), focal adhesion kinase (FAK) and p21-activated kinase (PAK). Our results suggest that binding of S100A6 to integrin β1 affects cell adhesion/proliferation due to activation of ILK and FAK signaling pathways.  相似文献   

4.
Postsynaptic Ca2+ signal influences synaptic transmission through multiple mechanisms. Some of them involve retrograde messengers that are released from postsynaptic neurons in a Ca2+-dependent manner and modulate transmitter release through activation of presynaptic receptors. Recent studies have revealed essential roles of endocannabinoids in retrograde modulation of synaptic transmission. Endocannabinoid release is induced by either postsynaptic Ca2+ elevation alone or activation of postsynaptic Gq/11-coupled receptors with or without Ca2+ elevation. The former pathway is independent of phospholipase Cbeta (PLCbeta) and requires a large Ca2+ elevation to a micromolar range. The latter pathway requires PLCbeta and is facilitated by a moderate Ca2+ elevation to a submicromolar range. This facilitation is caused by Ca2+-dependency of receptor-driven PLCbeta activation. The released endocannabinoids then activate presynaptic cannabinoid receptor type 1 (CB1), and suppress transmitter release from presynaptic terminals. Both CB1 receptors and Gq/11-coupled receptors are widely distributed in the brain. Thus, the endocannabinoid-mediated retrograde modulation may be an important and widespread mechanism in the brain, by which postsynaptic events including Gq/11-coupled receptor activation and Ca2+ elevation can retrogradely influence presynaptic function.  相似文献   

5.
S100A1 is a new regulatory protein of myocardial contractility that is differentially expressed in early and late stages of myocardial hypertrophy. In order to further investigate the multiple functions of S100A1 in various assay systems we developed a new strategy for isolating biologically active S100A1 protein. After EDTA extraction of myocardium or recombinant bacteria, S100A1 was purified by Octyl-Sepharose hydrophobic interaction chromatography and HiTrapQ anion-exchange chromatography yielding 1.4–2.0 mg/100 g wet tissue and 0.7–1.0 mg/100 ml bacterial culture. Native porcine as well as human recombinant S100A1 revealed biological activity in physiological and biochemical assays.  相似文献   

6.
S100A6 (calcyclin), a small calcium-binding protein from the S100 family, interacts with several target proteins in a calcium-regulated manner. One target is Calcyclin-Binding Protein/Siah-1-Interacting Protein (CacyBP/SIP), a component of a novel pathway of beta-catenin ubiquitination. A recently discovered yeast homolog of CacyBP/SIP, Sgt1, associates with Skp1 and regulates its function in the Skp1/Cullin1/F-box complex ubiquitin ligase and in kinetochore complexes. S100A6-binding domain of CacyBP/SIP is in its C-terminal region, where the homology between CacyBP/SIP and Sgt1 is the greatest. Therefore, we hypothesized that Sgt1, through its C-terminal region, interacts with S100A6. We tested this hypothesis by performing affinity chromatography and chemical cross-linking experiments. Our results showed that Sgt1 binds to S100A6 in a calcium-regulated manner and that the S100A6-binding domain in Sgt1 is comprised of 71 C-terminal residues. Moreover, S100A6 does not influence Skp1-Sgt1 binding, a result suggesting that separate Sgt1 domains are responsible for interactions with S100A6 and Skp1. Sgt1 binds not only to S100A6 but also to S100B and S100P, other members of the S100 family. The interaction between S100A6 and Sgt1 is likely to be physiologically relevant because both proteins were co-immunoprecipitated from HEp-2 cell line extract using monoclonal anti-S100A6 antibody. Phosphorylation of the S100A6-binding domain of Sgt1 by casein kinase II was inhibited by S100A6, a result suggesting that the role of S100A6 binding is to regulate the phosphorylation of Sgt1. These findings suggest that protein ubiquitination via Sgt1-dependent pathway can be regulated by S100 proteins.  相似文献   

7.
Calprotectin is a member of the EF-hand proteins, composed of two subunits, S100A8 (MRP8) and S100A9 (MRP14). These proteins are involved in important processes including cell signaling, regulation of inflammatory responses, cell cycle control, differentiation, regulation of ion channel activity and defense against microbial agents in a calcium dependent manner. In the present study, recombinant S100A8 and S100A9 were expressed in E. coli BL21 and then purified using Ni-NTA affinity chromatography. The structure of the S100A8/A9 complex in the presence and absence of calcium was assessed by circular dichroism and fluorescence spectroscopy. The intrinsic fluorescence emission spectra of the S100A8/A9 complex in the presence of calcium showed a reduction in fluorescence intensity, reflecting conformational changes within the protein with the exposure of aromatic residues to the protein surface. The far ultraviolet-circular dichroism spectra of the complex in the presence of calcium revealed minor changes in the regular secondary structure of the complex. Also, increased thermal stability of the S100A8/A9 complex in the presence of calcium was indicated.  相似文献   

8.
The release of Ca2+ ions from the sarcoplasmic reticulum through ryanodine receptor calcium release channels represents the critical step linking electrical excitation to muscular contraction in the heart and skeletal muscle (excitation–contraction coupling). Two small Ca2+ binding proteins, S100A1 and calmodulin, have been demonstrated to bind and regulate ryanodine receptor in vitro. This review focuses on recent work that has revealed new information about the endogenous roles of S100A1 and calmodulin in regulating skeletal muscle excitation–contraction coupling. S100A1 and calmodulin bind to an overlapping domain on the ryanodine receptor type 1 to tune the Ca2+ release process, and thereby regulate skeletal muscle function. We also discuss past, current and future work surrounding the regulation of ryanodine receptors by calmodulin and S100A1 in both cardiac and skeletal muscle, and the implications for excitation–contraction coupling.  相似文献   

9.
S100 proteins are a group of EF-hand calcium-signaling proteins, many of which interact with members of the calcium- and phospholipid-binding annexin family of proteins. This calcium-sensitive interaction enables two neighboring membrane surfaces, complexed to different annexin proteins, to be brought into close proximity for membrane reorganization, using the S100 protein as a bridging molecule. S100A11 and S100A10 are two members of the S100 family found to interact with the N-termini of annexins A1 and A2, respectively. Despite the high degree of structural similarity between these two complexes and the sequences of the peptides, earlier studies have shown that there is little or no cross-reactivity between these two S100s and the annexin peptides. In the current work the specificity and the affinity of the interaction of the N-terminal sequences of annexins A1 and A2 with Ca2+-S100A11 were investigated. Through the use of alanine-scanning peptide array experiments and NMR spectroscopy, an approximate 5-fold tighter interaction was identified between Ca2+-S100A11 and annexin A2 (approximately 3 microM) compared to annexin A1 (approximately 15 microM). Chemical shift mapping revealed that the binding site for annexin A2 on S100A11 was similar to that observed for the annexin A1 but with distinct differences involving the C-terminus of the annexin A2 peptide. In addition, kinetic measurements based on NMR titration data showed that annexin A2 binding to Ca2+-S100A11 occurs at a comparable rate (approximately 120 s(-1)) to that observed for membrane fusion processes such as endo- and exocytosis.  相似文献   

10.
Regulation of cytoplasmic free calcium concentration ([Ca2+)]i) is a key factor for maintenance of viability of cells, including oocytes. Indeed, during fertilization of an ovum, [Ca2+]i is known to undergo oscillations, but it is unknown how basal [Ca2+]i or calcium oscillations are regulated. In the present study we investigated the role of the plasma membrane in regulating [Ca2+]i of metaphase II-arrested mouse oocytes (ova). Ova were collected from B6C3F1 mice treated with eCG (10 IU) and hCG (5 IU), and intracellular calcium was determined by means of fura-2. Extracellular calcium flux across the zona pellucida was detected noninvasively by a calcium ion-selective, self-referencing microelectrode that was positioned by a computer-controlled micromanipulator. Under basal conditions ova exhibited a calcium net efflux of 20.6 +/- 5.2 fmol/cm2 per sec (n = 69). Treatment of ova with ethanol (7%) or thapsigargin (25 nM-2.5 microM) transiently increased intracellular calcium and stimulated calcium efflux that paralleled levels of [Ca2+]i. The presence of a Na+/Ca2+ exchanger was indicated by experiments employing both bepridil, an inhibitor of Na+/Ca2+ exchange, and sodium-depleted media. In the presence of bepridil, a net influx of calcium was revealed across the zona pellucida, which was reflected by an increase in the [Ca2+]i. In addition, replenishment of extracellular sodium to ova that had been incubated in sodium-depleted media induced a large calcium efflux, consistent with the actions of Na+/Ca2+ exchange. Sodium/calcium exchange in mouse ova may be an important mechanism that regulates [Ca2+]i.  相似文献   

11.
S100A1 and S100B interactions with annexins   总被引:3,自引:0,他引:3  
Members of the annexin protein family interact with members of the S100 protein family thereby forming heterotetramers in which an S100 homodimer crossbridges two copies of the pertinent annexin. Previous work has shown that S100A1 and S100B bind annexin VI in a Ca(2+)-dependent manner and that annexin VI, but not annexin V, blocks the inhibitory effect of S100A1 and S100B on intermediate filament assembly. We show here that both halves of annexin VI (i.e., the N-terminal half or annexin VI-a and the C-terminal half or annexin VI-b) bind individual S100s on unique sites and that annexin VI-b, but not annexin VI-a, blocks the ability of S100A1 and S100B to inhibit intermediate filament assembly. We also show that the C-terminal extension of S100A1 (and, by analogy, S100B), that was previously demonstrated to be critical for S100A1 and S100B binding to several target proteins including intermediate filament subunits, is not part of the S100 surface implicated in the recognition of annexin VI, annexin VI-a, or annexin VI-b. Evaluation of functional properties with a liposome stability and a calcium influx assay reveals the ability of both S100 proteins to permeabilize the membrane bilayer in a similar fashion like annexins. When tested in combinations with different annexin proteins both S100 proteins mostly lead to a decrease in the calcium influx activity although not all annexin/S100 combinations behave in the same manner. Latter observation supports the hypothesis that the S100-annexin interactions differ mechanistically depending on the particular protein partners.  相似文献   

12.
Programmed cell death (PCD) is a fundamental mechanism in tissue and cell homeostasis. It was long suggested that apoptosis regulates the cell number in diverse cell populations; however no clear mechanism was shown. Neutrophils are the short-lived, first-line defense of innate immunity, with an estimated t = 1/2 of 8 hours and a high turnover rate. Here we first show that spontaneous neutrophil constitutive PCD is regulated by cell concentrations. Using a proteomic approach, we identified the S100 A8/9 complex, which constitutes roughly 40% of cytosolic protein in neutrophils, as mediating this effect. We further demonstrate that it regulates cell survival via a signaling mechanism involving MEK-ERK via TLR4 and CD11B/CD18. This mechanism is suggested to have a fine-tuning role in regulating the neutrophil number in bone marrow, peripheral blood, and inflammatory sites.  相似文献   

13.
S100A8 and S100A9 are small calcium-binding proteins that are highly expressed in neutrophil and monocyte cytosol and are found at high levels in the extracellular milieu during inflammatory conditions. Although reports have proposed a proinflammatory role for these proteins, their extracellular activity remains controversial. In this study, we report that S100A8, S100A9, and S100A8/A9 caused neutrophil chemotaxis at concentrations of 10(-12)-10(-9) M. S100A8, S100A9, and S100A8/A9 stimulated shedding of L-selectin, up-regulated and activated Mac-1, and induced neutrophil adhesion to fibrinogen in vitro. Neutralization with Ab showed that this adhesion was mediated by Mac-1. Neutrophil adhesion was also associated with an increase in intracellular calcium levels. However, neutrophil activation by S100A8, S100A9, and S100A8/A9 did not induce actin polymerization. Finally, injection of S100A8, S100A9, or S100A8/A9 into a murine air pouch model led to rapid, transient accumulation of neutrophils confirming their activities in vivo. These studies 1) show that S100A8, S100A9, and S100A8/A9 are potent stimulators of neutrophils and 2) strongly suggest that these proteins are involved in neutrophil migration to inflammatory sites.  相似文献   

14.
S100A8 and S100A9 and their heterocomplex calprotectin (S100A8/A9) are abundant cytosolic constituents in human neutrophils previously shown to possess antifungal activity. This study was designed to investigate mechanisms involved in the modulation of the antifungal properties of S100A8/A9. S100A8, S100A9 and site-directed mutants of both proteins were tested for their antifungal effect against Candida albicans in microplate dilution assays. Whereas S100A8 alone did not inhibit fungal growth, S100A9 by itself had a moderate antifungal effect. Combining both proteins had the strongest effect. Supporting a potential role for oxidation in S100A8/A9, substitution of methionine 63 or 83 of S100A9 resulted in the loss of antifungal activity. Additionally, the substitution to alanine of cysteine 42 of S100A8 also caused a loss of S100A8's ability to enhance S100A9's antifungal effect. Overall, our data indicate that both S100A8 and S100A9 are required for their fully active antifungal effect and that oxidation regulates S100A8/A9 antifungal activity through mechanisms that remain to be elucidated and evaluated. Finally, together with our previous work describing the oxidation-sensitive anti-inflammatory effects of S100A8/A9, we propose that S100A8/A9 exerts an anti-inflammatory activity in healthy state and that conditions associated with oxidative stress activate the antifungal activity of S100A8/A9.  相似文献   

15.
S100A1 is a typical representative of a group of EF-hand calcium-binding proteins known as the S100 family. The protein is composed of two alpha subunits, each containing two calcium-binding loops (N and C). At physiological pH (7.2) and NaCl concentration (100 mm), we determined the microscopic binding constants of calcium to S100A1 by analysing the Ca(2+)-titration curves of Trp90 fluorescence for both the native protein and its Glu32 --> Gln mutant with an inactive N-loop. Using a chelator method, we also determined the calcium-binding constant for the S100A1 Glu73 --> Gln mutant with an inactive C-loop. The protein binds four calcium ions in a noncooperative way with binding constants of K(1) =4 +/- 2 x 10(3) m(-1) (C-loops) and K(2) approximately 10(2) m(-1) (N-loops). Only when both loops are saturated with calcium does the protein change its global conformation, exposing to the solvent hydrophobic patches, which can be detected by 2-p-toluidinylnaphthalene-6-sulfonic acid - a fluorescent probe of protein-surface hydrophobicity. S-Glutathionylation of the single cysteine residue (85) of the alpha subunits leads to a 10-fold increase in the affinity of the protein C-loops for calcium and an enormous - four orders of magnitude - increase in the calcium-binding constants of its N-loops, owing to a cooperativity effect corresponding to DeltaDeltaG = -6 +/- 1 kcal.mol(-1). A similar effect is observed upon formation of the mixed disulfide with cysteine and 2-mercaptoethanol. The glutathionylated protein binds TRTK-12 peptide in a calcium-dependent manner. S100A1 protein can act, therefore, as a linker between the calcium and redox signalling pathways.  相似文献   

16.
Myocardial ischemia during cardiopulmonary bypass terminated by reperfusion generally leads to different degrees of damage of the cardiomyocytes induced by transient cytosolic Ca(2+) overload. Recently, much attention has been paid to the role of heart-specific Ca(2+)-binding proteins in the pathogenesis of myocardial ischemia-reperfusion injury. S100A1 is a heart-specific EF-hand Ca(2+)-binding protein that is directly involved in a variety of Ca(2+)-mediated functions in myocytes. The aim of our study was to investigate the localization and translocation of S100A1 in the human heart under normal (baseline) conditions and after prolonged ischemia and reperfusion of the myocardium. Our data suggest that S100A1 is directly involved in the transient perioperative myocardial damage caused by ischemia during open heart surgery in humans. Given its role in the contractile function of muscle cells, this S100 protein could be an important "intracellular link" in ischemia-reperfusion injury of the heart.  相似文献   

17.
The type 2 inositol 1,4,5-trisphosphate receptor (InsP(3)R2) was identified previously as the predominant isoform in cardiac ventricular myocytes. Here we reported the subcellular localization of InsP(3)R2 to the cardiomyocyte nuclear envelope (NE). The other major known endo/sarcoplasmic reticulum calcium-release channel (ryanodine receptor) was not localized to the NE, indicating functional segregation of these channels and possibly a unique role for InsP(3)R2 in regulating nuclear calcium dynamics. Immunoprecipitation experiments revealed that the NE InsP(3)R2 associates with Ca(2+)/calmodulin-dependent protein kinase IIdelta (CaMKIIdelta), the major isoform expressed in cardiac myocytes. Recombinant InsP(3)R2 and CaMKIIdelta(B) also co-immunoprecipitated after co-expression in COS-1 cells. Additionally, the amino-terminal 1078 amino acids of the InsP(3)R2 were sufficient for interaction with CaMKIIdelta(B) and associated upon mixing following separate expression. CaMKII can also phosphorylate InsP(3)R2, as demonstrated by (32)P labeling. Incorporation of CaMKII-treated InsP(3)R2 into planar lipid bilayers revealed that InsP(3)-mediated channel open probability is significantly reduced ( approximately 11 times) by phosphorylation via CaMKII. We concluded that the InsP(3)R2 and CaMKIIdelta likely represent two central components of a multiprotein signaling complex, and this raises the possibility that calcium release via InsP(3)R2 in the myocyte NE may activate local CaMKII signaling, which may feedback on InsP(3)R2 function.  相似文献   

18.
The Notch signaling pathway plays a key role in a myriad of cellular processes, including cell fate determination. Despite extensive study of the downstream consequences of receptor activation, very little molecular data are available for the initial binding event between the Notch receptor and its ligands. In this study, we have expressed and purified a natively folded wild-type epidermal growth factor-like domain (EGF) 11-14 construct from human Notch-1 and have used flow cytometry and surface plasmon resonance analysis to demonstrate a calcium-dependent interaction with the human ligand Delta-like-1. Site-directed mutagenesis of three of the calcium-binding sites within the Notch-(11-14) fragment indicated that only loss of calcium binding to EGF12, and not EGF11 or EGF13, abrogates ligand binding. Further mapping of the ligand-binding site within this region by limited proteolysis of Notch wild-type and mutant fragments suggested that EGF12 rather than EGF11 contains the major Delta-like-1-binding site. Analysis of an extended fragment EGF-(10-14), where EGF11 is placed in a native context, surprisingly demonstrated a reduction in ligand binding, suggesting that EGF10 modulates binding by limiting access of ligand. This inhibition could be overcome by the introduction of a calcium binding mutation in EGF11, which decouples the EGF-(10-11) module interface. This study therefore demonstrates that long range calcium-dependent structural perturbations can influence the affinity of Notch for its ligand, in the absence of any post-translational modifications.  相似文献   

19.
Here, two temperature sensitive promoters, P2 and P7, isolated from Bacillus subtilis, were characterized. The production of beta-galactosidase driven by these promoters was much higher at 45 degrees C than that at 37 degrees C both in Escherichia coli and B. subtilis and that the P2 promoter showed higher expression strength in B. subtilis at 45 degrees C. Thereby, an efficient temperature-inducible expression system was constructed by using P2 promoter in B. subtilis. Thus, we isolated and characterized a newly temperature inducible promoter and exploited it as a potential expression element in B. subtilis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号