首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
3-Hexulose phosphate synthase and phospho-3-hexuloisomerase were purified 40- and 150-fold respectively from methane-grown Methylococcus capsulatus. The molecular weights of the enzymes were approximately 310000 and 67000 respectively, as determined by gel filtration. Dissociation of 3-hexulose phosphate synthase into subunits of molecular weight approx. 49000 under conditions of low pH or low ionic strength was observed. Within the range of compounds tested, 3-hexulose phosphate synthase is specific for formaldehyde and d-ribulose 5-phosphate (forward reaction) and d-arabino-3-hexulose 6-phosphate (reverse reaction), and phospho-3-hexuloisomerase is specific for d-arabino-3-hexulose 6-phosphate (forward reaction) and d-fructose 6-phosphate (reverse reaction). A bivalent cation is essential for activity and stability of 3-hexulose phosphate synthase; phospho-3-hexuloisomerase is inhibited by many bivalent cations. The pH optima of the two enzymes are 7.0 and 8.3 respectively and the equilibrium constants are 4.0x10(-5)m and 1.9x10(2)m respectively. The apparent Michaelis constants for 3-hexulose phosphate synthase are: d-ribulose 5-phosphate, 8.3x10(-5)m; formaldehyde, 4.9x10(-4)m; d-arabino-3-hexulose 6-phosphate, 7.5x10(-5)m. The apparent Michaelis constants for phospho-3-hexuloisomerase are: d-arabino-3-hexulose 6-phosphate, 1.0x10(-4)m; d-fructose 6-phosphate, 1.1x10(-3)m.  相似文献   

2.
The hexose phosphate synthetase of Methylococcus capsulatus.   总被引:1,自引:0,他引:1  
  相似文献   

3.
A cytochrome aa 3-type oxidase was isolated with and without a c-type cytochrome (cytochrome c-557) from Methylococcus capsulatus Bath by ion-exchange and hydrophobic chromatography in the presence of Triton X-100. Although cytochrome c-557 was not a constitutive component of the terminal oxidase, the cytochrome c ascorbate-TMPD oxidase activity of the enzyme decreased dramatically when the ratio of cytochrome c-557 to heme a dropped below 1:3. On denaturing gels, the purified enzyme dissociated into three subunits with molecular weights of 46,000, 28,000 and 20,000. The enzyme contains two heme groups (a and a 3), absorption maximum at 422 nm in the resting state, at 445 and 601 nm in the dithionite reduced form and at 434 and 598 nm in the dithionite reduced plus CO form. Denaturing gels of the cytochrome aa 3-cytochrome c-557 complex showed the polypeptides associated with cytochrome aa 3 plus a heme c-staining subunit with a molecular weight of 37,000. The complex contains approximately two heme a, one heme c, absorption maximum at 420 nm in the resting state and at 421, 445, 522, 557 and 601 nm in the dithionite reduced form. The specific activity of the purified enzyme was 130 mol O2/min · mol heme a compared to 753 mol O2/min · mol heme a when isolated with cytochrome c-557.Abbreviations MMO methan monooxygenase - sMMO soluble methane monooxygenase - pMMO particulate methane monooxygenase - TMPD N,N,N,N-tetramethyl-p-phenylenediamine dihydrochloride - Na2EDTA disodium ethylenediamine-tetraacetic acid  相似文献   

4.
A bacterial cytochrome c peroxidase was purified from the obligate methanotroph Methylococcus capsulatus Bath in either the fully oxidized or the half reduced form depending on the purification procedure. The cytochrome was a homo-dimer with a subunit mol mass of 35.8 kDa and an isoelectric point of 4.5. At physiological temperatures, the enzyme contained one high-spin, low-potential (E m7 = –254 mV) and one low-spin, high-potential (E m7 = +432 mM ) heme. The low-potential heme center exhibited a spin-state transition from the penta-coordinated, high-spin configuration to a low-spin configuration upon cooling the enzyme to cryogenic temperatures. Using M. capsulatus Bath ferrocytochrome c 555 as the electron donor, the K M and V max for peroxide reduction were 510 ± 100 nM and 425 ± 22 mol ferrocytochrome c 555 oxidized min–1 (mole cytochrome c peroxidase)–1, respectively. Received: 6 January 1997 / Accepted: 27 May 1997  相似文献   

5.
A membrane-associated, dye-linked formaldehyde dehydrogenase (DL-FalDH) was isolated from the obligate methylotroph Methylococcus capsulatus Bath. The enzyme was the major formaldehyde-oxidizing enzyme in cells cultured in high (above 1 micromol of Cu per mg of cell protein) copper medium and expressing the membrane-associated methane monooxygenase. Soluble NAD(P)(+)-linked formaldehyde oxidation was the major activity in cells cultured in low-copper medium and expressing the soluble methane monooxygenase (Tate and Dalton, Microbiology 145:159-167, 1999; Vorholt et al., J. Bacteriol. 180:5351-5356, 1998). The membrane-associated enzyme is a homotetramer with a subunit molecular mass of 49,500 Da. UV-visible absorption, electron paramagnetic resonance, and electrospray mass spectrometry suggest the redox cofactor of the DL-FalDH is pyrroloquinoline quinone (PQQ), with a PQQ-to-subunit stochiometry of approximately 1:1. The enzyme was specific for formaldehyde, oxidizing formaldehyde to formate, and utilized the cytochrome b(559/569) complex as the physiological electron acceptor.  相似文献   

6.
7.
An active preparation of the membrane-associated methane monooxygenase (pMMO) from Methylococcus capsulatus Bath was isolated by ion-exchange and hydrophobic interaction chromatography using dodecyl beta-D-maltoside as the detergent. The active preparation consisted of three major polypeptides with molecular masses of 47,000, 27,000, and 25,000 Da. Two of the three polypeptides (those with molecular masses of 47,000 and 27,000 Da) were identified as the polypeptides induced when cells expressing the soluble MMO are switched to culture medium in which the pMMO is expressed. The 27,000-Da polypeptide was identified as the acetylene-binding protein. The active enzyme complex contained 2.5 iron atoms and 14.5 copper atoms per 99,000 Da. The electron paramagnetic resonance spectrum of the enzyme showed evidence for a type 2 copper center (g perpendicular = 2.057, g parallel = 2.24, and magnitude of A parallel = 172 G), a weak high-spin iron signal (g = 6.0), and a broad low-field (g = 12.5) signal. Treatment of the pMMO with nitric oxide produced the ferrous-nitric oxide derivative observed in the membrane fraction of cells expressing the pMMO. When duroquinol was used as a reductant, the specific activity of the purified enzyme was 11.1 nmol of propylene oxidized.min-1.mg of protein-1, which accounted for approximately 30% of the cell-free propylene oxidation activity. The activity was stimulated by ferric and cupric metal ions in addition to the cytochrome b-specific inhibitors myxothiazol and 2-heptyl-4-hydroxyquinoline-N-oxide.  相似文献   

8.
The fine structure of Methylococcus capsulatus is described. Particular emphasis is focused on the intracytoplasmic membrane system which is organized as a stacked array of flattened saccules. Each saccule is limited by a 75 A unit membrane and lies in close apposition to adjacent saccules. Methylococcus capsulatus is an obligate methylotroph whose sole source of carbon and energy is methane (or methanol). In this study methane oxidation is demonstrated for the first time in a cell-free system. Work is in progress to determine the cellular organelles which constitute the particulate fraction responsible for methane oxidation. The possible role of the intracytoplasmic membranes in energy transfer is considered in relation to the functions of stacked membrane arrays in other animal, plant and bacterial systems.  相似文献   

9.
The membrane-bound (particulate) form of methane monooxygenase from Methylococcus capsulatus (Bath) has been solubilised using the non-ionic detergent dodecyl-beta-D-maltoside. A wide variety of detergents were tested and found to solubilise membrane proteins but did not yield methane monooxygenase in a form that could be subsequently activated. After solubilisation with dodecyl-beta-D-maltoside, enzyme activity was recovered using either egg or soya-bean lipids. Attempts to further purify the solubilized methane monooxygenaser protein into its component polypeptides were unsuccessful and resulted in complete loss of enzyme activity. The major polypeptides present in the solubilised enzyme had molecular masses of 49 kDa, 23 kDa and 22 kDa which were similar to those seen in crude extracts [Prior, S. D. & Dalton H. (1985) J. Gen. Microbiol. 131, 155-163]. Studies on substrate and inhibitor specificities indicated that the membrane-associated and solubilised forms of methane monooxygenase were quite similar to each other but differed substantially from the well-characterised soluble methane monooxygenase found in cells grown in a low copper regime and synthesised independently of the particulate methane monooxygenase.  相似文献   

10.
P460 cytochromes catalyze the oxidation of hydroxylamine to nitrite. They have been isolated from the ammonia-oxidizing bacterium Nitrosomonas europaea (R. H. Erickson and A. B. Hooper, Biochim. Biophys. Acta 275:231–244, 1972) and the methane-oxidizing bacterium Methylococcus capsulatus Bath (J. A. Zahn et al., J. Bacteriol. 176:5879–5887, 1994). A degenerate oligonucleotide probe was synthesized based on the N-terminal amino acid sequence of cytochrome P460 and used to identify a DNA fragment from M. capsulatus Bath that contains cyp, the gene encoding cytochrome P460. cyp is part of a gene cluster that contains three open reading frames (ORFs), the first predicted to encode a 59,000-Da membrane-bound polypeptide, the second predicted to encode a 12,000-Da periplasmic protein, and the third (cyp) encoding cytochrome P460. The products of the first two ORFs have no apparent similarity to any proteins in the GenBank database. The overall sequence similarity of the P460 cytochromes from M. capsulatus Bath and N. europaea was low (24.3% of residues identical), although short regions of conserved residues are present in the two proteins. Both cytochromes have a C-terminal, c-heme binding motif (CXXCH) and a conserved lysine residue (K61) that may provide an additional covalent cross-link to the heme (D. M. Arciero and A. B. Hooper, FEBS Lett. 410:457–460, 1997). Gene probing using cyp indicated that a cytochrome P460 similar to that from M. capsulatus Bath may be present in the type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP but not in the type I methanotrophs Methylobacter marinus A45, Methylomicrobium albus BG8, and Methylomonas sp. strains MN and MM2. Immunoblot analysis with antibodies against cytochrome P460 from M. capsulatus Bath indicated that the expression level of cytochrome P460 was not affected either by expression of the two different methane monooxygenases or by addition of ammonia to the culture medium.  相似文献   

11.
Methane monooxygenase (MMO) is the enzyme responsible for the conversion of methane to methanol in methanotrophic bacteria. In addition, this enzyme complex oxidizes a wide range of aliphatic and aromatic compounds in a number of potentially useful biotransformations. In this study, we have used biochemical data obtained from purification and characterization of the soluble MMO from Methylococcus capsulatus (Bath), to identify structural genes encoding this enzyme by oligonucleotide probing. The genes encoding the and subunits of MMO were found to be chromosomally located and were linked in this organism. We report here on the analysis of a recombinant plasmid containing 12 kilobases of Methylococcus DNA and provide the first evidence for the localization and linkage of genes encoding the methane monooxygenase enzyme complex. DNA sequence analysis suggests that the primary structures of the and subunit of MMO are completely novel and the complete sequence of these genes is presented.  相似文献   

12.
S ummary : Spontaneous mutants of Methylococcus capsulatus resistant to antibiotics, amino acid analogues and other compounds were obtained at frequencies similar to those found in other bacteria. Attempts to increase these frequencies with the mutagens N-methyl-N'-nitro-N-nitrosoguanidine, N-nitroso-N-methyl urethane, ethyl methane-sulphonate and UV were unsuccessful. Using these mutagens, only one auxotrophic mutant was isolated from 11,082 colonies examined. The growth characteristics of this p -aminobenzoic acid requiring mutant are described.  相似文献   

13.
The structural gene (glnA) encoding the ammonia-assimulation enzyme glutamine synthetase (GS) has been cloned from the obligate methanotroph Methylococcus capsulatus (Bath). Complementation of Escherichia coli glnA mutants was demonstrated. In vitro expression analysis revealed that the cloned glnA gene coded for a polypeptide of apparent Mr 60,000, as determined by PAGE. Expression of the M. capsulatus (Bath) glnA gene in E. coli was regulated by nitrogen levels in an Ntr+ but not an Ntr- background. The nucleotide sequence of the M. capsulatus (Bath) glnA gene and flanking sequences was determined. This gene, of 1407 bp, encoded a polypeptide of Mr 51717 containing 468 amino acids. The 5' leader region contained three putative promoters. Promoters P1 and P3 resembled the canonical -10 -35 E. coli-type promoter. Promoter P2, which was located between P1 and P3, resembled the NtrA-dependent promoters of enteric organisms. A potential NtrC-binding site was also determined, flanking the Pribnow box at P1. Comparisons of nucleotide-derived amino acid sequences of GS enzymes from prokaryotes and eukaryotes with GS from M. capsulatus are made.  相似文献   

14.
Soluble extracts of Methylococcus capsulatus (Bath), obtained by centrifugation of crude extracts at 160000g for 1h, catalyse the NAD(P)H- and O2-dependent disappearance of bromomethane, and also the formation of methanol from methane. Soluble methane mono-oxygenase is not inhibited by chelating agents or by most electron-transport inhibitors, and is a multicomponent enzyme.  相似文献   

15.
Summary 3-Hexulose phosphate synthase was purified in 94% yield from Methylomonas M15. The enzyme did not form a Schiff-base intermediate with d-ribulose 5-phosphate that could be reduced by NaBH4. However, the enzyme required Mg2+ or Mn2+ ions for activity and was inactivated in the presence of EDTA. The latter is a property of class II aldolases. The enzyme accepted a wide range of other aldehydes in addition to its natural substrate formaldehyde, while d-ribulose 5-phosphate could not be replaced. This makes it an attractive tool for the synthesis of higher sugar phosphates.Offprint requests to: M.-R. Kula  相似文献   

16.
Earlier work from our laboratory has indicated that a hemerythrin-like protein was over-produced together with the particulate methane monooxygenase (pMMO) when Methylococcus capsulatus (Bath) was grown under high copper concentrations. A homologue of hemerythrin had not previously been found in any prokaryote. To confirm its identity as a hemerythrin, we have isolated and purified this protein by ion-exchange, gel-filtration and hydrophobic interaction chromatography, and characterized it by mass spectrometry, UV-visible, CD, EPR and resonance Raman spectroscopy. On the basis of biophysical and multiple sequence alignment analysis, the protein isolated from M. capsulatus (Bath) is in accord with hemerythrins previously reported from higher organisms. Determination of the Fe content in conjunction with molecular-weight estimation and mass analysis indicates that the native hemerythrin in M. capsulatus (Bath) is a monomer with molecular mass 14.8 kDa, in contrast to hemerythrins from other eukaryotic organisms, where they typically exist as a tetramer or higher oligomers.  相似文献   

17.
18.
1. The roles of the three protein components of soluble methane mono-oxygenase were investigated by the use of rapid-reaction techniques. The transfer of electrons through the enzyme complex from NADH to methane/O2 was also investigated. 2. Electron transfer from protein C, the reductase component, to protein A, the hydroxylase component, was demonstrated. Protein C was shown to undergo a three-electron--one-electron catalytic cycle. The interaction of protein C with NADH was investigated. Reduction of protein C was shown to be rapid, and a charge-transfer interaction between reduced FAD and NAD+ was observed; this intermediate was also found in static titration experiments. Thus the binding of NADH, the reduction of protein C and the intramolecular transfer of electrons through protein C were shown to be much more rapid than the turnover rate of methane mono-oxygenase. 3. The rate of transfer of electrons from protein C to protein A was shown to be lower than the reduction of protein C but higher than the turnover rate of methane mono-oxygenase. Association of the proteins was not rate-limiting. The amount of protein A present in the system had a small effect on the rate of reduction of protein C, indicating some co-operativity between the two proteins. 4. Protein B was shown to prevent electron transfer between protein C and protein A in the absence of methane. On addition of saturating concentrations of methane electron transfer was restored. With saturating concentrations of methane and O2 the observed rate constant for the conversion of methane into methanol was 0.26 s-1 at 18 degrees C. 5. By the use of [2H4]methane it was demonstrated that C-H-bond breakage is likely to be the rate-limiting step in the conversion of methane into methanol.  相似文献   

19.
For a long time, the haemerythrin family of proteins was considered to be restricted to only a few phyla of marine invertebrates. When analysing differential protein expression in the methane-oxidizing bacterium, Methylococcus capsulatus (Bath), grown at a high and low copper-to-biomass ratio, respectively, we identified a putative prokaryotic haemerythrin expressed in high-copper cultures. Haemerythrins are recognized by a conserved sequence motif that provides five histidines and two carboxylate ligands which coordinate two iron atoms. The diiron site is located in a hydrophobic pocket and is capable of binding O(2). We cloned the M. capsulatus haemerythrin gene and expressed it in Escherichia coli as a fusion protein with NusA. The haemerythrin protein was purified to homogeneity cleaved from its fusion partner. Recombinant M. capsulatus haemerythrin (McHr) was found to fold into a stable protein. Sequence similarity analysis identified all the candidate residues involved in the binding of diiron (His22, His58, Glu62, His77, His81, His117, Asp122) and the amino acids forming the hydrophobic pocket in which O(2) may bind (Ile25, Phe59, Trp113, Leu114, Ile118). We were also able to model a three-dimensional structure of McHr maintaining the correct positioning of these residues. Furthermore, UV/vis spectrophotometric analysis demonstrated the presence of conjugated diiron atoms in McHr. A comprehensive genomic database search revealed 21 different prokaryotes containing the haemerythrin signature (PROSITE 00550), indicating that these putative haemerythrins may be a conserved prokaryotic subfamily.  相似文献   

20.
G T Gassner  S J Lippard 《Biochemistry》1999,38(39):12768-12785
The soluble methane monooxygenase system of Methylococcus capsulatus (Bath) includes three protein components: a 251-kDa non-heme dinuclear iron hydroxylase (MMOH), a 39-kDa iron-sulfur- and FAD-containing reductase (MMOR), and a 16-kDa regulatory protein (MMOB). The thermodynamic stability and kinetics of formation of complexes between oxidized MMOH and MMOB or MMOR were measured by isothermal titration calorimetry and stopped-flow fluorescence spectroscopy at temperatures ranging from 3.3 to 45 degrees C. The results, in conjunction with data from equilibrium analytical ultracentrifugation studies of MMOR and MMOB, indicate that free MMOR and MMOB exist as monomers in solution and bind MMOH with 2:1 stoichiometry. The role of component interactions in the catalytic mechanism of sMMO was investigated through simultaneous measurement of oxidase and hydroxylase activities as a function of varied protein component concentrations during steady-state turnover. The partitioning of oxidase and hydroxylase activities of sMMO is highly dependent on both the MMOR concentration and the nature of the organic substrate. In particular, NADH oxidation is significantly uncoupled from methane hydroxylation at MMOR concentrations exceeding 20% of the hydroxylase concentration but remains tightly coupled to propylene epoxidation at MMOR concentrations ranging up to the MMOH concentration. The steady-state kinetic data were fit to numerical simulations of models that include both the oxidase activities of free MMOR and of MMOH/MMOR complexes and the hydroxylase activity of MMOH/MMOB complexes. The data were well described by a model in which MMOR and MMOB bind noncompetitively at distinct interacting sites on the hydroxylase. MMOB manifests its regulatory effects by differentially accelerating intermolecular electron transfer from MMOR to MMOH containing bound substrate and product in a manner consistent with its activating and inhibitory effects on the hydroxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号