首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
人基因组YAC克隆DNA的Alu-PCR反应条件的系统研究   总被引:2,自引:0,他引:2  
在人基因组YAC克隆的Alu-PCR指纹分析中要求DNA且扩增带具有YAC特征性;在用AlU-PCR方法对YAC克隆中的人类基因组DNA片段进行特异的同位素标记时则要求被扩增标记的DNA序列在插入片段中具有一定的弥散性。我们建立了两种不同的Alu-PCR反应体系以满足这一不同要求,并已得到较为满意的结果。根据不同条件下的Alu-PCR结果,分析了多引发位点PCR中的一些现象,并作出了解释。  相似文献   

2.
The ability to identify large numbers of yeast artificial chromosomes (YACs) specific to any given genomic region rapidly and efficiently enhances both the construction of clone maps and the isolation of region-specific landmarks (e.g., polymorphic markers). We describe a method of preparing region-specific single-stranded hybridization probes from Alu element-mediated polymerase chain reaction (Alu-PCR) products of somatic cell hybrids for YAC library screening. Pools of up to 50 cloned Alu-PCR products from an irradiation-reduced hybrid containing 22q11.2-q13.1 were labeled to high specific activity by linear amplification using a single vector primer. The resulting single-stranded probes were extensively competed to remove repetitive sequences, while retaining the full complexity of the probe. Extensive coverage of the region by YACs using multiple probe pools was demonstrated as many YACs were detected more than once. In situ analysis using chosen YACs confirmed that the clones were specific for the region. Thus, this pooled probe approach constitutes a rapid method to identify large numbers of YACs relevant to a large chromosomal region.  相似文献   

3.
A direct hybridization protocol is described for screening cosmid and yeast artificial chromosome libraries with pools of Alu-PCR products from somatic cell or irradiation hybrids. This method eliminates purification, cloning and analysis of each individual Alu-PCR product before library screening. A series of human X chromosome irradiation hybrids were mapped by this method, using a cosmid reference library for comparisons between overlapping hybrids to identify interesting clones for further analysis.  相似文献   

4.
Sequence tagged sites (STSs) that were generated via Alu-element-mediated polymerase chain reaction (Alu-PCR) and mapped to human Xq26 were used to isolate and overlap yeast artificial chromosomes (YACs). By collating the results of primary pool screening, the order of STSs and YACs was postulated directly. Subsequent isolation of 11 key YACs from 75 positive pools confirmed the proposed contig. Although only a small subset of the available Alu-PCR fragments was used, the STSs were generated at sufficient density to isolate all the YACs required and to identify all except one overlap directly. The results confirmed physical linkage of HPRT to DXS86 and DXS144E. Long-range continuity was determined purely by analysis of the 11 YAC colonies and required no end-rescue. This strategy is therefore an effective approach for the construction of YAC contigs spanning discrete chromosomal regions contained within somatic cell hybrids, with minimal prior knowledge of the region.  相似文献   

5.
Alu-PCR provides a convenient tool for amplification of human-specific sequences from yeast DNA containing yeast artificial chromosomes (YAC) clones. PCR products can be labeled nonisotopically and hybridized in situ, and the chromosomal origin of the clones can be determined. This avoids time-consuming gel purification of the yeast artificial chromosome and the low-efficiency procedure of labeling whole yeast DNA containing the YAC. The application of Alu-PCR to single-yeast colonies permits the mapping of YACs at a very early stage of their characterization. In situ hybridization can detect clones with noncontiguous fragments of DNA, and these can be discarded without further time-consuming characterization. To increase further the potential of the method, we show the application of multicolor hybridization techniques.  相似文献   

6.
The systematic screening of yeast artificial-chromosome (YAC) libraries is the limiting step in many physical mapping projects. To improve the screening throughput for a human YAC library, we designed an automatable strategy to identify YAC clones containing a specific segment of DNA. Our approach combines amplification of the target sequence from pooled YAC DNA by the polymerase chain reaction (PCR) with detection of the sequence by an ELISA-based oligonucleotide-ligation assay (OLA). The PCR-OLA approach eliminates the use of radioactive isotopes and gel electrophoresis, two of the major obstacles to automated YAC screening. Furthermore, the use of the OLA to test for the presence of sequences internal to PCR primers provides an additional level of sensitivity and specificity in comparison to methods that rely solely on the PCR.  相似文献   

7.
人类YAC库PCR三维筛选体系的建立及质量考核   总被引:3,自引:0,他引:3  
余才林  韩顺生 《遗传学报》1996,23(4):249-254
为了在知道某个区域、位点、基因或DNA片段的部分信息后,能从CEPHYAC库中筛选出与其对应的YAC克隆,为进一步研究奠定基础,需要建立一个筛选体系。本文概述了这一筛选体系的建立过程。随后,用两对与已知基因对应的引物进行了筛选验证工作,证明了这一体系的可用性,同时提出了以后筛选的途径,即首先筛选YAC库的MegaYAC部分,并以5块板为一组进行筛选。另外,运用荧光原位杂交技术(FBH),对CEPHYAC库的质量及其第一代人类基因组物理图谱进行了考察。我们取26个YAC克隆进行FISH定位,结果其中嵌合体13个,占50%。定位错误的克隆有6个,占23%。非嵌合体且定位正确的共9个,占35%。  相似文献   

8.
A new method for screening of YAC libraries is described. Individual YACs were pooled into groups of 384 clones and prepared as samples suitable for pulsed-field gel electrophoresis. A five hit human YAC library (Brownstein et al., 1989) containing approximately 60,000 clones was condensed into 150 such pools and chromosomal DNAs in each sample were separated on three pulsed field gels containing 50 samples each. Southern blots prepared from these gels were hybridized with probes of interest to identify pools containing homologous YACs. Further purification was performed using standard colony hybridization procedures. Twenty-one probes used thus far have identified 47 positive pools and corresponding YACs have been purified from 28 of these. Some significant advantages of this method include avoidance of DNA sequence analysis and primer generation prior to YAC screening and the ability to handle the entire library on three filters. The screening approach described here permits rapid isolation of YACs corresponding to unsequenced loci and will accelerate establishment of YAC contigs for large chromosomal segments.  相似文献   

9.
用Alu-PCR指纹图谱法分析了人Xp21.1-p21.3上一系列的酵母人工染色体(yeastartificialchromosome,YAC)克隆,发现其中的两个YAC克隆构成包含DXS166位点的重叠群,而且这一重叠群与以前构建的包含DMD基因全序列的YAC重叠群相连接,YAC克隆末端探针交叉杂交证实了这一重叠,使这一YAC重叠群至少延伸至DXS166位点,形成一个跨度为3.5Mb的YAC重叠群。基于这些重叠的YAC克隆绘制了这一区域的大尺度限制酶切图谱,并在这一图谱上定位了DXS166位点,从而确定了DXS166位点与DMD基因的物理关系。这一工作为DMD基因的5'远端调控作用研究及该区域未知基因的克隆奠定了基础。  相似文献   

10.
Human genomic mapping has been greatly advanced by the independent development of three new methods: large DNA fragment cloning in yeast artificial chromosomes, amplification from complex DNAs of human specific segments by Alu-PCR, and high-resolution localization of complex DNA probes by fluorescent in situ hybridization. We describe here the combination of these three analytical tools for efficient and accurate localization of randomly screened or especially selected human YAC recombinants to chromosome 11. We map a YAC clone encompassing the pepsinogen A (PGA) locus to 11q13.1-11q13.3.  相似文献   

11.
An improved procedure is presented to select clones from a tomato yeast artificial chromosome (YAC) library. The procedure is based exlcusively on the polymerase chain reaction (PCR). We combined DNA from approximately 36,000 YAC clones in pools containing 96-single YAC clones from one master plate and further in super pools representing 10 master plates. This pooling strategy allows the selection of single YAC clones homologous to a target sequence after three rounds of PCR using super pools, single pools, and single YAC clones as a template. Single YAC clones were spheroplasted prior to the third PCR round in order to omit the conventional radioactive colony hybridization step. To date, we applied this PCR-based selection strategy to isolate clones homologousto ten different sequence-tagged sites (STS) that are linked to genes targeted for map-based cloning. The selection of YAC clones can be readily accomplished within three days. The PCR-based screening strategy is easy to set up and contributes to a further acceleration of the construction of YAC contigs.  相似文献   

12.
分别以G200及其旁侧区的Y2587L、Y4073L和L688片段为探针筛选水稻基因组YAC文库,共得到4个阳性克隆,均与G200、Y2587L和Y4073L座位重叠,插入片段的大小为240~650kb。用反向PCR法分离YAC克隆插入片段的末端序列,并利用这些末端序列确定克隆的方向以及进行染色体步查,共筛选到7个YAC克隆,建立了一个8厘摩(cM)的G200 YAC重叠群。  相似文献   

13.
Minisatellite-like DNA elements occur in the Arabidopsis thalianagenome in low copy and are weakly polymorphic between ecotypes.YAC clones from the EG-Arabidopsis library were identified withhomology to minisatellite 33.15 and bacteriophage M13 repeatelements. Other highly repeated A. thaliana DNA elements tendnot to be found in YAC clones carrying the minisatellite elementssuggesting that the elements are dispersed in the Arabidopsisgenome in regions of low complexity. The minisatellite elementsare represented at low copy in the EG-YAC library reflectingtheir frequency in the Arabidopsis genome. Key words: Minisatellite elements, Arabidopsis thaliana, YAC library screening  相似文献   

14.
A sequence tagged site (STS)-based approach has been used to construct a 2.6-Mb contig in yeast artificial chromosomes (YACs) spanning the human dystrophin gene. Twenty-seven STSs were used to identify and overlap 34 YAC clones. A DNA fingerprint of each clone produced by direct Alu-PCR amplification of YAC colonies and the isolation of YAC insert ends by vectorette PCR were used to detect overlaps in intron 1 (280 kb) where no DNA sequence data were available, thereby achieving closure of the map. This study has evaluated methods for mapping large regions of the X chromosome and provides a valuable resource of the dystrophin gene in cloned form for detailed analysis of gene structure and function in the future.  相似文献   

15.
Fluorescence in situ hybridization of YAC clones after Alu-PCR amplification.   总被引:22,自引:0,他引:22  
C Lengauer  E D Green  T Cremer 《Genomics》1992,13(3):826-828
Alu-PCR protocols were optimized for the generation of human DNA probes from yeast strains containing yeast artificial chromosomes (YACs) with human inserts between 100 and 800 kb in size. The resulting DNA probes were used in chromosome in situ suppression (CISS) hybridization experiments. Strong fluorescent signals on both chromatids indicated the localization of specific YAC clones, while two clearly distinguishable signals were observed in greater than or equal to 90% of diploid nuclei. Signal intensities were generally comparable to those observed using chromosome-specific alphoid DNA probes. This approach will facilitate the rapid mapping of YAC clones and their use in chromosome analysis at all stages of the cell cycle.  相似文献   

16.
A yeast artificial chromosome (YAC) genomic library of Beta vulgaris was constructed in the pYAC4 vector. High-molecular-weight DNA was prepared from agarose-embedded leaf protoplasts from a triploid cultivar. The library was found to contain 33,500 clones in an ordered array of microtiter plates. Mean size of the inserts was estimated to be 135 kb, and the library should therefore represent the equivalent of five haploid genomes. The library was characterised for the presence of highly repetitive, chloroplast and single-copy sequences. In order to isolate single-copy sequences, 18 pools of DNA, each from 1920 individual YAC clones, were prepared for rapid screening of the library by the polymerase chain reaction. The results of these screenings showed that the number of isolated clones was at or near the frequency expected.  相似文献   

17.
YAC clones corresponding to 125 Arabidopsis thaliana RFLP markers have been identified. At least one YAC clone has been isolated for each of the RFLP markers tested. Based on CHEF gel analysis of 196 clones, the mean insert size of the available Arabidopsis YAC libraries is approximately 160 kb. The YACs of known genetic map location encompass about 30% of the Arabidopsis genome. The results presented here represent a first step towards assembly of an overlapping YAC library of the A. thaliana genome.  相似文献   

18.
A method for linking genomic sequences cloned in yeast artificial chromosomes (YACs) has been tested using Caenorhabditis elegans as a model system. Yeast clones carrying YACs with repeated sequences were selected from a C. elegans genomic library, total DNA was digested with restriction enzymes, transferred to nylon membranes and probed with a variety of repetitive DNA probes. YAC clones that overlap share common bands with one or more repetitive DNA probes. In 159 YAC clones tested with one restriction enzyme and six probes 28 overlapping clones were detected. The advantages and limitations of this method for construction of YAC physical maps is discussed.  相似文献   

19.
人工酵母染色体(YAC)技术是人类基因组分析及疾病相关基因的分离、克隆中的关键技术。在基因组YAC文库基础上特定目的基因的分离克隆涉及YAC克隆的筛选,嵌合体、缺失体和共转染克隆的检测与处理,插入片段的分离及其结构特征的分析,亚克隆的快速构建等等。近年来,有关技术取得了重要进展,已趋于成熟,并正得到广泛应用 。  相似文献   

20.
A library of yeast artificial chromosomes (YACs) was constructed from a human/hamster somatic cell hybrid containing human chromosome 21 (q11-qter). Cells were embedded in agarose, and the DNA was partially digested with EcoRI, released into solution by agarase treatment of the agarose plugs, ligated into pYAC4, and transferred into yeast. Double screening of the yeast transformants with human and hamster genomic DNA allowed the selection of clones hybridizing only with human DNA. The library consists of 321 clones, amounting to 1.5 equivalents (61 Mb) of chromosome 21. The mean YAC size calculated from 178 clones is 190 +/- 100 kb. Screening of the library with eight sequence-tagged sites gave six positives. Among 21 YACs tested by in situ hybridization, 17 mapped to chromosome 21.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号