首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Nuclear receptors (NRs) usually bind the corepressors N-CoR and SMRT in the absence of ligand or in the presence of antagonists. Agonist binding leads to corepressor release and recruitment of coactivators. Here, we report that estrogen receptor beta (ERbeta) binds N-CoR and SMRT in the presence of agonists, but not antagonists, in vitro and in vivo. This ligand preference differs from that of ERalpha interactions with corepressors, which are inhibited by estradiol, and resembles that of ERbeta interactions with coactivators. ERbeta /N-CoR interactions involve ERbeta AF-2, which also mediates coactivator recognition. Moreover, ERbeta recognizes a sequence (PLTIRML) in the N-CoR C-terminus that resembles coactivator LXXLL motifs. Inhibition of histone deacetylase activity specifically potentiates ERbeta LBD activity, suggesting that corepressors restrict the activity of AF-2. We conclude that the ER isoforms show completely distinct modes of interaction with a physiologically important corepressor and discuss our results in terms of ER isoform specificity in vivo.  相似文献   

2.
3.
4.
5.
Ligand-dependent exchange of coactivators and corepressors is the fundamental regulator of nuclear hormone receptor (NHR) function. The interaction surfaces of coactivators and corepressors are similar but distinct enough to allow the ligand to function as a switch. Multiple NHRs share features that allow corepressor binding, and each of two distinct corepressors (N-CoR and SMRT) contains two similar CoRNR motifs that interact with NHRs. Here we report that the specificity of corepressor-NHR interaction is determined by the individual NHR interacting with specific CoRNR boxes within a preferred corepressor. First, receptors have distinct preferences for CoRNR1 versus CoRNR2. For example, the retinoic acid receptor binds CoRNR1, while RXR interacts almost exclusively with CoRNR2. Second, the NHR preference for N-CoR or SMRT is due to differences in CoRNR1 but not CoRNR2. Moreover, within a single corepressor, affinity for different NHRs is determined by distinct regions flanking CoRNR1. The highly specific determinants of NHR-corepressor interaction and preference suggest that repression is regulated by the permissibility of selected receptor-CoRNR-corepressor combinations. Interestingly, different NHR surfaces contribute to binding of CoRNR1 and CoRNR2, suggesting a model to explain corepressor binding to NHR heterodimers.  相似文献   

6.
Ligands occupy the core of nuclear receptor (NR) ligand binding domains (LBDs) and modulate NR function. X-ray structures of NR LBDs reveal most NR agonists fill the enclosed pocket and promote packing of C-terminal helix 12 (H12), whereas the pockets of unliganded NR LBDs differ. Here, we review evidence that NR pockets rearrange to accommodate different agonists. Some thyroid hormone receptor (TR) ligands with 5′ extensions designed to perturb H12 act as antagonists, but many are agonists. One mode of adaptation is seen in a TR/thyroxine complex; the pocket expands to accommodate a 5′ iodine extension. Crystals of other NR LBDs reveal that the pocket can expand or contract and some agonists do not fill the pocket. A TRβ structure in complex with an isoform selective drug (GC-24) reveals another mode of adaptation; the LBD hydrophobic interior opens to accommodate a bulky 3′ benzyl extension. We suggest that placement of extensions on NR agonists will highlight unexpected areas of flexibility within LBDs that could accommodate extensions; thereby enhancing the selectivity of agonist binding to particular NRs. Finally, agonists that induce similar LBD structures differ in their activities and we discuss strategies to reveal subtle structural differences responsible for these effects.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
TR surfaces and conformations required to bind nuclear receptor corepressor   总被引:9,自引:0,他引:9  
Residues of the TR that are critical for binding the nuclear receptor corepressor (N-CoR) were identified by testing more than 100 separate mutations of the full-length human TRbeta that scan the surface of its ligand binding domain. The primary inferred interaction surface overlaps the surface described for binding of p160 coactivators, but differs by extending to a novel site underneath which helix 12 rests in the liganded TR, rather than including residues of helix 12. Nonconservative mutations of this surface diminished binding similarly to three isolated N-CoR receptor interaction domains (RIDs), but conservative mutations affected binding variably, consistent with a role for this surface in RID selectivity. The commonality of this surface in binding N-CoR was confirmed for the RXRs and ERs. Deletion of helix 12 increased N-CoR binding by the TR modestly, and by the RXR and ER to a much greater extent, indicating a competition between this helix and the corepressor that regulates the extent of corepressor binding by nuclear receptors. When helix 12 was deleted, N-CoR binding by the ER was stimulated by tamoxifen, and binding by the TR was stimulated by Triac, indicating that helix 12 is not the only feature that regulates corepressor binding. Two additional mutationsensitive surfaces were found alongside helix 1, near the previously described CoR box, and above helix 11, nearby but separate from residues that help link receptor in dimers. Based on effects of selected mutations on T(3) and coactivator binding, and on results of combined mutations of the three sites on corepressor binding, we propose that the second and third surfaces stabilize TR unliganded conformation(s) required for efficient N-CoR binding. In transfection assays mutations of all three surfaces impaired the corepressor-mediated functions of unliganded TR repression or activation. These detailed mapping results suggest approaches for selective modulation of corepressor interaction that include the shape of the molecular binding surface, the competitive occupancy by helix 12, pharmacological stimulation, and specific conformational stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号