首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of androgen-binding protein by cultured Sertoli cells is increased by insulin, retinol, follitropin and testosterone. Only follitropin will stimulate an increase in cyclic AMP in these cells, yet each agent individually increased the synthesis of androgen-binding protein in short-term cultures. For long-term culture of Sertoli cells follitropin, testosterone, insulin, and retinol appeared to act synergistically to prolong the ability of the cells to secrete androgen-binding protein. These are the first reported results which suggest an action of insulin and retinol directly on Sertoli cells even though the importance of both factors in male reproduction is known.  相似文献   

2.
Pancreatic islets were isolated by collagenase digestion from female Wistar rats and cultured at 20 mmol/l glucose. The enhancement of Mg++ concentration from 0.8 mmol/l up to 5.3 mmol/l had a protecting effect on the glucose-induced insulin release in the subsequent short-time incubation and prevented the age-depending decrease of B-cell function. About 1,000 cultured islets injected into portal vein normalized the plasma glucose of streptozotocin-diabetic rats. The plasma glucose patterns during the glucose load were nearly identical to healthy controls. These findings suggest that the cultured islets maintain the ability to secrete insulin in response to glucose in vitro as well as in vitro and that such islets can reverse an experimentally induced diabetes.  相似文献   

3.
Type II diabetes progresses with inadequate insulin secretion and prolonged elevated circulating glucose levels. Also, pancreatic islets isolated for transplantation or tissue engineering can be exposed to glucose over extended timeframe. We hypothesized that isolated pancreatic islets can secrete insulin over a prolonged period of time when incubated in glucose solution and that not all islets release insulin in unison. Insulin secretion kinetics was examined and modeled from single mouse islets in response to chronic glucose exposure (2.8‐20 mM). Results with single islets were compared to those from pools of islets. Kinetic analysis of 58 single islets over 72 h in response to elevated glucose revealed distinct insulin secretion profiles: slow‐, fast‐, and constant‐rate secretors, with slow‐secretors being most prominent (ca., 50%). Variations in the temporal response to glucose therefore exist. During short‐term (<4 h) exposure to elevated glucose few islets are responding with sustained insulin release. The model allowed studying the influence of islet size, revealing no clear effect. At high‐glucose concentrations, when secretion is normalized to islet volume, the tendency is that smaller islets secrete more insulin. At high‐glucose concentrations, insulin secretion from single islets is representative of islet populations, while under low‐glucose conditions pooled islets did not behave as single ones. The characterization of insulin secretion over prolonged periods complements studies on insulin secretion performed over short timeframe. Further investigation of these differences in secretion profiles may resolve open‐ended questions on pre‐diabetic conditions and transplanted islets performance. This study deliberates the importance of size of islets in insulin secretion. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1059–1068, 2018  相似文献   

4.
We evaluated the effect of chronic exercise on insulin secretion in response to high-glucose by using a perifusion method with isolated pancreatic islets from normal rats. Male Wistar rats were assigned to one of two groups: a sedentary group and a trained group. Running exercise was carried out on a treadmill for one hour per day, five days per week, for six, nine, or 12 weeks. The chronic exercise significantly enhanced the insulin secretion ability of pancreatic islets in response to the high-glucose stimulation upon nine and 12 weeks of exercise. The insulin content in the pancreas and the weight of the pancreas did not change upon nine weeks of exercise. Potassium-stimulated insulin secretion was also increased in the islets isolated from rats that trained for nine weeks compared with that in sedentary rats, suggesting that insulin secretion events downstream of membrane depolarization are involved in targets of the exercise effect. These findings suggest that chronic exercise could be a useful strategy not only for the maintenance of peripheral insulin sensitivity but also for the promotion of islet function to secrete insulin in non-diabetics.  相似文献   

5.
The ability of dispersed islet cells in a perifusion system to secret glucagon and insulin in response to physiologic stimuli was investigated. Normal hamster islets were isolated by collagenase digestion and the cells dispersed by sequential digestion with collagenase and trypsin. Following a 50-min period of equilibrium in buffer with high glucose concentrations (5.0 mg/ml), glucagon secretion was stimulated by glucopenia and subsequently, inhibited by increasing the concentration of glucose. The responsiveness to glucose inhibition was significantly less in dispersed islet cells than in intact islets. However, the dispersed islet cells showed significantly greater response to arginine. Glucagon secretion by dispersed islet cells was stimulated to tolbutamide and epinephrine but somatostatin had no effect. Dispersed islet cell preparations did not augment insulin secretion in response to glucose but did secrete more insulin in response to arginine. Intact islets secreted insulin in response to glucose but not arginine. We conclude that A cells in cell suspension do not need direct contact or an intact intra-islet environment in order to respond to glucose, arginine, epinephrine, or tolbutamide but the extent of response may be influenced by paracrine effects. However, paracrine relationships may be important in determining the response of B cells to secretagogues.  相似文献   

6.
BackgroundThe efficacy of intramuscular islet transplantation is poor despite being technically simple, safe, and associated with reduced rates of severe complications. We evaluated the efficacy of combined treatment with extracellular matrix (ECM) and growth factors in intramuscular islet transplantation.MethodsMale BALB/C mice were used for the in vitro and transplantation studies. The following three groups were evaluated: islets without treatment (islets-only group), islets embedded in ECM with growth factors (Matrigel group), and islets embedded in ECM without growth factors [growth factor-reduced (GFR) Matrigel group]. The viability and insulin-releasing function of islets cultured for 96 h were significantly improved in Matrigel and GFR Matrigel groups compared with the islets-only group.ResultsBlood glucose and serum insulin levels immediately following transplantation were significantly improved in the Matrigel and GFR Matrigel groups and remained significantly improved in the Matrigel group at postoperative day (POD) 28. On histological examination, significantly decreased numbers of TdT-mediated deoxyuridine triphosphate-biotin nick end labeling-positive islet cells and significantly increased numbers of Ki67-positive cells were observed in the Matrigel and GFR Matrigel groups at POD 3. Peri-islet revascularization was most prominent in the Matrigel group at POD 14.ConclusionsThe efficacy of intramuscular islet transplantation was improved by combination treatment with ECM and growth factors through the inhibition of apoptosis, increased proliferation of islet cells, and promotion of revascularization.  相似文献   

7.
Pancreatic islets of the Syrian golden hamster were maintained in culture for extended periods of time. Toxicity of streptozotocin in these cultures was evaluated by measurement of insulin secretion. Exposure of islets to 1 or 2 mM streptozotocin immediately following isolation resulted in a permanent and dose-related inhibition of insulin secretion. This was accompanied by islet disruption as observed by phase-contrast microscopy. Culture of islets for 24 hours before streptozotocin exposure afforded protection from toxicity. For example, exposure of freshly isolated islets to 2 mM streptozotocin resulted in complete destruction of beta cells, whereas islets similarly exposed after a 24 hr culture period continued to secrete insulin for many months. Islets maintained in culture for one week before exposure to 0.1–0.5 mM streptozotocin, however, became more sensitive than freshly isolated islets. Repeated weekly exposure of cultured islets to a non-toxic concentration (0.1 mM) resulted in sustained suppression of insulin secretion after 11 weeks.  相似文献   

8.
Pentitols and insulin release by isolated rat islets of Langerhans   总被引:7,自引:13,他引:7       下载免费PDF全文
1. Insulin secretion was studied in isolated islets of Langerhans obtained by collagenase digestion of rat pancreas. In addition to responding to glucose and mannose as do whole pancreas and pancreas slices in vitro, isolated rat islets also secrete insulin in response to xylitol, ribitol and ribose, but not to sorbitol, mannitol, arabitol, xylose or arabinose. 2. Xylitol and ribitol readily reduce NAD(+) when added to a preparation of ultrasonically treated islets. 3. Adrenaline (1mum) inhibits the effects of glucose and xylitol on insulin release. Mannoheptulose and 2-deoxy-glucose, however, inhibit the response to glucose but not that to xylitol. 4. The intracellular concentration of glucose 6-phosphate is increased when islets are incubated with glucose but not with xylitol, suggesting that xylitol does not promote insulin release by conversion into glucose 6-phosphate. 5. Theophylline (5mm) potentiates the effect of 20mm-glucose on insulin release from isolated rat islets of Langerhans, but has no effect on xylitol-mediated release. These results indicate that xylitol does not stimulate insulin release by alterations in the intracellular concentrations of cyclic AMP. 6. A possible role for the metabolism of hexoses via the pentose phosphate pathway in the stimulation of insulin release is discussed.  相似文献   

9.
To explore the effects immune‐isolating encapsulation has on the insulin secretion of pancreatic islets and to improve our ability to quantitatively describe the glucose‐stimulated insulin release (GSIR) of pancreatic islets, we conducted dynamic perifusion experiments with isolated human islets. Free (unencapsulated) and hydrogel encapsulated islets were perifused, in parallel, using an automated multi‐channel system that allows sample collection with high temporal resolution. Results indicated that free human islets secrete less insulin per unit mass or islet equivalent (IEQ) than murine islets and with a less pronounced first‐phase peak. While small microcapsules (d = 700 µm) caused only a slightly delayed and blunted first‐phase insulin response compared to unencapsulated islets, larger capsules (d = 1,800 µm) completely blunted the first‐phase peak and decreased the total amount of insulin released. Experimentally obtained insulin time‐profiles were fitted with our complex insulin secretion computational model. This allowed further fine‐tuning of the hormone‐release parameters of this model, which was implemented in COMSOL Multiphysics to couple hormone secretion and nutrient consumption kinetics with diffusive and convective transport. The results of these GSIR experiments, which were also supported by computational modeling, indicate that larger capsules unavoidably lead to dampening of the first‐phase insulin response and to a sustained‐release type insulin secretion that can only slowly respond to changes in glucose concentration. Bioartificial pancreas type devices can provide long‐term and physiologically desirable solutions only if immunoisolation and biocompatibility considerations are integrated with optimized nutrient diffusion and insulin release characteristics by design.  相似文献   

10.
Glucose homeostasis is primarily controlled by the endocrine hormones insulin and glucagon, secreted from the pancreatic beta and alpha cells, respectively. Functional beta cell mass is determined by the anatomical beta cell mass as well as the ability of the beta cells to respond to a nutrient load. A loss of functional beta cell mass is central to both major forms of diabetes 1-3. Whereas the declining functional beta cell mass results from an autoimmune attack in type 1 diabetes, in type 2 diabetes, this decrement develops from both an inability of beta cells to secrete insulin appropriately and the destruction of beta cells from a cadre of mechanisms. Thus, efforts to restore functional beta cell mass are paramount to the better treatment of and potential cures for diabetes.Efforts are underway to identify molecular pathways that can be exploited to stimulate the replication and enhance the function of beta cells. Ideally, therapeutic targets would improve both beta cell growth and function. Perhaps more important though is to identify whether a strategy that stimulates beta cell growth comes at the cost of impairing beta cell function (such as with some oncogenes) and vice versa.By systematically suppressing or overexpressing the expression of target genes in isolated rat islets, one can identify potential therapeutic targets for increasing functional beta cell mass 4-6. Adenoviral vectors can be employed to efficiently overexpress or knockdown proteins in isolated rat islets 4,7-15. Here, we present a method to manipulate gene expression utilizing adenoviral transduction and assess islet replication and beta cell function in isolated rat islets (Figure 1). This method has been used previously to identify novel targets that modulate beta cell replication or function 5,6,8,9,16,17.  相似文献   

11.
The levels of cellular retinol-binding protein (CRBP) and cellular retinoic acid-binding protein (CRABP) have been measured in Sertoli cells maintained under different cultural conditions. Sertoli cells were isolated from prepubertal rats and cultured in a chemically defined medium without or with follicle-stimulating hormone (FSH), insulin, retinol or testosterone added individually or in combinations. The additions were made at the beginning of the culture or 24 h before the cells were subjected to determinations of CRBP and CRABP by radioimmunoassay. No differences were observed either after 1 or 4 days of treatment. The results obtained indicated that the levels of the two retinoid-binding proteins were unchanged in Sertoli cells in response to hormone and/or retinol administration. To rule out the possibility that the Sertoli cells used in our study were unresponsive to the hormones, lactate production by the cells cultured in the presence of FSH or insulin was measured. The amount of lactate produced under hormonal stimulation was significantly higher than the amount produced in absence of the hormones, thus indicating the ability of our Sertoli cells to respond to the hormonal stimulation.  相似文献   

12.
Summary Primary cultures of immature rat Sertoli cells in plastic dishes are highly responsive to follicle stimulating hormone (FSH) and its second messenger, cAMP, in metabolizing testosterone to estradiol, thus indicating the presence of an active, hormone-regulated aromatase cytochrome P450 (P450arom). However, in vivo studies indicated that P450arom is FSH-responsive only in very young animals, where the cells have not yet differentiated, but they lose this ability later on in development. Sertoli cells grown on Matrigel (a reconstituted basement membrane), laminin (a basement membrane component), or in bicameral chambers coated with Matrigel, assume structural and functional characteristics more similar to that of in vivo differentiated Sertoli cells. When the cells were cultured on laminin or Matrigel, the FSH- and cAMP-induced estradiol production was greatly reduced by 30 and 60%, respectively. When Sertoli cells were cultured in bicameral chambers coated with Matrigel, no induction of testosterone aromatization by FSH or cAMP was observed. However, FSH-induced cAMP formation was greater when the cells were cultured on basement membrane or in the chambers than on plastic dishes. These results suggest that culture conditions favoring the assumption by Sertoli cells of a phenotype closer that of the differentiated cells in vivo (tall columnar and highly polarized) suppress the induction of P450arom by FSH and cAMP. We then examined the mechanism(s) by which cell phenotype affects p450arom activity. Northern blot analyses of Sertoli cell RNA revealed one major band of 1.9 Kb and two minor bands of 3.3 and 5.2 Kb. However, there were no changes at the level of the expression of P450arom messenger RNA under the different culture conditions. No differences were found in P450arom enzymatic activity measured by the3H2O release method in microsomes prepared from Sertoli cells cultured under the various conditions. Similarly, no differences were observed in the amount of protein detected by immunoblot analysis of Sertoli cell extracts using an antiserum raised against the human placental enzyme. Recombination experiments using microsomes from cells cultured on plastic or in the chambers and cytosol from control or FSH-treated cells cultured on plastic also proved inadequate in inducing P450arom activity. These data suggest that: a) P450arom activity could be used as a specific marker for Sertoli cell differentiation, and b) the differentiation process in Sertoli cells is associated with specific changes in the microenvironment or the regulation of P450arom, or both, that rendered the enzyme insensitive to FSH or cAMP induction.  相似文献   

13.
Primary rat Sertoli cells are widely used as a model for mechanistic and toxicological studies, since they are often the target of toxicants in vivo. However, their isolation from testicular homogenates is tedious and requires the regular use of numerous immature animals. It is therefore of great interest to have available established cell lines that are usable in vitro for unlimited periods and closely similar to native cells. To this end, we have established a line of Wistar rat Sertoli cells (SerW3) by immortalization of fresh primary cells with the T antigens of the Simian virus (SV40). When plated on Matrigel, this cell line presents many of the functional characteristics of Sertoli cells in vivo. In addition, they are sensitive to cisplatin and secrete transferrin, although they do not show a clear response to follicle-stimulating hormone. They also present many morphological similarities, including the presence of tight junctions which mimic the natural epithelial barrier. Like Sertoli cells in vivo, they show extensive phagocytic activity. Finally, they display all the characteristics of immortalized, but not transformed, cells, i.e., topo-inhibition and apoptosis at confluence or under serum deprivation.  相似文献   

14.
Mice were subjected to gastrectomy (GX) or sham operation (controls). Four to six weeks later the pancreatic islets were isolated and analysed for cAMP or alternatively incubated in a Krebs-Ringer based medium in an effort to study insulin secretion and cAMP accumulation in response to glucose or the adenylate cyclase activator forskolin. Freshly isolated islets from GX mice had higher cAMP content than islets from control mice, a difference that persisted after incubation for 1 h at a glucose concentration of 4 mmol/l. Addition of forskolin to this medium induced much greater cAMP and insulin responses in islets from GX mice than in islets from control mice. In contrast, the insulin response to high glucose (16.7 mmol/l) was much weaker in GX islets than in control islets. Glucose-induced insulin release was associated with a 2-fold rise in the cAMP content in control islets. Surprisingly no rise in cAMP was noted in GX islets incubated at high glucose. Capacitance measurements conducted on isolated insulin cells from GX mice revealed a much lower exocytotic response to a single 500 ms depolarisation (from -70 mV to zero) than in control insulin cells. Addition of cAMP to the cytosol enhanced the exocytotic response in insulin cells from control mice but not from GX mice. The depolarisation-triggered inward Ca(2+) current in insulin cells from GX mice did not differ from that in control mice, and hence the reduced exocytotic response following GX cannot be ascribed to a decreased Ca(2+) influx. Experiments involving a train of ten 500 ms depolarisations revealed that the exocytotic response was prominent in control insulin cells but modest in GX insulin cells. It seems that cAMP is capable of eliciting insulin release from insulin cells of GX mice only when cAMP is generated in a specific microdomain conceivably through the intervention of membrane-associated adenylate cyclases that can be activated by forskolin. The GX-evoked impairment of depolarisation-induced exocytosis and glucose-stimulated insulin release may reflect the lack of a gastric agent that serves to maintain an appropriate insulin response to glucose and an appropriate exocytotic response to depolarisation by raising cAMP in a special glucose-sensitive compartment possibly regulated by a soluble adenylate cyclase.  相似文献   

15.
The cryoprotectants dimethyl sulfoxide (Me2SO) and glycerol have been used for the cryopreservation of fetal rat pancreases but only Me2SO has been reported for the cryopreservation of adult rat islets. Since glycerol may be preferred to Me2SO for clinical use, this study was undertaken to compare the effectiveness of these cryoprotectants during the slow cooling of isolated adult rat islets. Islets of Langerhans prepared from the pancreases of WAG rats by collagenase digestion were stored at -196 degrees C after slow cooling (0.3 degrees C/min) to -70 degrees C in the presence of multimolar concentrations of either Me2SO or glycerol. Samples were rewarmed slowly (approximately 10 degrees C/min) and dilution of the cryoprotectant was achieved using medium containing sucrose. Function was assessed by determination of the time course of the glucose-induced insulin release during in vitro perifusion at 37 degrees C and also by isograft transplantation. Transplants were carried out by intraportal injection of a minimum of 1700 frozen and thawed islets into streptozotocin-induced diabetic recipients and tissue function was assessed by monitoring blood glucose levels and body weight changes. Without exception the islets frozen and thawed in the presence of glycerol failed to reduce high serum glucose levels of recipient rats and in vitro dynamic release curves showed to demonstrate a glucose-sensitive insulin release pattern. Reversal of the diabetic conditions was achieved in two of five animals receiving islets which had been frozen and thawed with 2 M Me2SO; and in one of three animals receiving islets cryopreserved with 3 M Me2SO. Nevertheless, perifusion studies showed that the pattern of insulin secretion from groups of cryopreserved islets which did show an ability to secrete insulin was atypical compared with that of untreated controls, suggesting that the tissue was altered or damaged in some way.  相似文献   

16.
Cellular replacement therapy holds promise for the treatment of diabetes mellitus but donor tissue is severely limited. Therefore, we investigated whether insulin-secreting cells could be differentiated in vitro from a monolayer of cells expanded from human donor pancreatic islets. We describe a three-step culture protocol that allows for the efficient generation of insulin-producing cell clusters from in vitro expanded, hormone-negative cells. These clusters express insulin at levels of up to 34% that of average freshly isolated human islets and secrete C-peptide upon membrane depolarization. They also contain cells expressing the other major islet hormones (glucagon, somatostatin, and pancreatic polypeptide). The source of the newly differentiated endocrine cells could either be indigenous stem/progenitor cells or the proliferation-associated dedifferentiation and subsequent redifferentiation of mature endocrine cells. The in vitro generated cell clusters may be efficacious in providing islet-like tissue for transplantation into diabetic recipients.  相似文献   

17.

Background

Type 1 Diabetes Mellitus is caused by auto immune destruction of insulin producing beta cells in the pancreas. Currently available treatments include transplantation of isolated islets from donor pancreas to the patient. However, this method is limited by inadequate means of immuno-suppression to prevent islet rejection and importantly, limited supply of islets for transplantation. Autologous adult stem cells are now considered for cell replacement therapy in diabetes as it has the potential to generate neo-islets which are genetically part of the treated individual. Adopting methods of islet encapsulation in immuno-isolatory devices would eliminate the need for immuno-suppressants.

Methodology/Principal Findings

In the present study we explore the potential of human adipose tissue derived adult stem cells (h-ASCs) to differentiate into functional islet like cell aggregates (ICAs). Our stage specific differentiation protocol permit the conversion of mesodermic h-ASCs to definitive endoderm (Hnf3β, TCF2 and Sox17) and to PDX1, Ngn3, NeuroD, Pax4 positive pancreatic endoderm which further matures in vitro to secrete insulin. These ICAs are shown to produce human C-peptide in a glucose dependent manner exhibiting in-vitro functionality. Transplantation of mature ICAs, packed in immuno-isolatory biocompatible capsules to STZ induced diabetic mice restored near normoglycemia within 3–4 weeks. The detection of human C-peptide, 1155±165 pM in blood serum of experimental mice demonstrate the efficacy of our differentiation approach.

Conclusions

h-ASC is an ideal population of personal stem cells for cell replacement therapy, given that they are abundant, easily available and autologous in origin. Our findings present evidence that h-ASCs could be induced to differentiate into physiologically competent functional islet like cell aggregates, which may provide as a source of alternative islets for cell replacement therapy in type 1 diabetes.  相似文献   

18.
This study was undertaken to show that rat purified islets can be used as a reliable tool to study some aspects of human islet's physiology related to CCKR occupation. Therefore, isolated foetal, adult human and rat islets were compared for (1) CCKR subtypes mRNA and protein expression and somatostatin (SS) mRNA and (2) co-localization of these receptors with insulin, glucagon and SS. Finally, rat islets were tested for their responsiveness to stimulation. Purified human and rat islets were used for CCKR subtypes and SS mRNA estimation by RT-PCR and protein by Western blots. Receptors and hormones co-localizations were evaluated by confocal microscopy. Hormones secretion served to determine rat islets responsiveness. Islets of both species express CCKA and CCKBR mRNA and proteins and SS mRNA. The CCKAR co-localizes with insulin and glucagon and the CCKBR with SS. Insulin release was increased 5-fold in response to 16 mM glucose and SS secretion reached 1.3- and 1.7-fold increments above basal in response to forskolin and IBMX. In conclusions, human and rat islets have comparable CCKR subtypes localized on the same cells; they also express SS mRNA. The rat islets are functional as they secrete but their response to hormonal stimulation remains to be clarified. These rat islets can thus serve as tools to study islets physiology.  相似文献   

19.
Zhang HN  He JH  Yuan L  Lin ZB 《Life sciences》2003,73(18):2307-2319
This study was undertaken to investigate the protective effect against alloxan-induced pancreatic islets damage by Ganoderma lucidum Polysaccharides (Gl-PS) isolated from the fruiting body of Ganoderma lucidum (Leyss. ex Fr.) Karst. In vitro, alloxan caused dose-dependent toxicity on the isolated pancreatic islets. Pre-treatment of islets with Gl-PS for 12 h and 24 h significantly reversed alloxan-induced islets viability loss. Gl-PS was also found to inhibit the free radicals production induced by alloxan in the isolated pancreatic islets using confocal microscopy. Gl-PS dose-dependently increased serum insulin and reduced serum glucose levels when pretreated intragastrically for 10 days in alloxan-induced diabetic mice. It was found that the pancreas homogenates had higher lipid peroxidation products in alloxan-treated mice than in the Gl-PS-treated animals. Aldehyde fuchsin staining revealed that alloxan caused nearly all the beta cells disappearing from the pancreatic islets, while Gl-PS partly protected the beta cells from necrosis. Alloxan (60 mg/kg) induced NF-kappa B activation in the pancreas at 30 min after injection, pretreatment with Gl-PS inhibited alloxan-induced activation of NF-kappa B. These results suggest that Gl-PS was useful in protecting against alloxan-induced pancreatic islets damage in vitro and in vivo; one of the mechanisms is through its scavenging ability to protect the pancreatic islets from free radicals-damage induced by alloxan.  相似文献   

20.
Insulin secretion has only exceptionally been investigated in pancreatic islets from healthy young children. It remains unclear whether those islets behave like adult islets despite substantial differences in cellular composition and higher β-cell replication rates. Islets were isolated from 5 infants/toddlers (11–36 month-old) and perifused to characterize their dynamics of insulin secretion when subjected to various stimuli and inhibitors. Their insulin responses were compared to those previously reported for similarly treated adult islets. Qualitatively, infant islets responded like adult islets to stimulation by glucose, tolbutamide, forskolin (to increase cAMP), arginine and the combination of leucine and glutamine, and to inhibition by diazoxide and CaCl2 omission. This similarity included the concentration-dependency and biphasic pattern of glucose-induced insulin secretion, the dynamics of the responses to non-glucose stimuli and metabolic amplification of these responses. The insulin content was not different, but fractional insulin secretion rates were lower in infant than adult islets irrespective of the stimulus. However, the stimulation index was similar because basal secretion rates were also lower in infant islets. In conclusion, human β-cells are functionally mature by the age of one year, before expansion of their mass is complete. Their responsiveness (stimulation index) to all stimuli is not smaller than that of adult β-cells. Yet, under basal and stimulated conditions, they secrete smaller proportions of their insulin stores in keeping with smaller in vivo insulin needs during infancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号