首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The copper-containing quinoenzyme semicarbazide-sensitive amine oxidase (EC 1.4.3.21; SSAO) is a multifunctional protein. In some tissues, such as the endothelium, it also acts as vascular-adhesion protein 1 (VAP-1), which is involved in inflammatory responses and in the chemotaxis of leukocytes. Earlier work had suggested that lysine might function as a recognition molecule for SSAO/VAP-1. The present work reports the kinetics of the interaction of l-lysine and some of its derivatives with SSAO. Binding was shown to be saturable, time-dependent but reversible and to cause uncompetitive inhibition with respect to the amine substrate. It was also specific, since d-lysine, l-lysine ethyl ester and ε-acetyl-l-lysine, for example, did not bind to the enzyme. The lysine-rich protein soluble elastin bound to the enzyme relatively tightly, which may have relevance to the reported roles of SSAO in maintaining the extracellular matrix (ECM) and in the maturation of elastin. Our data show that lysyl residues are not oxidized by SSAO, but they bind tightly to the enzyme in the presence of hydrogen peroxide. This suggests that binding in vivo of SSAO to lysyl residues in physiological targets might be regulated in the presence of H2O2, formed during the oxidation of a physiological SSAO substrate, yet to be identified.  相似文献   

2.
Semicarbazide-sensitive amine oxidase (SSAO) (E.C. 1.4.3.6) is a group of enzymes with as yet poorly understood function which is widely present in nature. The variation in methodology for determination of activity, differences in substrates used and in nomenclature have made it difficult to compare SSAO in different species and tissues. Since SSAO is implicated in the pathophysiology of diabetes mellitus and congestive heart failure, our aim was to analyse the importance and abundance of SSAO in human plasma and tissues compared to other mammals. In plasma of ten different mammals, Vmax values were found to vary more than 10,000-fold, while KM differed much less; in human plasma SSAO activity is relatively low. In some species more than one SSAO entity was present in plasma. SSAO activity was ubiquitous in tissues of human, rat and pig, but varied considerably, both between species and between tissues. In human tissues, SSAO activity is higher than in tissues from rat and pig. Relative to monoamine oxidase-B there is also wide variation in SSAO, with much higher relative activities in human than in rat and pig tissues. We conclude that in plasma, SSAO activity is highest in ruminants, while in tissues, SSAO activity is more prominently present in human than in rat and pig.  相似文献   

3.
A strong induction of semicarbazide-sensitive amine oxidase (SSAO) has previously been reported during murine preadipocyte lineage differentiation but it remains unknown whether this emergence also occurs during adipogenesis in man. Our aim was to compare SSAO and monoamine oxidase (MAO) expression during in vitro differentiation of human preadipocytes and in adipose and stroma-vascular fractions of human fat depots. A human preadipocyte cell strain from a patient with Simpson-Golabi-Behmel syndrome was first used to follow amine oxidase expression during in vitro differentiation. Then, human preadipocytes isolated from subcutaneous adipose tissues were cultured under conditions promoting ex vivo adipose differentiation and tested for MAO and SSAO expression. Lastly, human adipose tissue was separated into mature adipocyte and stroma-vascular fractions for analyses of MAO and SSAO at mRNA, protein and activity levels. Both SSAO and MAO were increased from undifferentiated preadipocytes to lipid-laden cells in all the models: 3T3-F442A and 3T3-L1 murine lineages, human SGBS cell strain or human preadipocytes in primary culture. In human subcutaneous adipose tissue, the adipocyte-enriched fraction exhibited seven-fold higher amine oxidase activity and contained three- to seven-fold higher levels of mRNAs encoded by MAO-A, MAO-B, AOC3 and AOC2 genes than the stroma-vascular fraction. MAO-A and AOC3 genes accounted for the majority of their respective MAO and SSAO activities in human adipose tissue. Most of the SSAO and MAO found in adipose tissue originated from mature adipocytes. Although the mechanism and role of adipogenesis-related increase in amine oxidase expression remain to be established, the resulting elevated levels of amine oxidase activities found in human adipocytes may be of potential interest for therapeutic intervention in obesity.  相似文献   

4.
5.
Background information. PrAO (primary amine oxidase), also known as SSAO (semicarbazide‐sensitive amine oxidase)/VAP‐1 (vascular adhesion protein‐1), is an enzyme (EC 1.4.3.21) that is highly expressed in blood vessels and participates in many cell processes, including glucose handling or inflammatory leucocyte recruitment. High activity levels of this enzyme are associated with diabetes, atherosclerosis, AD (Alzheimer's disease) or stroke, among others, thus meaning that studies concerning SSAO as a therapeutic target are becoming more frequent. However, the study of this enzyme is difficult, owing to its loss of expression in cell cultures. Results. We have developed an endothelial cell line that stably expresses the human SSAO/VAP‐1 to be used as endothelial cell model for the study of this enzyme. The transfected protein is mainly expressed as a dimer in the membrane of these cells, and we demonstrate its specific localization in the lipid rafts of endothelial cells. The protein shows levels of enzymatic activity and kinetic parameters comparable with those observed in vivo by the same cell type. The transfected SSAO/VAP‐1 is also able to mediate the adhesion of leucocytes to the endothelium, a known function of this protein under inflammatory conditions. This distinctive function is not exerted by the SSAO/VAP‐1 transfected protein in a smooth muscle cell line that expresses 3‐fold higher protein levels. These differences have been widely reported to exist in vivo. Furthermore, using this endothelial cell model, we describe for the first time the involvement of the leucocyte‐adhesion activity of SSAO/VAP‐1 in the Aβ (amyloid β‐peptide)‐mediated pro‐inflammatory effect. Conclusions. The characterization of this new cell line shows the correct behaviour of the transfected protein and endorses the use of these cellular models for the in‐depth study of the currently poorly understood functions of SSAO/VAP‐1 and its involvement in the above‐mentioned pathologies. This cellular model will be also useful for the evaluation of potential compounds that could modulate its activity for therapeutic purposes.  相似文献   

6.
Aldehyde oxidase (EC 1.2.3.1) is a xenobiotic metabolizing enzyme that catalyzes a variety of organic aldehydes and N-heterocyclic compounds. However, its precise pathophysiological function in humans, other than its xenobiotic metabolism, remains unknown. In order to gain a better understanding of the role of this enzyme, it is important to know its exact localization in human tissues. In this study, we investigated the distribution of aldehyde oxidase at the cellular level in a variety of human tissues by immunohistochemistry. The enzyme was found to be widespread in respiratory, digestive, urogenital, and endocrine tissues, though we also observed a cell-specific localization in the various tissues studied. In the respiratory system, it was particularly abundant in epithelial cells from the trachea and bronchium, as well as alveolar cells. In the digestive system, aldehyde oxidase was observed in surface epithelia of the small and large intestines, in addition to hepatic cells. Furthermore, the proximal, distal, and collecting tubules of the kidney were immunostained with various intensities, while glomerulus tissues were not. In epididymus and prostate tissues, staining was observed in the ductuli epididymidis and glandular epithelia. Moreover, the adrenal gland, cortex, and notably the zona reticularis, showed strong immunostaining. This prevalent tissue distribution of aldehyde oxidase in humans suggests some additional pathophysiological functions besides xenobiotic metabolism. Accordingly, some possible roles are discussed.  相似文献   

7.
Monoamine oxidase (MAO, type A and B) and semicarbazide-sensitive amine oxidase (SSAO) metabolize biogenic amines, however, the impact of these enzymes in arteries from patients with type 2 diabetes remains poorly understood. We investigated the kinetic parameters of the enzymes to establish putative correlations with noradrenaline (NA) content and patient age in human mesenteric arteries from type 2 diabetic patients. The kinetic parameters were evaluated by radiochemical assay and NA content by high-performance liquid chromatography (HPLC). The activity of MAO-A and SSAO in type 2 diabetic vascular tissues was significantly lower compared to the activity obtained in non-diabetic tissues. In the correlation between MAO-A (K(m)) and NA content, we found a positive correlation for both the diabetic and non-diabetic group, but no correlation was established for patient age. In both groups, MAO-B (V(max)) showed a negative correlation with age. The results show that MAO-A and SSAO activities and NA content of type 2 diabetic tissues are lower compared to the non-diabetic tissues, while MAO-B activity remained unchanged. These remarks suggest that MAO-A and SSAO may play an important role in vascular tissue as well as in the vascular pathophysiology of type 2 diabetes.  相似文献   

8.
Various mammalian tissues contain membrane-bound amine oxidase termed semicarbazide-sensitive amine oxidase (SSAO). A variety of compounds has been identified as relatively selective SSAO inhibitors, but those inhibitors currently available also inhibit monoamine oxidase (MAO). In the present study, inhibitory properties of 2-bromoethylamine (2-BEA) and 3-bromopropylamine (3-BPA) toward rat lung-bound SSAO have been studied. Regardless of preincubation, 2-BEA could not appreciably inhibit MAO-A and MAO-B activity, but 3-BPA at relatively high concentrations inhibited only MAO-B activity. 3-BPA was a competitive and reversible SSAO inhibitor with a Ki value of 17 microM regardless of preincubation. In contrast, without preincubation, 2-BEA competitively inhibited SSAO activity with the Ki value of 2.5 microM and after preincubation, the mode of inhibition changed to be noncompetitive, indicating irreversible inhibition after the preincubation. Dialysis experiments with 2-BEA-pretreated homogenate resulted in no recovery of SSAO activity even after overnight dialysis. A decreased rate of SSAO inhibition under N2 atmosphere to that obtained under O2 was produced upon preincubation of enzyme with 2-BEA, suggesting that oxidized intermediate was necessary for its inhibitory activity. Thus, 2-BEA first interacts with SSAO to form a reversible complex with a subsequent reaction, leading this complex to the covalently bound enzyme-inhibitor adduct. The data analyzed by the plot of 1/k' vs 1/2-BEA concentrations intersected on the y-axis indicate that the inhibition by 2-BEA is not mediated by a bimolecular reaction; thus it is not an affinity-labeling agent, but a suicide SSAO inhibitor. 2-BEA may be employed as a useful compound in the studying SSAO.  相似文献   

9.
Semicarbazide-sensitive amine oxidase (SSAO) is a multifunctional enzyme with different biological roles that depend on the tissue where it is expressed. Because SSAO activity is altered in several pathological conditions, we were interested in studying the possible regulation of the human enzyme activity. It has been previously reported that SSAO activity is increased in the presence of Dulbecco's modified Eagle medium (DMEM) in vitro. The aim of the present work was to investigate the effects of the different constituents of DMEM on human SSAO activity. We found that sodium bicarbonate was the only component able to mimic the enhancement of both human aorta and plasma SSAO activity in vitro, suggesting a possible physiological role of bicarbonate as an intrinsic modulator of the human enzyme. Failure to take this activating effect into account could also result in inaccuracies in the reported tissue activities of this enzyme.  相似文献   

10.
Semicarbazide-sensitive amine oxidase (SSAO) is widely distributed in almost tissues. However, its presence in brain microvessels is still controversial. The affinity of SSAO towards benzylamine (Bz) is considerably higher than that of monoamine oxidase (MAO). SSAO plays a role in the toxicity of several environmental and endogenous amines. SSAO-mediated production of toxic aldehydes has been proposed to be related to pathophysiological conditions. The most potent of inhibition of SSAO in monkey brain was observed by tricyclic antidepressant drug imipramine, as compared to tetracyclic drug maprotiline or non-cyclic drug nomifensine. An endogenous SSAO modulator in rat brain cytosol after immobilization stress (IMMO) was found and that this inhibitor could be induced by IMMO. SSAO activity in rat brain might be regulated by the level of this inhibitor. Semicarbazide, a SSAO inhibitor, enhances the formation of OH products of efflux/oxidation due to 1-methyl-4-phenylpyridinium ion (MPP+). The precise physiological functions of SSAO could play an important role in the control of energy balance in adipose tissue. SSAO could play an important role in the regulation of adipocyte homeostasis.  相似文献   

11.
Obata T 《Life sciences》2006,79(5):417-422
The enzyme of semicarbazide-sensitive amine oxidase (SSAO) activity has been reported to be elevated in blood from diabetic patients. SSAO are widely distributed in plasma membranes of various tissues and blood plasma. SSAO-mediated production of toxic aldehydes has been proposed to be related to pathophysiological conditions. Cytotoxic metabolites by SSAO may cause endothelial injury and subsequently induce atherosclerosis. The precise physiological functions of SSAO could play an important role in the control of energy balance in adipose tissue. It is possible that the increased SSAO activity in diabetes may be a result of up-regulation due to increase of SSAO substrates, such as methylamine or aminoacetone. SSAO could play an important role in the regulation of adipocyte homeostasis. Inhibition of SSAO could be of therapeutic value for treatment of diabetic patient.  相似文献   

12.
Lysyl oxidases (Lox), which are members of the amine oxidase family, are involved in the maturation of elastic lamellae and collagen fibers. Modifications of amine oxidases in idiopathic annulo-aortic ectasia disease (IAAED) have never been investigated. Our aim was to examine the expression of several proteins that might interfere with elastic fiber organization in control (n=10) and IAAED (n=18) aortic tissues obtained at surgery. Expression of amine oxidases and semicarbazide-sensitive amine oxidase (SSAO), and cellular phenotypic markers were examined by immunohistopathology and confocal microscopy. The expression of these proteins was assessed in relation to clinical and histomorphological features of the arterial wall. In control aorta, SSAO staining was expressed along elastic lamellae, whereas in aneurysmal areas of IAAED, SSAO was markedly decreased, in association with severe disorganization of elastic lamellae. Smooth muscle myosin heavy chain was also decreased in IAAED compared with controls, indicating smooth muscle cell dedifferentiation. Multiple regression analysis showed that elastic lamellar thickness (ELT) was correlated positively with the SSAO:elastin ratio and negatively with the Lox:elastin ratio, and that the clinical features of IAAED (aneurysm, thoracic aorta diameter, and aortic insufficiency) were positively correlated with ELT but not with SSAO. The relationship between SSAO expression and ELT suggests that this amine oxidase may be involved in elastic fiber organization. However, in advanced IAAED, the deficit in SSAO expression could be secondary to the decrease and fragmentation of elastic fibers and/or to vascular smooth muscle cell dedifferentiation.  相似文献   

13.
Various mammalian tissues contain a tissue-bound amine oxidizing enzyme distinct from mitochondrial outer membrane enzyme, monoamine oxidase (MAO, EC 1.4.3.4), termed semicarbazide-sensitive amine oxidase (SSAO, EC 1.4.3.6). An increase in SSAO activity was found in patients suffering from vascular disorders such as diabetes and diabetic complications. It has previously been shown that 2-bromoethylamine (2-BEA) is a potent, and selective suicidal inhibitor of tissue-bound SSAO. The aim of this study was to investigate the interaction of this suicidal SSAO inhibitor with the tissue-bound enzyme in guinea pig lung, kidney, stomach, and heart homogenates. The conditions necessary for this inhibitor to titrate the concentrations of this enzyme were also determined. 2-BEA appears to interact with SSAO, as reported previously for this enzyme from different sources, in a manner consistent with an irreversible, "suicide" reaction. Because of this property, 2-BEA could be used to titrate the concentrations of SSAO active centers in these tissues under the appropriate conditions employed. Although some possible non-specific binding of the inhibitor to sites other than the active center of the enzyme, metabolism of this inhibitor and/or presence of enzyme subtypes was hypothesized, the molecular characteristics of SSAO in these tissues (Km, Vmax values, enzyme efficiencies, approximate enzyme concentrations, and molecular turnover numbers) towards the substrate kynuramine (0.1 mM) at pH 7.4 and 37 degrees C have been estimated.  相似文献   

14.
Semicarbazide-sensitive amine oxidase (SSAO) is a transmembrane enzyme that metabolizes primary amines from endogenous or dietary origin. SSAO is highly expressed in adipose, smooth muscle and endothelial cells. In each of these cell types, SSAO is implicated in different biological functions, such as glucose transport activation, extracellular matrix maturation and leucocyte extravasation, respectively. However, the physiological functions of SSAO and their involvement in pathogenesis remain uncompletely characterized. To better understand the role of adipose tissue SSAO, we investigated whether it was necessary and/or sufficient to produce the antihyperglycemic effect of the SSAO-substrate benzylamine, already reported in mice. Therefore, we crossed SSAO-deficient mice invalidated for AOC3 gene and transgenic mice expected to express human SSAO in an adipocyte-specific manner, under the control of aP2 promoter. The aP2?Chuman AOC3 construct (aP2?ChAOC3) was equally expressed in the adipose tissue of mice expressing or not the native murine form and almost absent in other tissues. However, the corresponding SSAO activity found in adipose tissue represented only 20?% that of control mice. As a consequence, the benzylamine antihyperglycemic effect observed during glucose tolerance test in control was abolished in AOC3-KO mice but not rescued in mice expressing aP2?ChAOC3. The capacity of benzylamine or methylamine to activate glucose uptake in adipocytes exhibited parallel variations in the corresponding genotypes. Although the aP2?ChAOC3 construct did not allow a total rescue of SSAO activity in adipose tissue, it could be assessed from our observations that adipocyte SSAO plays a pivotal role in the increased glucose tolerance promoted by pharmacological doses of benzylamine.  相似文献   

15.
Semicarbazide-sensitive amine oxidase (SSAO) catalyzes oxidative deamination of primary aromatic and aliphatic amines. Increased SSAO activity has been found in atherosclerosis and diabetes mellitus. We hypothesize that the anti-atherogenic effect of liver X receptors (LXRs) might be related to the inhibition of SSAO gene expression and its activity. In this study, we investigated the effect of LXRagonist T0901317 on SSAO gene expression and its activity in apolipoprotein E knockout (apoE−/−) mice. Male apoE−/− mice (8 weeks old) were randomly divided into four groups: basal control group; vehicle group; prevention group; and treatment group. SSAO gene expression was analyzed by real-time quantitative polymerase chain reaction and its activity was determined. The activity of superoxide dismutase and content of malondialdehyde in the aorta and liver were also determined. In T0901317-treated mice, SSAO gene expression was significantly decreased in the aorta, liver, small intestine, and brain. SSAO activities in serum and in these tissues were also inhibited. The amount of superoxide dismutase in the aorta and liver of the prevention group and treatment group was significantly higher compared with the vehicle group ( P < 0.05). Malondialdehyde in the tissues of these two groups was significantly lower compared with the vehicle group ( P < 0.05). Our results showed that T0901317 inhibits SSAO gene expression and its activity in atherogenic apoE−/− mice. The atheroprotective effect of LXR agonist T0901317 is related to the inhibition of SSAO gene expression and its activity.  相似文献   

16.
1. White adipose tissue (WAT) from mice, rabbits, pigs and human subjects was investigated for the characterization of the tissue-bound semicarbazide-sensitive benzylamine oxidase activities (SSAO) present in each species. 2. Enzymes from mice, rabbits and pigs shared similar biochemical characteristics: they exerted histaminase activity, oxidized methylamine and acetylputrescine and were completely blocked by carbonyl reagents and by 3,5-ethoxy-4-aminomethylpyridyne (B24), in a dose-dependent fashion. 3. SSAO activity from human WAT had a lower affinity for benzylamine compared with enzymes in the other species and did not show any histaminase activity. 4. These results show that SSAO from human tissues might have different properties from SSAO of other species.  相似文献   

17.
Many enzymes are involved in the biosynthesis, interconversion, and degradation of purine compounds. The exact function of these enzymes is still unknown, but they seem to play important roles other than in purine metabolism. To elucidate their functional roles, it is imperative to clarify their tissue distribution at the cellular or subcellular level. The present review summarizes the currently available information about their histochemical localization and proposed functions. In general, 5'-nucleotidase has been considered as a marker enzyme for the plasma membrane, and is considered to be a key enzyme in the generation of adenosine, a potential vasodilator. However, from its wide range of localization in tissues it is also considered to be related to the membrane movement of cells in the transitional epithelium, cellular motile response, transport process, cellular growth, synthesis of fibrous protein and calcification, lymphocyte activation, neurotransmission, and oxygen sensing mechanism. Adenosine deaminase (ADA) is present in all tissues in mammals. Although the main function of ADA is the development of the immune system in humans, it seems to be associated with the differentiation of epithelial cells and monocytes, neurotransmission, and maintenance of gestation. Purine nucleoside phosphorylase (PNP) is generally considered as a cytosolic enzyme, but recently, mitochondrial PNP, a different protein from cytosolic PNP, was reported. PNP is also widely expressed in human tissues. It is found in most tissues of the body, but the highest activity is in peripheral blood granulocyte and lymphoid tissues. It is also related to the development of T-cell immunity in humans as is ADA. Moreover, its contribution to centriole replication and/or regulation of microtubule assembly has been suggested. Immunohistochemical localization of xanthine oxidase has been reported in various tissues from various animal species. Xanthine oxidase has been suggested to be involved in the pathogenesis of post-ischemic reperfusion tissue injury through the generation of reactive oxygen species, while the extensive tissue localization of xanthine dehydrogenase/oxidase suggests several other roles for this enzyme, including a protective barrier against bacterial infection by producing either superoxide radicals or uric acid. Furthermore, an involvement in cellular proliferation and differentiation has been suggested. Urate oxidase is generally considered a liver-specific enzyme, except for bovines which possess this enzyme in the kidney. Urate oxidase is exclusively located in the peroxisomes of fish, frogs, and rats, but was lost in birds, some reptiles, and primates during evolution. A histochemical demonstration of allantoin-degrading enzymes has not been performed, but these enzymes have been located in peroxisomes by sucrose density gradient centrifugation. AMP deaminase activity is higher in skeletal muscle than in any other tissues. AMP deaminase may be involved in a number of physiological processes, such as the conversion of adenine nucleotide to inosine or guanine nucleotide, stabilizing the adenylate energy charge, and the reaction of the purine nucleotide cycle. There are three distinct isozymes (A, B, C) with different kinetic, physical, and immunological properties. Isozymes A, B, C have been isolated from muscle, liver (kidney), and heart tissue, respectively. In the muscle, AMP deaminase isozymes exist in a different part, suggesting a multiple functional role of this enzyme. High hypoxanthine-guanine phosphoribosyltransferase (HGPRT) activity is found in some regions of a normal adult human brain. However, very little is known regarding the histochemical tissue localization of HGPRT. Immunohistochemical localization of its developmental expression suggests that HGPRT may not be essential for purine nucleotide supplement in the segmentation of brain cells, but may play a significant role in the developing hippocampus.  相似文献   

18.
Semicarbazide-sensitive amine oxidase (SSAO) encodes a wide family of enzymes named E.C.1.4.3.6 [amine:oxygen oxidoreductase (deaminating) (copper containing)] that metabolises primary aliphatic and aromatic amines. It is present in almost all vascularised and nonvascularised mammalian tissues, and it is also present in soluble form in plasma. SSAO appears to show different functions depending on the tissue where it is expressed. Here we describe, for the first time, the activation of the SSAO from human lung by human plasma. The extent of activation was greater when the human plasma came from diabetic and heart infarcted patients. A kinetic mechanism of such effect is proposed. The activation was lost after the plasma was dialysed, indicating a low molecular weight component (MW <3800 Da) to be responsible. The activator component is heat stable and resistant to proteolysis by chymotrypsin and trypsin and also resistant to perchloric acid treatment. However, treatment with 35% formic acid, completely abolished activation, suggesting involvement of lipid material. The possibility of that lysophosphatidylcholine (LPC), an amphiphilic phospholipid derived from the phosphatidylcholine, the major component in plasma accumulated in pathological conditions, was studied. LPC was shown to behave as a "competitive activator" of human lung SSAO at concentrations below its critical micellar concentration (CMC value=50 microM). Thus LPC may be a component of the SSAO activatory material present in human plasma.  相似文献   

19.
A new molecule, the 4-methyl-thio-phenyl-propylamine (PrNH(2)) was synthesized and its biological interaction with different amine oxidases such as semicarbazide sensitive amine oxidase (SSAO) [E.C.1.4.3.6], and monoamine oxidase [E.C.1.4.3.4] under its two isoforms, MAO A and MAO B, has been assessed. The substrate specifities of MAO and SSAO overlap to some extent. In this context, the search of new molecules, able to discriminate between these different amine oxidases is very important as it will allow greater elucidation of the SSAO's role in physiological and pathological conditions. We report for the first time, the synthesis and evaluation of a new molecule which has a high affinity towards the SSAO family of enzymes, more so than previously described and furthermore an ability to discriminate between the different amine oxidases.  相似文献   

20.
Decreased monoamine oxidase (MAO) activity has been observed in adipose tissue of obese patients. Since substrates of MAO and semicarbazide-sensitive amine oxidase (SSAO) can modify adipocyte metabolism, this work investigates whether changes in amine oxidase activity may occur during white adipose tissue (WAT) development. We evaluated MAO and SSAO activities in WAT of high-fat diet (HFD) and low-fat diet fed mice. To distinguish the effect of HFD on its own from the effect of fat mass enlargement, obesity-prone transgenic line of the FVBn strain lacking beta3-adrenergic receptors (AR) but expressing human beta3-AR and alpha2-AR (mbeta3-/-, hbeta3+/+, halpha2+/-) was compared to its obesity-resistant control (mbeta3-/-, hbeta3+/+). As already reported, the former mice became obese while the latter resisted to HFD. No significant change in SSAO or MAO activity was found in WAT of both strains after HFD when expressing oxidase activity per milligram of protein. However, when considering the overall capacity of the fat depots to oxidize tyramine or benzylamine, there was an increase in MAO and SSAO activity only in the enlarged WAT of HFD-induced obese mice. Therefore, the comparison of these models allowed to demonstrate that the higher amine oxidase capacity hold in enlarged fat stores of obese mice is more likely the consequence of increased fat cell number rather than the result of an increased expression of MAO or SSAO in the adipocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号