首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 827 毫秒
1.
2.
Self-transmissible plasmids carryinghis andnif genes fromKlebsiella pneumoniae have been introduced into threehis mutants ofProteus mirabilis: strains 5006-1, WR19 and WR20. Expression ofhis by the transconjugants was unequivocal, if slightly temperature-sensitive, but none was Nif+ when tested for acetylene reduction in anaerobic glucose medium using inocula from rich or glucose-minimal aerobic agar cultures. Succinate or pyruvate in place of glucose, low glucose, lower temperature or elevated Na2MoO4 did not allownif expression and no nitrogenase MoFe-protein peptide was detected immunologically after exposure to conditions in which diazotrophic enterobacteria, normal or genetically constructed, derepressnif.One strain,P. mirabilis WR19, carrying thehis nif Kmr plasmid pMF250 was examined in detail. Thenif activator genenifA was introduced on the plasmid pCK1. Such derivatives remained Nif- when tested, after aerobic growth on rich agar media, with normal or low glucose, with succinate or with elevated Mo. However, pre-conditioning by aerobic growth on glucose-minimal agar led to subsequent anaerobic expression ofnif in glucose medium from pMF250 in WR19 carrying pCK1. NH 4 + or proline could serve as N-source in the glucose-minimal agar. Maximum activity was about 5% of that ofK. pneumoniae in our assay conditions. Material cross-reacting with anti-serum to the nitrogenase MoFe protein was formed. Nitrogenase activity was not switched off by NH 4 + .P. mirabilis WR19 (pCK1) showed NH 4 + -constitutive temperature-sensitive kanamycin resistance (anif-related phenotype of this plasmid) in aerobic glucose minimal medium. Expression ofnif inP. mirabilis WR19 (pCK1, pMF250) was NH 4 + -repressible despite the constitutivenifA character of pCK1 and introduction of thentrA + plasmid pMM17 did not alter this phenotype. However, pCK1 did not give rise to NH 4 + -constitutive diazotrophy in the wild-typeK. pneumoniae M5al. A construct of WR19 carrying pMF250 and constitutiventrC plasmid (pMD45) remained Nif- even after pre-growth on glucose-minimal media.We conclude (a) thatP. mirabilis forms a gene product functionally equivalent to that ofntrA inK. pneumoniae, (b) that it forms no functional equivalent of thentrC product in our growth conditions. The need for pre-conditioning on aerobic glucose media remains perplexing.Non-common abbreviation NFDM Nitrogen-free-Davis-Mingioli medium  相似文献   

3.
[目的]来自Paenibacillus polymyxa WLY78的固氮基因簇(nifBHDKEfNXhesAnifV)可以转化入Escherichia coli中表达并使重组大肠杆菌合成有固氮活性的固氮酶。本文拟通过对重组大肠杆菌E.coli 78-7的转录组分析以提高其固氮能力。[方法]对固氮条件(无氧无NH4+)和非固氮条件(空气和100 mmol/L NH4+)培养的重组大肠杆菌E.coli 78-7进行转录组分析。[结果]nif基因在两种培养条件下显著表达,说明在重组大肠杆菌中可规避原菌中氧气和NH4+nif基因的负调控。对于固氮过程必需的非nif基因,如参与钼、硫、铁元素转运的modcysfeoAB,这些基因在两种培养条件下表达水平有差异。而参与铁硫簇合成的sufisc基因簇在两条件下表达水平差异巨大。此外,参与氮代谢的基因在固氮条件下显著上调。[结论]重组大肠杆菌中与固氮相关的非nif基因在该菌的固氮过程中具有较大影响,本文对在异源宿主中调高固氮酶活性研究具有重要意义。  相似文献   

4.
Summary Labeled probes carrying the Anabaena PCC 7120 nitrogenase (nifK and nifD) and nitrogenase reductase (nifH) genes were hybridized to Southern blots of DNA from diverse N2-fixing cyanobacteria in order to test a previous observation of different nif gene organization in nonheterocystous and heterocystous strains. The nif probes showed no significant hybridization to DNA from a unicellular cyanobacterium incapable of N2 fixation. All nonheterocystous cyanobacteria examined (unicellular and filamentous) had a contiguous nifKDH gene cluster whereas all of the heterocystous strains showed separation of nifK from contiguous nifDH genes. These findings suggest that nonheterocystous and heterocystous cyanobacteria have characteristic and fundamentally different nif gene arrangements. The noncontiguous nif gene pattern, as shown with two Het- mutants, is independent of phenotypic expression of heterocyst differentiation and aerobic N2-fixation. Thus nif arrangement could be a useful taxonomic marker to distinguish between phenotypically Het- heterocystous cyanobacteria and phylogenetically unrelated nonheterocystous strains.  相似文献   

5.
Hierarchical clustering and similarity coefficients of pairwise alignments of the published nucleotide sequences of 27nifH genes suggest thatnif genes are as ancient as the archaebacteria and clostridia. The positions ofnifHl ofMethanococcus thermolithotrophicus, nifH3 ofClostridium pasteurianum, nifH3 ofAzotobacter vinelandii andnifH ofFrankia suggest that a variety of lateral transfers may have occurred during evolution ofnifH gene. The genes for type 3 nitrogenase ofA. vinelandii may have diverged early from methanogens and clostridia. A high similarity coefficient with the derived amino acid sequence of type 3 nitrogenase suggests the presence of a functionally similar enzyme inC. pasteurianum. The type 2 nitrogenase genenifH2 of azotobacters seems to have originated recently from the genenifHl for conventional type I nitrogenase. RhizobialnifH genes comprise two closely related but discrete clusters that are in consonance with the plasmid or chromosomal location ofnif genes. The chromosomal and plasmid locatednifH of rhizobia seem to have evolved independently but contemporaneously.  相似文献   

6.
A small plasmid containing the entire nif gene cluster of Enterobacter agglomerans 333 as an excisable cassette has been constructed, using pACYC177 as a vector. Two cosmid clones taken from a gene library of E. agglomerans plasmid pEA3 were used as a source of nif genes. A SmaI fragment of peaMS2-2, containing the H,D,K,Y,E,N,X,U,S,V,W,Z,M,L,A and B genes and an ApaI fragment of peaMS2-16 containing nifA,B,Q,F and J were selected to construct pMH2. The resulting plasmid of 33 kb carries the complete nif gene cluster as a nif cassette on a single XbaI fragment. The nif construct pMH2 in Escherichia coli strains has significant nitrogenase activity compared to wild-type E. agglomerans 333. The nif gene cluster construct was found to be very stable.  相似文献   

7.
To identify Rhodobacter capsulatus nif genes necessary for the alternative nitrogenase, strains carrying defined mutations in 32 genes and open reading frames of nif region A, B or C were constructed. The ability of these mutants to grow on nitrogen-free medium with molybdenum (Nif phenotype) or in a nifHDK deletion background on medium without molybdenum (Anf phenotype) was tested. Nine nif genes and nif-associated coding regions are absolutely essential for the alternative nitrogenase. These genes comprise nifV and nifB, the nif-specific ntr system (nifR1, R2, R4) and four open reading frames, which exhibit no homology to known genes. In addition, a significantly reduced activity of both the alternative nitrogenase and the molybdenum-dependent nitrogenase was found for fdxN mutants. By random Tn5 mutagenesis of a nifHDK deletion strain 42 Anf? mutants were isolated. Southern hybridization experiments demonstrated that 17 of these Tn5 mutants were localized in at least 13 different restriction fragments outside of known nif regions. Ten different Anf? Tn5 mutations are clustered on a 6 kb DNA fragment of the chromosome designated anf region A. DNA sequence analysis revealed that this region contained the structural genes of the alternative nitrogenase (anfHDGK). The identification of several Tn5 insertions mapping outside of anf region A indicated that at least 10 genes specific for the alternative nitrogenase are present in R. capsulatus.  相似文献   

8.
It was known that nitrogenase genes and proteins are well conserved even though they are present in a large variety of phylogenetically diverse nitrogen fixing bacteria. This has lead to the speculation, among others, that nitrogen fixation (nif) genes were spread by lateral gene transfer relatively late in evolution. Here we report an attempt to test this hypothesis.We had previously established the complete nucleotide sequences of the three nitrogenase genes from Bradyrhizobium japonicum, and have now analyzed their homologies (or the amino acid sequence homologies of their gene products) with corresponding genes (and proteins) from other nitrogen fixing bacteria. There was a considerable sequence conservation which certainly reflects the strict structural requirements of the nitrogenase iron-sulfur proteins for catalytic functioning. Despite this, the sequences were divergent enough to classify them into an evolutionary scheme that was conceptually not different from the phylogenetic positions, based on 16S rRNA homology, of the species or genera harboring these genes. Only the relation of nif genes of slow-growing rhizobia (to which B. japonicum belongs) and fast-growing rhizobia was unexpectedly distant. We have, therefore, performed oligonucleotide cataloguing of their 16S rRNA, and found that there was indeed only a similarity of S AB=0.53 between fast- and slowgrowing rhizobia.In conclusion, the results suggest that nif genes may have evolved to a large degree in a similar fashion as the bacteria which carry them. This interpretation would speak against the idea of a recent lateral distribution of nif genes among microorganisms.  相似文献   

9.
10.
Summary Two different strains, An 1 and An 2, were obtained from root nodules ofAlnus nitida Endl., collected from one locality in the area of its natural habitat near Bahrin, District Swat, Pakistan. The light and electron microscopy of the isolates revealed the occurrence of septate and branched hyphae bearing sporangia and vesicles. The strains differed in their growth requirements, nitrogen-fixing ability and production of extracellular pigments, thus indicating the existence of more than oneFrankia strain in the same locality. In the absence of combined nitrogen in the medium strain An 1 formed vesicles and fixed N2 (up to 200 nmol C2H4. mg protein–1.h–1), while strain An 2 under the experimental conditions formed only few vesicles and fixed N2 at a very low rate (ca 10 nmol C2H4. mg protein–1 .h–1). The nitrogenase activity of strain An 1 was strongly affected by the O2 concentration.Frankia An 1 and An 2 were infective and effective onA. nitida andA. glutinosa but not onDatisca cannabina andElaeagnus umbellata. Both An 1 and An 2 strains were more infective and effective onA. glutinosa thanFrankia strains AvcIl and CpI1.  相似文献   

11.
When Azotobacter chroococcum cells grown in batch culture under N2-fixing conditions were transferred to a medium lacking a nitrogen source, the cellular C/N ratio, the amount of alginic acid released into the external medium and the rate of endogenous respiration increased appreciably after 6 h to the exclusion of dinitrogen, whereas nitrogenase activity did not undergo any significant change. Nitrogen deficiency caused a decrease in the ammonium inhibition of nitrogenase activity from 95% inhibition at zero time to 14% after 6 h incubation under dinitrogen starvation, with no difference in the rate of ammonium utilization by N2-fixing and N2-starved cells being observed. This suggests that a balance of nitrogen and carbon assimilation is necessary for the ammonium inhibition of nitrogenase activity in A. chroococcum to take place.  相似文献   

12.
Four from 18 strains of Erwinia herbicola tested had nitrogenase activity and grew with N2 as sole source of nitrogen under strict anaerobic conditions with a doubling time of 20–24 h. Nitrogenase activity started only 96–120 h after transfer to a special medium maintained under anaerobic conditions. A ten fold increase in protein per culture found after the maximum nitrogenase activity of 80–130 nmol C2H4. mg protein-1·min-1 was accompanied by a fall in pH of the medium (20 mM phosphate buffer and in 125 mM Tris-buffer) from pH 7.2 to 5.4 or less, but only to 6.8 in 100 mM phosphate buffer. In all cases we found a sharp curtailing of nitrogenase activity 48 h after the maximum. The bacteria utilized only 35–50% of the nitrogen fixed for growth. Erwinia herbicola strains differed from two strains of Enterobacter agglomerans in being unable to fix nitrogen on agar surfaces exposed to air. Specific nitrogenase activity in Erwinia herbicola is compared with data reported for other Enterobacteriaceae and is found to be higher than that reported for Klebsiella pneumoniae, Enterobacter cloacae or Citrobacter freundii.  相似文献   

13.
We examined 27 strains of chickpea rhizobia from different geographic origins for indigenous plasmids, location and organization of nitrogen fixation (nif) genes, and cultural properties currently used to separate fast- and slow-growing groups of rhizobia. By using an in-well lysis and electrophoresis procedure one to three plasmids of molecular weights ranging from 35 to higher than 380 Mdal were demonstrated in each of 19 strains, whereas no plasmids were detected in the eight remaining strains. Nitrogenase structural genes homologous to Rhizobium meliloti nifHD, were not detected in plasmids of 26 out of the 27 strains tested. Hybridization of EcoRI digested total DNA from these 26 strains to the nif probe from R. meliloti indicated that the organization of nifHD genes was highly conserved in chickpea rhizobia. The only exception was strain IC-72 M which harboured a plasmid of 140 Mdal with homology to the R. meliloti nif DNA and exhibited also a unique organization of nifHD genes. The chickpea rhizobia strains showed a wide variation of growth rates (generation times ranged from 4.0 to 14.5 h) in yeast extract-mannitol medium but appear to be relatively homogeneous in terms of acid production in this medium and acid reaction in litmus milk. Although strains with fast and slow growth rates were identified, DNA/DNA hybridization experiments using a nifHD-specific probe, and the cultural properties examined so far do not support the separation of chickpea rhizobia into two distinct groups of the classical fast- and slow-growing types of rhizobia.  相似文献   

14.
Summary The 17 kb region between the Bradyrhizobium japonicum nitrogenase genes (nifDK and nifH) was investigated for the presence of further nif or fix genes by site-directed insertion or deletion/replacement mutagenesis and interspecies hybridization. Mutant strains were tested for their ability to reduce acetylene in free-living, microaerobic culture (Nif phenotype) and in soybean root nodules (Fix phenotype). The presence of a gene, previously identified by hybridization with the Klebsiella pneumoniae nifB gene, was proved by isolation of a nifB insertion mutant which was completely Nif- and Fix-. Three other regions were found to be homologous to the K. pneumoniae genes nifE, nifN, and nifS, NifE and nifN insertion mutants were completely Nif-/Fix- whereas nifS mutants were leaky with 30% residual Fix activity. Taken together, the data show that the B. japonicum genome harbours a cluster of closely adjacent genes which are directly concerned with nitrogenase function.  相似文献   

15.
Plasmid pRD1, an R plasmid of the P incompatibility group which carries his and nif genes from Klebsiella pneumoniae in addition to drug resistance markers derived from RP4, was transferred to His- mutants of Serratia marcescens, Erwinia herbicola and Proteus mirabilis. His+ transconjugants were obtained at low but different frequencies according to recipient genus. Transconjugants all acquired the drug resistance, and were Nif+ in S. marcescens and E. herbicola, having acetylene-reducing activities of the same order of magnitude as the parent K. pneumoniae and fixing 15N2. No evidence for nif expression in P. mirabilis transconjugants was obtained though the nif genes were present.  相似文献   

16.
17.
The production of biomass, polysaccharide storage material and H2 from malate was studied in the wild-type and mutants RdcI, RdcII and RdcI/cII of Rhodobacter capsulatus. The mutants are defective in either copy I, copy II or both copies of the nitrogenase genes nifA and nifB. Stationary phase levels of biomass, polysaccharide and H2 were determined in phototrophic batch cultures grown with 30 mM of d,l-malate and either 2, 5, or 8 mM of ammonium or 7 mM of glutamate. Calculation of the amounts of malate converted into the three products revealed that, at 8 mM of ammonium and 7 mM of glutamate, malate consumption and product formation were balanced. But with decreasing ammonium concentrations malate not converted into biomass was utilized with decreasing efficiency in polysaccharide and H2 formation. This suggests formation of unknown products at the lower ammonium concentrations. Under conditions of optimal N supply, 80% of the malate not used for biomass production was converted by the wild-type and strain RdcII to H2 and CO2. Mutant RdcI exhibited slightly decreased H2 production. The double mutant did not evolve H2 but accumulated increased amounts of polysaccharide. However, the amounts of polysaccharide were lower than should be expected if all of the spare malate, not utilized by the double mutant for H2 production, was converted into storage material. This and incomplete conversion of malate into known products at low ammonium supplies suggests that polysaccharide accumulation does not compete with the process of H2 formation for malate.  相似文献   

18.
Five strains of heterocystous blue-green algae capable of high rates of growth and nitrogenase activity were isolated from shallow coastal environments. Growth of the organisms was characterized with respect to temperature, NaCl concentration in the medium, and nitrogen source. The temperature optima ranged from 35–42°C, and all but one of the strains displayed a requirement for added NaCl. The generation times under N2-fixing conditions were 5.1–5.9 h, and were as low as 3.4 h for growth on NH4Cl. Nitrogenase activity (C2H2 reduction) was high throughout the logarithmic growth phase of each strain. The maximum value observed for one strain was 65.5 nmoles C2H4 produced/mg protein x min, and the average values for the five strains ranged from 24.5–46.7 nmoles C2H4/mg protein x min. The organisms all belong to the genusAnabaena. The growth and nitrogenase activity of these strains are much higher than those of the heterocystous blue-green algae commonly used for investigation of nitrogen metabolism, and they thus should prove to be useful physiological tools. Their prevalence, as judged by the ease of their enrichment and isolation, in bay and estuarine environments suggests that they are important contributors of combined nitrogen.  相似文献   

19.
The sizes of endonuclease digestion fragments of DNA from cyanobacteria in symbiotic association with Azolla caroliniana or Anthoceros punctatus, or in free-living culture, were compared by Southern hybridization using cloned nitrogenase (nif) genes from Anabaena sp. PCC 7120 as probes. The restriction fragment pattern produced by cyanobacteria isolated from A. caroliniana by culture through symbiotic association with Anthoceros differed from that of the major symbiotic cyanobacterium freshly separated from A. caroliniana. The results indicate that minor cyanobacterial symbionts occur in association with Azolla and that the dominant symbiont was not cultured in the free-living state. Both the absence of hybridization to an xisA gene probe and the mapping of restriction fragments indicated a contiguous nifHDK organization in all cells of the symbiont in association with Azolla. On the other hand, in the cultured isolate from Azolla and in Nostoc sp. 7801, the nifD and nifK genes are nominally separated by an interval of unknown length, compatible with the interruption of the nifHDK operon by a DNA element as observed in Anabaena sp. PCC 7120. In the above cultured strains, restriction fragments consistent with a contiguous nifHDK operon were also present at varying hybridization intensities, especially in Nostoc sp. 7801 grown in association with Anthoceros, presumably due to gene rearrangement in a fraction of the cells.Non-standard abbreviations bp base pairs - kb kilobase pairs - kd kilodaltons  相似文献   

20.
A pot experiment was conducted in the green house to investigate the establishment of phosphate solubilizing strains of Azotobacter chroococcum, including soil isolates and their mutants, in the rhizosphere and their effect on growth parameters and root biomass of three genetically divergent wheat cultivars (Triticum aestivum L.). Five fertilizer treatments were performed: Control, 90 kg N ha—1, 90 kg N + 60 kg P2O5 ha—1, 120 kg N ha—1 and 120 kg N + 60 kg P2O5 ha—1. Phosphate solubilizing and phytohormone producing parent soil isolates and mutant strains of A. chroococcum were isolated and selected by an enrichment method. In vitro phosphate solubilization and growth hormone production by mutant strains was increased compared with soil isolates. Seed inoculation of wheat varieties with P solubilizing and phytohormone producing A. chroococcum showed better response compared with controls. Mutant strains of A. chroococcum showed higher increase in grain (12.6%) and straw (11.4%) yield over control and their survival (12—14%) in the rhizosphere as compared to their parent soil isolate (P4). Mutant strain M37 performed better in all three varieties in terms of increase in grain yield (14.0%) and root biomass (11.4%) over control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号