首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soluble guanylyl cyclase (sGC) regulates several important physiological processes by converting GTP into the second-messenger cGMP. sGC has several structural and functional properties in common with adenylyl cyclases (ACs). Recently, we reported that membranous ACs and sGC are potently inhibited by 2',3'-O-(2,4,6-trinitrophenyl)-substituted purine and pyrimidine nucleoside 5'-triphosphates. Using a highly sensitive high-performance liquid chromatography-tandem mass spectrometry method, we report that highly purified recombinant sGC of rat possesses nucleotidyl cyclase activity. As opposed to GTP, ITP, XTP and ATP, the pyrimidine nucleotides UTP and CTP were found to be sGC substrates in the presence of Mn(2+). When Mg(2+) is used, sGC generates cGMP, cAMP, cIMP, and cXMP. In conclusion, soluble "guanylyl" cyclase possesses much broader substrate specificity than previously assumed. Our data have important implications for cyclic nucleotide-mediated signal transduction.  相似文献   

2.
Guanylyl cyclase A (GCA) and soluble guanylyl cyclase (sGC) encode GCs in Dictyostelium and have a topology similar to 12-transmembrane and soluble adenylyl cyclase, respectively. We demonstrate that all detectable GC activity is lost in a cell line in which both genes have been inactivated. Cell lines with one gene inactivated were used to characterize the other guanylyl cyclase (i.e. GCA in sgc(minus sign) null cells and sGC in gca(minus sign) null cells). Despite the different topologies, the enzymes have many properties in common. In vivo, extracellular cAMP activates both enzymes via a G-protein-coupled receptor. In vitro, both enzymes are activated by GTPgammaS (K(a) = 11 and 8 microm for GCA and sGC, respectively). The addition of GTPgammaS leads to a 1.5-fold increase of V(max) and a 3.5-fold increase of the affinity for GTP. Ca(2+) inhibits both GCA and sGC with K(i) of about 50 and 200 nm, respectively. Other biochemical properties are very different; GCA is expressed mainly during growth and multicellular development, whereas sGC is expressed mainly during cell aggregation. Folic acid and cAMP activate GCA maximally about 2.5-fold, whereas sGC is activated about 8-fold. Osmotic stress strongly stimulates sGC but has no effect on GCA activity. Finally, GCA is exclusively membrane-bound and is active mainly with Mg(2+), whereas sGC is predominantly soluble and more active with Mn(2+).  相似文献   

3.
A new Dictyostelium discoideum cyclase gene was identified that encodes a protein (sGC) with 35% similarity to mammalian soluble adenylyl cyclase (sAC). Gene disruption of sGC has no effect on adenylyl cyclase activity and results in a >10-fold reduction in guanylyl cyclase activity. The scg- null mutants show reduced chemotactic sensitivity and aggregate poorly under stringent conditions. With Mn(2+)/GTP as substrate, most of the sGC activity is soluble, but with the more physiological Mg(2+)/GTP the activity is detected in membranes and stimulated by GTPgammaS. Unexpectedly, orthologues of sGC and sAC are present in bacteria and vertebrates, but absent from Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana and Saccharomyces cerevisiae.  相似文献   

4.
Amoeba of Dictyostelium discoideum show a rapid, transient cGMP synthesis in response to chemotactic stimulation. Using Mg(2+)-GTP as a substrate, guanylate cyclase (E.C. 4.6.1.2.) activity is found exclusively in the particulate fraction of Dictyostelium cells. Here we show that the activity is dependent on the presence of the non-hydrolysable GTP-analogue GTP gamma S, which itself is only a poor substrate for the enzyme under the prevailing conditions. Evidence is presented that a transient exposure of the enzyme to GTP gamma S is sufficient to constitutively activate the enzyme. GTP gamma S-dependent activity is found to require a factor that can be separated from the enzyme by washing the particulate fraction with low salt buffer. Addition of the soluble cell fraction to these washed membranes restores enzyme activity.  相似文献   

5.
Guanylate cyclase activities were identified in a soluble fraction and a particular fraction obtained from the Arteria coronaria of cattle. The Km-value was 1.0 +/- 0.7 - 10(-4) M for the enzyme substrate complex of the guanylate cyclase of the soluble fraction and 9.2 +/- 1.5 - 10(-4) M for the particular fraction. For the enzyme activity of the soluble fraction Mn++ cannot be replaced by Ca++ or Mg++, whereas for the enzyme activity of the particulate fraction Mn++ can be replaced by Mg++ but not by Ca++. The guanylate cyclase of the particulate fraction can be activated by acetylcholine. This activation can be cancelled by atropine. Acetylcholine exerts no influence on the guanylate cyclase activity of the soluble fraction. ATP inhibits the enzyme activities of both fractions whereas cAMP shows no influence on the guanylate cyclase activity.  相似文献   

6.
In Dictyostelium, chemoattractants induce a fast cGMP response that mediates myosin filament formation in the rear of the cell. The major cGMP signaling pathway consists of a soluble guanylyl cyclase sGC, a cGMP-stimulated cGMP-specific phosphodiesterase, and the cGMP-target protein GbpC. Here we combine published experiments with many unpublished experiments performed in the past 45 years on the regulation and function of the cGMP signaling pathway. The chemoattractants stimulate heterotrimeric Gαβγ and monomeric Ras proteins. A fraction of the soluble guanylyl cyclase sGC binds with high affinity to a limited number of membrane binding sites, which is essential for sGC to become activated by Ras and Gα proteins. sGC can also bind to F-actin; binding to branched F-actin in pseudopods enhances basal sGC activity, whereas binding to parallel F-actin in the cortex reduces sGC activity. The cGMP pathway mediates cell polarity by inhibiting the rear: in unstimulated cells by sGC activity in the branched F-actin of pseudopods, in a shallow gradient by stimulated cGMP formation in pseudopods at the leading edge, and during cAMP oscillation to erase the previous polarity and establish a new polarity axis that aligns with the direction of the passing cAMP wave.  相似文献   

7.
Hydroxylamine actived guanylate cyclase in particulate fraction of cerebral cortex of rat. Activation was most remarkable in crude mitochondrial fraction. When the crude mitochondrial fraction was subjected to osmotic shock and fractionated, guanylate cyclase activity recovered in the subfractions as assayed with hydroxylamine was only one-third of the starting material. Recombination of the soluble and the particulate fractions, however, restored guanylate cyclase activity to the same level as that of the starting material. When varying quantities of the particulate and soluble fractions were combined, enzyme activity was proportional to the quantity of the soluble fraction. Heating of the soluble or particulate fraction at 55 degrees for 5 min inactivated guanylate cyclase. The heated particulate fraction markedly activated guanylate cyclase activity in the native soluble fraction, while the heated soluble fraction did not stimulate enzyme activity in the particulate. The particulate fraction preincubated with hydroxylamine at 37 degrees for 5 min followed by washing activated guanylate cyclase activity in the soluble fraction in the absence of hydroxylamine. Further fractionation of the crude mitochondrial fraction revealed that the factor(s) needed for the activation by hydroxylamine is associated with the mitochondria. The mitochondrial fraction of cerebral cortex activated guanylate cyclase in supernatant of brain, liver, or kidney in the presence of hydroxylamine. The mitochondrial fraction prepared from liver or kidney, in turn, activated soluble guanylate cyclase in brain. Activation of guanylate cyclase by hydroxylamine was compared with that of sodium azide. Azide activated guanylate cyclase in the synaptosomal soluble fraction, while hydroxylamine inhibited it. The particulate fraction preincubated with azide followed by washing did not stimulate guanylate cyclase activity in the absence of azide. The activation of guanylate cyclase by hydroxylamine is not due to a change in the concentration of the substrate GTP, Addition of hydroxylamine did not alter the apparent Km value of guanylate cyclase for GTP. Guanylate cyclase became less dependent on manganese in the presence of hydroxylamine. Thus the activation of guanylate cyclase by hydroxylamine is due to the change in the Vmax of the reaction.  相似文献   

8.
Protein kinase activities were identified in a soluble and a particulate fraction from the A. coronaria of cattle. For both protein kinase activities Mg++ is essential. Protamine was used as a substrate of the protein kinase activity of the soluble fraction. The pH optimum of the protein kinase activity of the soluble fraction is around 6.5. The Km-value of the protein kinase for ATP is 1.9 +/- 0.4 - 10(-5) M. cAMP stimulates the protein kinase activity more effectively than cGMP. Ca++ cannot replace Mg++; monovalent cations (Na+ and K+) show no influence. The protein kinase activity of the fraction was determined via endogenous phosphorylation. By means of the cAMP-dependent particulate protein kinase 72 to 80 percent of the serine residues are phosphorylated. The pH optimum of the protein kinase activity of the particulate fraction lies around 7.0. The Km-value of the enzyme for ATP is 6.6 +/- 0.8 - 10(-5) M. cGMP stimulates the protein kinase of the particulate fraction better than cAMP. For the protein kinase activity of this fraction Ca++ replaces Mg++ in the endogenous phosphorylation but not in the exogenous phosphorylation (protamine). In the presence of Mg++ and in the additional presence of Na+ or K+, the protein kinase activity is suppressed in the endogenous phosphorylation whereas it is stimulated in the exogenous phosphorylation.  相似文献   

9.
The mechanism of desensitization of the nitric oxide (NO) receptor (alpha1.beta1 isoform of soluble guanylyl cyclase, sGC) is not known. Models of the structure of alpha1.beta1, based on the x-ray crystal structure of adenylyl cyclase (AC) suggest the existence of a nucleotide-like binding site, in addition to the putative catalytic site. We have previously reported that mutating residues that coordinate Mg(2+)GTP (substrate) binding in alpha1.beta1 into those present in AC fully reverts GC activity to AC activity. The wild-type form of alpha1.beta1 (GC-wt) and the mutant form (AC-mut, alpha1R592Q.beta1E473K,C541D) were purified, and their sensitivities to various nucleotides were assessed. In using the AC-mut as well as other mutants that coordinate purine binding, we were able to distinguish allosteric inhibitory effects of guanine nucleotides from competitively inhibitory effects on catalytic activity. Here we report that several nucleotide analogs drastically alter sGC and AC-mut activity by acting at a second nucleotide site, likely pseudosymmetric to the catalytic site. In particular, Mg(2+)GTP gamma S and Mg(2+)ATP gamma S inhibited cyclase activity through a mixed, non-competitive mechanism that was only observable under NO stimulation and not under basal conditions. The non-competitive pattern of inhibition was not present in mutants carrying the substitution beta1D477A, the pseudosymmetric equivalent to alpha1D529 (located in the substrate-binding site and involved in substrate binding and catalysis), or with the double mutations alpha1E525K,C594D, the pseudosymmetric equivalent to beta1E473K,C541D. Taken together these data suggest that occupation of the second site by nucleotides may underlie part of the mechanism of desensitization of sGC.  相似文献   

10.
P A Craven  F R DeRubertis 《Biochemistry》1976,15(23):5131-5137
The properties of the guanylate cyclase systems of outer and inner medulla of rat kidney were examined and compared with those of the renal cortex. A gradation in steady-state cyclic guanosine 3',5'-monophosphate (cGMP) levels was observed in incubated slices of these tissues (inner medula greater than outer medulla greater than cortex). This correlated with the proportion of total guanyl cyclase activity in the 100 000 g particulate fraction of each tissue, but was discordant with the relative activities of guanylate cyclase (highest in cortex) and of cGMP-phosphodiesterase (lowest in cortex) in whole tissue homogenates. Soluble guanylate cyclase of cortex and inner medulla exhibited typical Michaelis-Menten kinetics with an apparent Km for MnGTP of 0.11 mM, while the particulate enzyme from inner medulla exhibited apparent positive cooperative behavior and a decreased dependence on Mn2+. Thus, the particulate enzyme could play a key role in regulating cGMP levels inthe intact cell where Mn2+ concentrations are low. The soluble and particulate enzymes from inner medulla were further distinguished by their responses to several test agents. The soluble enzyme was activated by Ca2+, NaN3, NaNo2 and phenylhydrazine, whereas particulate activity was inhibited by Ca2+ and was unresponsive to the latter agents. In the presence of NaNo2, Mn2+ requirement of the soluble enzyme was reduced and equivalent to that of the particulate preparation. Moreover, relative responsiveness of the sollble enzyme to NaNO2 was potentiated when Mg2+ replaced Mn2+ as the sole divalent cation. These changes in metal requirements may be involved in the action of NaNO2 to increase cGMP in intact kidney. Soluble guanylate cyclase of cortex was clearly more responsive to stimulation by NaN3, Nano2, and phenylhydrazine that was soluble activity from either medullary tissue. The effectiveness of the agonists on soluble activity from outer and inner medulla cound also be distinguished. Accordingly, regulation and properties of soluble guanylate cyclase, as well as subcellular enzyme distribution, and distinct in the three regions of the kidney.  相似文献   

11.
1. The activities of the enzymes involved in the metabolism of cyclic nucleotides were studied in sarcolemma prepared front guinea-pig heart ventricle; the enzyme activities reported here were linear under the assay conditions. 2. Adenylate cyclase was maximally activated by 3mM-NaF; NaF increased the Km for ATP (from 0.042 to 0.19 mM) but decreased the Ka for Mg2+ (from 2.33 to 0.9 mM). In the presence of saturating Mg2+ (15 mM), Mn2+ enhanced adenylate cyclase, whereas Co2+ was inhibitory. beta-Adrenergic amines (10-50 muM) stimulated adenylate cyclase (38+/-2%). When added to the assay mixture, guanyl nucleotides (GTP and its analogue, guanylyl imidophosphate) stimulated basal enzyme activity and enhanced the stimulation by isoproterenol. By contrast, preincubation of sarcolemma with guanylyl imidodiphosphate stimulated the formation of an 'activated' form of the enzyme, which did not reveal increased hormonal sensitivity. 3. The guanylate cyclase present in the membranes as well as in the Triton X-100-solubilized extract of membranes exhibited a Ka for Mn 2+ of 0.3 mM; Mn2+ in excess of GTP was required for maximal activity. Solubilized guanylate cyclase was activated by Mg2+ only in the presence of low Mn2+ concentrations; Ca2+ was inhibitory both in the absence and presence of low Mn2+. Acetylcholine as well as carbamolycholine stimulated membrane-bound guanylate cyclase. 4. Cylic nucleotide phosphodiesterase activities of sarcolemma exhibited both high-and low-Km forms with cyclic AMP and with cyclic GMP as substrate. Ca2+ ions increased the Vmax. of the cyclic GMP-dependent enzyme.  相似文献   

12.
Nitric oxide (NO) is a key mediator in many physiological processes and one of the major receptors through which NO exerts its effects is soluble guanylyl cyclase. Guanylyl cyclase converts GTP to cyclic GMP as part of the cascade that results in physiological processes such as smooth muscle relaxation, neurotransmission, inhibition of platelet aggregation and immune response. The properties of A-350619, a novel soluble guanylyl cyclase activator, were examined to determine the modulatory effect on the catalytic properties of soluble guanylyl cyclase. A-350619 increased V(max) from 0.1 to 14.5 micromol/min/mg (145 fold increase), and lowered K(m) from 300 to 50 microM (6 fold decrease). When YC-1 (another sGC activator) and A-350619 were combined, a 156 fold increase in V(max) and a 5 fold decrease in Km were observed, indicating that the modulation of the enzyme brought about by YC-1 and A-350619 are not additive, suggesting a common binding site. Activation of soluble guanylyl cyclase by A-350619 was partially inhibited by ODQ, a specific inhibitor of soluble guanylyl cyclase by oxidation of the enzyme heme. YC-1 and A-350619 after pre-treatment with N-omega-nitro-L-arginine, an NO-synthase inhibitor, relaxed cavernosum tissue strips in a dose-dependent manner with EC(50) of 50 microM and 80 microM, respectively. Addition of SNP potentiated the relaxation effect of YC-1 and A-350619, shifting the dose-response curve to the left to 3 microM and 10 microM, respectively. Consistent with its biochemical activity, A-350619 (1 micromol/kg) alone induced penile erection in a conscious rat model. Activation of soluble guanylyl cyclase in cavernosum tissue as an alternate method of enhancing the effect of NO may provide a novel treatment of sexual dysfunction.  相似文献   

13.
The guanine base is prone to oxidation by free radicals regardless of the cellular moiety it is bound to. However, under conditions of oxidative stress, 8-oxoguanosine triphosphate (oxo8GTP) formation has been shown to occur without oxidation of the guanine base in DNA. In vitro studies have suggested that oxo8GTP could impact G-protein signaling and RNA synthesis. Whether increased levels of oxo8GTP translate into cellular malfunction is unknown. Data presented herein show that oxo8GTP is formed in cell-free preparations as well as in PC12 cells after exposure to physiologically relevant oxidative conditions generated with 10 μM copper sulfate and 1 mM l-ascorbic acid (Cu/Asc). We also determined that oxo8GTP has biological activity as a potent inhibitor of nitric oxide-stimulated soluble guanylyl cyclase (sGC). The increase in oxo8GTP formation in purified GTP and PC12 cells exposed to Cu/Asc caused a significant reduction in the product of sGC activity, cGMP. This oxidation of GTP was attenuated by the addition of reduced glutathione under these same Cu/Asc conditions, thus preventing the decrease in sGC activity. This suggests that oxo8GTP is produced by free radicals in vivo and could have significant impact on cell functions regulated by sGC activity such as synaptic plasticity in the central nervous system.  相似文献   

14.
Rat lung homogenates contained significant amounts of guanylate cyclase activity in both 100,000 times g (60 min) particulate and supernatant fractions. In the presence of detergent, the particulate fraction contained 40% as much activity as did the supernatant fraction. Detergent-dispersed particulate and partially purified soluble guanylate cyclase preparations were characterized with respect to divalent cation requirements, divalent cation interactions, kinetic behavior, and gel filtration profiles. Both soluble and particulate guanylate cyclases required divalent cation for activity. The soluble preparation was 10 times more active in the presence of Mn-2plus than in the presence of Mg-2plus or Ca-2plus and no detectable activity was seen with Ba-2plus or Sr-2plus. Particulate guanylate cyclase activity was detectable only in the presence of Mn-2plus. Both enzyme preparations required Mn-2plus in excess of GTP for optimal activity at subsaturating amounts of GTP. At near-saturating GTP, the soluble enzyme required excess Mn-2plus, but the particulate enzyme did not. For kinetic analyses the enzymes were considered to require two substrates: metal-GTP and Me-2plus. Apparent negative cooperative behavior was seen with the soluble enzyme when excess Mn-2plus (in excess of GTP) was varied from 0.01 to 0.2 mM; above 0.2 mM excess Mn-2plus classical kinetic behavior was seen with an apparent KMn-2plus of 0.2 mM at near-saturating MnGTP. Similar studies using the particulate preparation yielded only classical kinetic behavior, but the apparent KMn-2plus decreased to near zero when MnGTP was near-saturating. Kinetic patterns for the particulate and soluble enzymes also differed when reciprocal initial velocities were plotted as a function of reciprocal MnGTP concentrations; classical kinetic behavior was seen with the soluble enzyme with an apparent KMnGTP of about 12 muM (at near-saturating excess Mn-2plus), whereas apparent positive cooperative behavior was seen with the particulate preparation (Hill coefficient equals 1.6, S0.5 EQUALS 70 MUM. Ca-2plus "activation" of soluble guanylate cyclase was related to the Mn-2plus:GTP ratio. Activation was most apparent when saturating amounts of Mn-2plus and MnGTP. At relatively high concentrations of Ca-2plus (0.1 to 4 mM), the addition of 10 muM Mn-2plus resulted in a 3- to 5-fold increase in soluble guanylate cyclase activity. In contrast, Ca-2plus sharply inhibited particulate guanylate cyclase activity. Gel filtration profiles of particulate and soluble preparations indicated differences in physical properties of the enzymes. As estimated by gel filtration, particulate (detergent-dispersed)evels. Here, removal of renal tissue is contraindicated. In all renal hy  相似文献   

15.
Nitric oxide (NO) is a ubiquitous, cell-permeable intercellular messenger. The current concept assumes that NO diffuses freely through the plasma membrane into the cytoplasm of a target cell, where it activates its cytosolic receptor enzyme, soluble guanylyl cyclase (sGC). Recent evidence, however, suggests that cellular membranes are not only the predominant site of calcium-dependent NO synthesis, but also the site of its distribution and binding. Here we extend this concept to NO signalling to show that active sGC is partially associated with the plasma membrane in a state of enhanced NO sensitivity. After cellular activation, sGC further translocates to the membrane fraction in human platelets and associates with the NO-synthase-containing caveolar fraction in rat lung endothelial cells, in a manner that is dependent on the concentration of intracellular calcium. Our data suggest that the entire NO signalling pathway is more spatially confined than previously assumed and that sGC dynamically translocates to the plasma membrane, where it is sensitized to NO.  相似文献   

16.
17.
The subcellular localization of guanylate cyclase was examined in rat liver. About 80% of the enzyme activity of homogenates was found in the soluble fraction. Particulate guanylate cyclase was localized in plasma membranes and microsomes. Crude nuclear and microsomal fractions were applied to discontinuous sucrose gradients, and the resulting fractions were examined for guanylate cyclase, various enzyme markers of cell components, and electron microscopy. Purified plasma membrane fractions obtained from either preparation had the highest specific activity of guanylate cyclase, 30 to 80 pmol/min/mg of protein, and the recovery and relative specific activity of guanylate cyclase paralleled that of 5'-nucleotidase and adenylate cyclase in these fractions. Significant amounts of guanylate cyclase, adenylate cyclase, 5'-nucleotidase, and glucose-6-phosphatase were recovered in purified preparation of microsomes. We cannot exclude the presence of guanylate cyclase in other cell components such as Golgi. The electron microscopic studies of fractions supported the biochemical studies with enzyme markers. Soluble guanylate cyclase had typical Michaelis-Menten kinetics with respect to GTP and had an apparent Km for GTP of 35 muM. Ca-2+ stimulated the soluble activity in the presence of low concentrations of Mn-2+. The properties of guanylate cyclase in plasma membranes and microsomes were similar except that Ca-2+ inhibited the activity associated with plasma membranes and had no effect on that of microsomes. Both particulate enzymes were allosteric in nature; double reciprocal plots of velocity versus GTP were not linear, and Hill coefficients for preparations of plasma membranes and microsomes were calculated to be 1.60 and 1.58, respectively. The soluble and particulate enzymes were inhibited by ATP, and inhibition of the soluble enzyme was slightly greater. While Mg-2+ was less effective than Mn-2+ as a sole cation, all enzyme fractions were markedly stimulated with Mg-2+ in the presence of a low concentration of Mn-2+. Triton X-100 increased the activity of particulate fractions about 3- to 10-fold and increased the soluble activity 50 to 100%.  相似文献   

18.
19.
We describe the development of a rapid colorimetric assay for soluble guanylate cyclase (sGC) activity adapted for a 96-well microplate. The assay greatly decreases the analysis time and cost over traditional methodologies based on radio- and immunoassays and high-performance liquid chromatography (HPLC) separations. The method does not demonstrate any significant interference with chemicals commonly used for sGC purification and reaction kinetics. The assay converts the inorganic pyrophosphate produced in the cyclase reaction to inorganic phosphate, which is then measured using a modified Fiske-Subbarow assay. We used the assay to compare the reaction kinetics of preparations of sGC from a commercial source with those from our lab with Mg(2+)-guanosine 5'-triphosphate (GTP) or Mn(2+)-GTP as a substrate. The commercial preparation was found to have a specific activity of around 1.5 micromol/min/mg, which is significantly lower than expected, as was the fold-activation upon addition of nitric oxide (NO). Our laboratory preparation had a higher specific activity that was consistent with results from HPLC assays. We determined that the human isoform of sGC is more active in the basal and NO forms with Mn(2)-GTP as a substrate than Mg(2+)-GTP, a feature more similar to rat lung sGC than the more commonly studied bovine lung.  相似文献   

20.
We utilized rat fetal lung fibroblasts (RFL-6) to evaluate our PDE5 inhibitors at cellular level and observed a decrease in cGMP accumulation induced by sodium nitroprusside (SNP) and PDE5 inhibitors with passage. To further investigate this observation, we examined cGMP synthesis via soluble guanylyl cyclase (sGC) and degradation via phosphodiesterases (PDEs) at different passages. At passage (p)4, p9, p14, major cGMP and cAMP degradation activities were contributed by PDE5 and PDE4, respectively. The PDE5 activity decreased 50% from p4 to p14, while PDE4 activity doubled. The cGMP accumulation was evaluated in the presence of sodium nitroprusside (SNP) and/or PDE inhibitors in p4 and p14 cells. SNP together with sildenafil, a PDE5 inhibitor, induced dose-dependent increase in cGMP levels in cells at p4, but showed little effect on cells at p14. The possible down regulation of sGC at mRNA level was explored using real-time RT-PCR. The result showed the mRNA level of the alpha1 subunit of sGC decreased about 98% by p9, while the change on beta1 mRNA was minimal. Consistently, sGC activities in cell lysate decreased by 94% at p9. Forskolin stimulated a dramatic increase in cAMP levels in cells at all passages examined. Our results show that sGC activity decreased significantly and rapidly with passage due to a down regulation of the alpha1 subunit mRNA, yet the adenylyl cyclase activity was not compromised. This study further emphasized the importance of considering passage number when using cell culture as a model system to study NO/cGMP pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号