首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Abstract

In many animals, factors deposited by the mother into the egg control the earliest events in development of the zygote. These maternal RNAs and proteins play critical roles in oocyte development and the earliest steps of embryogenesis such as fertilization, cell division and embryonic patterning. Here, this article summarizes recent discoveries made on the maternal control of germline specification in zebrafish. Moreover, this review will discuss the major gaps remaining in our understanding of this process and highlight recent technical innovations in zebrafish, which allow tackling some of these questions in the near future.  相似文献   

3.
Seedless avocado fruit are produced alongside seeded fruit in the cultivar Arad, and both reach maturity at the same time. Using this system, it was possible to show that avocado seed inhibits the ripening process: seedless fruits exhibited higher response to exogenous ethylene already at the fruitlet stage, and also at the immature and mature fruit stages. They produced higher CO2 levels, and the ethylene peak was apparent at the fruitlet stage of seedless fruit, but not of seeded ones. The expression levels of PaETR, PaERS1 and PaCTR1 on the day of harvest at all developmental stages were very similar between seeded and seedless fruit, except that PaCTR1 was higher in seedless fruit only at very early stages. This expression pattern suggests that the seed does not have an effect on components of the ethylene response pathway when fruits are just picked. The expression of MADS-box genes, PaAG1 and PaAGL9, preceded the increase in ethylene production of mature seeded fruit, but not at earlier stages. However, only PaAGL9 was induced in seedless fruit at early stages of development. Taken together, these data suggest that these genes are perhaps involved in climacteric response in seeded fruit, and the seed is responsible for their induction at normal fruit ripening.  相似文献   

4.
We use Arabidopsis thaliana as a model to investigate coordination of cell proliferation and cell elongation in the three components that develop side by side in the seed. Two of these, the embryo and its nurturing annex, the endosperm, are placed under zygotic control and develop within the seed integument placed under maternal control. We show that integument cell proliferation and endosperm growth are largely independent from each other. By contrast, prevention of cell elongation in the integument by the mutation transparent testa glabra2 (ttg2) restricts endosperm and seed growth. Conversely, endosperm growth controlled by the HAIKU (IKU) genetic pathway modulates integument cell elongation. Combinations of TTG2 defective seed integument with reduction of endosperm size by iku mutations identify integument cell elongation and endosperm growth as the primary regulators of seed size. Our results strongly suggest that a cross talk between maternal and zygotic controls represents the primary regulator of the coordinated control of seed size in Arabidopsis.  相似文献   

5.
Seed size in higher plants is coordinately determined by the growth of the embryo, endosperm and maternal tissue, but relatively little is known about the genetic and molecular mechanisms that set final seed size. We have previously demonstrated that Arabidopsis DA1 acts maternally to control seed size, with the da1-1 mutant producing larger seeds than the wild type. Through an activation tagging screen for modifiers of da1-1, we have identified an enhancer of da1-1 (eod3-1D) in seed size. EOD3 encodes the Arabidopsis cytochrome P450/CYP78A6 and is expressed in most plant organs. Overexpression of EOD3 dramatically increases the seed size of wild-type plants, whereas eod3-ko loss-of-function mutants form small seeds. The disruption of CYP78A9, the most closely related family member, synergistically enhances the seed size phenotype of eod3-ko mutants, indicating that EOD3 functions redundantly with CYP78A9 to affect seed growth. Reciprocal cross experiments show that EOD3 acts maternally to promote seed growth. eod3-ko cyp78a9-ko double mutants have smaller cells in the maternal integuments of developing seeds, whereas eod3-1D forms more and larger cells in the integuments. Genetic analyses suggest that EOD3 functions independently of maternal factors DA1 and TTG2 to influence seed growth. Collectively, our findings identify EOD3 as a factor of seed size control, and give insight into how plants control their seed size.  相似文献   

6.
Small RNAs trigger repressive DNA methylation at thousands of transposable elements in a process called RNA‐directed DNA methylation (RdDM). The molecular mechanism of RdDM is well characterized in Arabidopsis, yet the biological function remains unclear, as loss of RdDM in Arabidopsis causes no overt defects, even after generations of inbreeding. It is known that 24 nucleotide Pol IV‐dependent siRNAs, the hallmark of RdDM, are abundant in flowers and developing seeds, indicating that RdDM might be important during reproduction. Here we show that, unlike Arabidopsis, mutations in the Pol IV‐dependent small RNA pathway cause severe and specific reproductive defects in Brassica rapa. High rates of abortion occur when seeds have RdDM mutant mothers, but not when they have mutant fathers. Although abortion occurs after fertilization, RdDM function is required in maternal somatic tissue, not in the female gametophyte or the developing zygote, suggesting that siRNAs from the maternal soma might function in filial tissues. We propose that recently outbreeding species such as B. rapa are key to understanding the role of RdDM during plant reproduction.  相似文献   

7.
8.
Seed development in Arabidopsis is characterized by stereotypical division patterns, suggesting that coordinated control of cell cycle may be required for correct patterning and growth of the embryo and endosperm. D-type cyclins (CYCD) are key cell cycle regulators with roles in developmental processes, but knowledge regarding their involvement in seed development remains limited. Here, a family-wide gene expression, and loss- and gain-of-function approach was adopted to reveal additional functions for CYCDs in the development of seed tissues. CYCD genes have both discrete and overlapping tissue-specific expression patterns in the seed as revealed by GUS reporter gene expression. Analysis of different mutant combinations revealed that correct CYCD levels are required in seed development. The CYCD3 subgroup is specifically required as its loss caused delayed development, whereas overexpression in the embryo and endosperm of CYCD3;1 or a previously uncharacterized gene, CYCD7;1, variously leads to induced proliferation, abnormal phenotypes, and elevated seed abortion. CYCD3;1 overexpression provoked a delay in embryonic developmental progression and abnormalities including additional divisions of the hypophysis and suspensor, regions where CYCD3 genes are normally expressed, but did not affect endosperm development. Overexpression of CYCD7;1, not normally expressed in seed development, promoted overgrowth of both embryo and endosperm through increased division and cell enlargement. In contrast to post-germination growth, where pattern and organ size is not generally related to division, results suggest that a close control of cell division through regulation of CYCD activity is important during seed development in conferring both developmental rate and correct patterning.  相似文献   

9.
Epidemiological evidence suggests that size at birth may affect health in later life. The growth of the fetus may be adversely affected by a suboptimal maternal environment. Understanding placental development and function will help unravel the mechanisms controlling fetal growth. This article poses the problem: how does the maternal environment (uterine or systemic) influence placental development? Critical human placental functions include remodelling maternal uterine spiral arteries to increase the flow of blood to the maternofetal interface, and transferring oxygen and nutrients into the fetal vasculature, all processes involving trophoblast. Gene ablations that affect pregnancy outcome in mice lead to some interesting hypotheses.  相似文献   

10.
11.
Maternal factors control development prior to the activation of the embryonic genome. In vertebrates, little is known about the molecular mechanisms by which maternal factors regulate embryonic development. To understand the processes controlled by maternal factors and identify key genes involved, we embarked on a maternal-effect mutant screen in the zebrafish. We identified 68 maternal-effect mutants. Here we describe 15 mutations in genes controlling processes prior to the midblastula transition, including egg development, blastodisc formation, embryonic polarity, initiation of cell cleavage, and cell division. These mutants exhibit phenotypes not previously observed in zygotic mutant screens. This collection of maternal-effect mutants provides the basis for a molecular genetic analysis of the maternal control of embryogenesis in vertebrates.  相似文献   

12.
We have used proteomics to better characterize germination and early seedling vigor in sugarbeet. Our strategy includes (1) construction of proteome reference maps for dry and germinating seeds of a high-vigor reference seed lot; (2) investigation of the specific tissue accumulation of proteins (root, cotyledon, perisperm); (3) investigation of changes in protein expression profiles detected in the reference seed lot subjected to different vigor-modifying treatments, e.g. aging and/or priming. More than 1 000 sugarbeet seed proteins have been identified by LC/MS-MS mass spectrometry (albumins, globulins and glutelins have been analyzed separately). Due to the conservation of protein sequences and the quality of MS sequencing (more than 10 000 peptide sequences have been obtained), the success rate of protein identification was on the average of 80%. This is to our knowledge the best detailed proteome analysis ever carried out in seeds. The data allowed us to build a detailed metabolic chart of the sugarbeet seed, generating new insights into the molecular mechanisms determining the development of a new seedling. Also, the proteome of a seed-storage tissue as the perisperm is described for the first time.  相似文献   

13.
14.
Although basally positioned inferior spikelets of rice panicles emerge late from the flag leaf enclosure (boot), they mature early which precludes adequate grain filling. It is assumed that extended exposure to ethylene inside the boot restricts assimilate partitioning to the endosperm in basal spikelets by affecting the functions of seed coat. In the present study, ethylene concentration inside the boot was measured in two high yielding rice cultivars differing in percentage of spikelet sterility. To manipulate the concentration/action of ethylene, silver nitrate, aminoethoxyvinyl glycine and 2-chloroethylphosphonic acid were injected into the boot. The effect of these chemicals on the concentration of photosynthetic pigments, lipid peroxidation and peroxidase activity of the seed coat and lemma and palea were measured to monitor development. Ethylene reduced development during the juvenile phase but accelerated degradation of the photosynthetic tissues of the spikelets in the senescent phase. Boot ethylene correlated positively with number of barren spikelets in the panicle and negatively with concentration of photosynthetic pigments of the seed coat of inferior spikelets. The concentration of ethylene was higher in the high sterile cultivar Mahalaxmi than that of the low sterile Mahanadi. Inhibition of ethylene action or synthesis improved grain filling. The chemicals were most effective on the inferior spikelets. It was concluded that ethylene retarded seed coat development during the prestorage phase and reduced grain filling of basal spikelets.  相似文献   

15.
This work investigates the effects of maternal adrenalectomy (ADX) on the development of the adrenal medulla. Adrenal catecholamines (AC) were measured at postnatal day (PN) 1, 8, 12 and 22 in rat offspring of ADX dams and in pups of control dams. The pups of ADX rats showed a reduction in AC concentrations in the adrenal medulla at PN 1, 12 and 22, although these were higher than in the pups of sham dams at PN 8. Further, in the pups of control mothers, there was an increase in ACs during the first two weeks of life whereas pups of ADX mothers only showed increases in noradrenaline, dopamine and adrenaline levels at day 8. These results suggest that maternal absence of corticosterone affects the medulla catecholamine content during development. These data support the idea that a maternal glucocorticoids are involved in the differentiation or/and maturation of the adrenal medulla.  相似文献   

16.
An unforeseen side-effect on plant growth in reduced oxygen is the loss of seed production at concentrations around 25% atmospheric (50 mmol mol-1 O2). In this study, the model plant Arabidopsis thaliana (L.) Heynh. cv. 'Columbia' was used to investigate the effect of low oxygen on ethylene biosynthesis during seed development. Plants were grown in a range of oxygen concentrations (210 [equal to ambient], 160, 100, 50 and 25 mmol mol-1) with 0.35 mmol mol-1 CO2 in N2. Ethylene in full-sized siliques was sampled using gas chromatography, and viable seed production was determined at maturity. Molecular analysis of ethylene biosynthesis was accomplished using cDNAs encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase in ribonuclease protection assays and in situ hybridizations. No ethylene was detected in siliques from plants grown at 50 and 25 mmol mol-1 O2. At the same time, silique ACC oxidase mRNA increased three-fold comparing plants grown under the lowest oxygen with ambient controls, whereas ACC synthase mRNA was unaffected. As O2 decreased, tissue-specific patterning of ACC oxidase and ACC synthase gene expression shifted from the embryo to the silique wall. These data demonstrate how low O2 modulates the activity and expression of the ethylene biosynthetic pathway during seed development in Arabidopsis.  相似文献   

17.
18.
19.
20.
The gibberellin (GA)-biosynthesis mutations, lh i , ls and Ie 5839 have been used to investigate the role(s) of the GAs in seed development of the garden pea (Pisum sativum L.). Seeds homozygous for lh i possess reduced GA levels, are more likely to abort during development, and weigh less at harvest, compared with wild-type seeds due to expression of the lh i mutation in the embryo and/ or endosperm. Compared with wild-type seeds, the lh i mutation reduces endogenous GA1 and gibberellic acid (GA3) levels in the embryo/endosperm a few days after anthesis and fertilizing lh i plants with wild-type pollen dramatically increases GA1 and GA3 levels in the embryo/ endosperm and restores normal seed development. By contrast, the ls and le 5839 mutations do not appear to reduce GA levels in the embryo/endosperm of seeds a few days after anthesis, and do not affect embryo or endosperm development. However, both the ls and lh i mutations substantially reduce endogenous GA levels in embryos at contact point (the first day the liquid endosperm disappears). Levels of GAs in seeds from crosses involving the ls and lh i mutations suggest that GAs are synthesised in both the embryo/endosperm and testa and that the expression of ls depends on the tissue and developmental stage examined. These results suggest that GAs (possibly GA1 and/or GA3) play an important role early in pea seed development by regulating the development of the embryo and/or endosperm. By contrast, the high GA levels found in wild-type seeds at contact point (and beyond) do not appear to have a physiological role in seed development.Abbreviations GAn gibberellin An - DAA days after anthesis - WT wild-type We thank Noel Davies, Katherine McPherson and Peter Bobbi for technical assistance, Professor L. Mander (ANU, Canberra) for dideuterated GA standards, and the Australian Research Council and Frontier Research Program, The Institute of Physical and Chemical Research (RIKEN, Japan), for financial support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号