首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The article reviews applications of flow cytometry sorting in manufacturing of pharmaceuticals. Flow cytometry sorting is an extremely powerful tool for monitoring, screening and separating single cells based on any property that can be measured by flow cytometry. Different applications of flow cytometry sorting are classified into groups and discussed in separate sections as follows: (a) isolation of cell types, (b) high throughput screening, (c) cell surface display, (d) droplet fluorescent-activated cell sorting (FACS). Future opportunities are identified including: (a) sorting of particular fractions of the cell population based on a property of interest for generating inoculum that will result in improved outcomes of cell cultures and (b) the use of population balance models in combination with FACS to design and optimize cell cultures.  相似文献   

2.
A survey of the specific features of flow cytometry, principals of instrumentation and main parameters of the modern cell sorting cytometers is given. Analytical capacities of flow cytometry as well as the main directions of its applications in cell biology, clinical diagnostics, immunology, biotechnology and molecular biology are considered. Also a possible future development of flow cytometry instrumentation and applications in molecular biology are briefly discussed.  相似文献   

3.
骨髓(BM)移植已在许多血液病中成功应用多年,主要依赖于成人BM和外周血(PB)中的造血干细胞(HSCs)。然而,合适配型HSCs的稀缺限制了其临床应用,难以满足更多有需要的患者。诱导多能干细胞(iPSCs)的出现,有望解决这一难题。iPSCs具有分化成所有血细胞的潜能,使得HSCs和其他血细胞在血液病中的广泛应用成为可能。然而,临床应用iPSCs治疗血液病仍障碍重重。本文主要回顾了iPSCs在血液病中的应用和发展以及面临的问题和挑战。  相似文献   

4.
Thujaplicins are tropolone-derived natural products with antiproliferative properties. We recently reported that certain tropolones potently and selectively target histone deacetylases (HDAC) and inhibit the growth of hematological cell lines. Here, we investigated the mechanisms by which these compounds exert their antiproliferative activity in comparison with the pan-selective HDAC inhibitor, vorinostat, using Jurkat T-cell leukemia cells. The tropolones appear to work through a mechanism distinct from vorinostat. These studies suggest that tropolone derivatives may serve as selective epigenetic modulators of hematological cells with potential applications as anti-leukemic or anti-inflammatory agents.  相似文献   

5.
Flow cytometry has become an indispensable instrumentation in many disciplines of biology and medicine. There are some limitations of flow cytometry, inherent to the fact that the cells are measured in flow, which limit its usefulness in some applications. The microscope-based laser scanning cytometer (LSC) has many features similar to flow cytometry but few restrictions of the latter and therefore it is useful in many new applications. This review briefly outlines the applications that are unique to LSC, particularly related to its morphometric capabilities and the possibility of cell relocation. Potential future applications of LSC are also discussed.  相似文献   

6.
《MABS-AUSTIN》2013,5(2):311-320
Daratumumab (DARA) is a human CD38-specific IgG1 antibody that is in clinical development for the treatment of multiple myeloma (MM). The potential for IgG1 antibodies to induce macrophage-mediated phagocytosis, in combination with the known presence of macrophages in the tumor microenvironment in MM and other hematological tumors, led us to investigate the contribution of antibody-dependent, macrophage-mediated phagocytosis to DARA's mechanism of action. Live cell imaging revealed that DARA efficiently induced macrophage-mediated phagocytosis, in which individual macrophages rapidly and sequentially engulfed multiple tumor cells. DARA-dependent phagocytosis by mouse and human macrophages was also observed in an in vitro flow cytometry assay, using a range of MM and Burkitt's lymphoma cell lines. Phagocytosis contributed to DARA's anti-tumor activity in vivo, in both a subcutaneous and an intravenous leukemic xenograft mouse model. Finally, DARA was shown to induce macrophage-mediated phagocytosis of MM cells isolated from 11 of 12 MM patients that showed variable levels of CD38 expression. In summary, we demonstrate that phagocytosis is a fast, potent and clinically relevant mechanism of action that may contribute to the therapeutic activity of DARA in multiple myeloma and potentially other hematological tumors.  相似文献   

7.
Flow cytometry was established originally for measuring DNA content and for the analysis of cell-surface markers in combination with cell sorting. During the past two decades, it has added new dimensions to various areas of immunology and medicine. Increased sensitivity and precision of flow cytometers, accompanied by the development of new fluorescent dyes and probes, has led to new applications in molecular cell biology and genetics. This article focuses on applications of flow cytometry in analysis and sorting of intracellular organelles.  相似文献   

8.
By flow cytometry of individual cells, multiple cell properties can be analyzed. Such parameters may be important in relation to cytotoxic treatment of cancer. For example, DNA measurements will answer questions regarding cell kinetics. Myelosuppression is the major dose-limiting toxicity during cancer treatment. Therefore, the study of cell cycle parameters in bone marrow cells is highly relevant. However, inattention to the existence and potential importance of biological rhythms may introduce artifacts and misleading results. The literature of rhythms in hematology is reviewed. Time-dependent variations in hematological variables have been extensively studied and rhythms have been described for all kinds of blood cells. Also the numbers of hemopoietic stem cells in the bone marrow undergo circadian variations. Our group has shown how such variations change with aging in mice. The relevance of time sequence studies in aging research of hemopoiesis was clearly demonstrated. In animal studies using cytometry, our group has demonstrated extensive circadian variations in cell cycle distribution of bone marrow cells, especially the DNA synthesis (S-phase). In humans a few and rather small time sequence studies of the bone marrow have been performed, so far. In this overview the clinical implications of circadian rhythms of S-phase variations measured by flow cytometry of human bone marrow cells are discussed. Male volunteers were examined every 4 h around-the-clock. The data indicated a lower proliferative activity during night, suggesting the possibility of reducing the bone marrow toxicity to cancer treatment when taking these time-dependent variations into consideration.  相似文献   

9.
Daratumumab (DARA) is a human CD38-specific IgG1 antibody that is in clinical development for the treatment of multiple myeloma (MM). The potential for IgG1 antibodies to induce macrophage-mediated phagocytosis, in combination with the known presence of macrophages in the tumor microenvironment in MM and other hematological tumors, led us to investigate the contribution of antibody-dependent, macrophage-mediated phagocytosis to DARA''s mechanism of action. Live cell imaging revealed that DARA efficiently induced macrophage-mediated phagocytosis, in which individual macrophages rapidly and sequentially engulfed multiple tumor cells. DARA-dependent phagocytosis by mouse and human macrophages was also observed in an in vitro flow cytometry assay, using a range of MM and Burkitt''s lymphoma cell lines. Phagocytosis contributed to DARA''s anti-tumor activity in vivo, in both a subcutaneous and an intravenous leukemic xenograft mouse model. Finally, DARA was shown to induce macrophage-mediated phagocytosis of MM cells isolated from 11 of 12 MM patients that showed variable levels of CD38 expression. In summary, we demonstrate that phagocytosis is a fast, potent and clinically relevant mechanism of action that may contribute to the therapeutic activity of DARA in multiple myeloma and potentially other hematological tumors.  相似文献   

10.
11.
Flow cytometry (FCM) is emerging as an important tool in environmental microbiology. Although flow cytometry applications have to date largely been restricted to certain specialized fields of microbiology, such as the bacterial cell cycle and marine phytoplankton communities, technical advances in instrumentation and methodology are leading to its increased popularity and extending its range of applications. Here we will focus on a number of recent flow cytometry developments important for addressing questions in environmental microbiology. These include (i) the study of microbial physiology under environmentally relevant conditions, (ii) new methods to identify active microbial populations and to isolate previously uncultured microorganisms, and (iii) the development of high-throughput autofluorescence bioreporter assays.  相似文献   

12.
Flow cytometry is a sophisticated instrument measuring multiple physical characteristics of a single cell such as size and granularity simultaneously as the cell flows in suspension through a measuring device. Its working depends on the light scattering features of the cells under investigation, which may be derived from dyes or monoclonal antibodies targeting either extracellular molecules located on the surface or intracellular molecules inside the cell. This approach makes flow cytometry a powerful tool for detailed analysis of complex populations in a short period of time. This review covers the general principles and selected applications of flow cytometry such as immunophenotyping of peripheral blood cells, analysis of apoptosis and detection of cytokines. Additionally, this report provides a basic understanding of flow cytometry technology essential for all users as well as the methods used to analyze and interpret the data. Moreover, recent progresses in flow cytometry have been discussed in order to give an opinion about the future importance of this technology.  相似文献   

13.
In applied microbiology, strain improvement of microorganisms by conventional selection culture is not always successful, so single‐cell selection of viable cells with the desired characteristics from a large heterogeneous population may be used instead. Single‐cell selection with use of a micromanipulator is possible, but laborious. For many applications, the process has been automated. In this review, an automated method, laser scanning cytometry (LSC), is outlined together with flow cytometry (FCM). FCM is familiar to many microbiologists, but LSC is a microscopic‐slide‐based method that is less well known. One of its advantages is its possible use in the examination of small cell populations.In addition, individual cells can be examined repeatedly, measured automatically and later observed microscopically by the operator, and finally stored (if desired)on the microscopic slide on which they are placed. Fluorescent and other probes are available in abundance for FCM, and almost all might be used in LSC. A number of applications of these methods are cited from the extensive literature (mostly about FCM), but the list of possible applications in this review is far from being exhaustive. This review is intended as an introduction for the applied microbiologist to the manifold uses of LSC.  相似文献   

14.
Flow cytometric analysis of microorganisms   总被引:3,自引:0,他引:3  
The application of flow cytometry to microorganisms is as old as the technique itself, but it has historically been underexploited for microbial applications. This is now being reversed and microbiologists are ideally placed to benefit from recent technological advances. While earlier papers demonstrated the use of flow cytometry for studies of viability and taxonomy, recent developments in bioinformatics and reporter gene technologies are leading to novel applications in microbiology. Variants of green fluorescent protein have been used for the study of conditional microbial gene regulation in medically important host-pathogen interactions and fluorescence-activated cell sorting is being applied to the isolation of novel mutants in directed evolution studies. This paper reviews the reasons for the delay in the application of flow cytometry to microbial problems, the range of applications, and their limitations and considers the progress made in developing new strategies for use in microbiological investigations.  相似文献   

15.
Flow cytometry is an automated, laser- or impedance-based, high throughput method that allows very rapid analysis of multiple chemical and physical characteristics of single cells within a cell population. It is an extremely powerful technology that has been used for over four decades with filamentous fungi. Although single cells within a cell population are normally analysed rapidly on a cell-by-cell basis using the technique, flow cytometry can also be used to analyse cell (e.g. spore) aggregates or entire microcolonies. Living or fixed cells can be stained with a wide range of fluorescent reporters to label different cell components or measure different physiological processes. Flow cytometry is also suited for measurements of cell size, interaction, aggregation or shape using non-labelled cells by means of analysing their light scattering characteristics. Fluorescence-activated cell sorting (FACS) is a specialized form of flow cytometry that provides a method for sorting a heterogeneous mixture of cells into two or more containers based upon the fluorescence and/or light scattering properties of each cell. The major advantage of analysing cells by flow cytometry over microscopy is the speed of analysis: thousands of cells can be analysed per second or sorted in minutes. Drawbacks of flow cytometry are that specific cells cannot be followed in time and normally spatial information relating to individual cells is lacking. A big advantage over microscopy is when using FACS, cells with desired characteristics can be sorted for downstream experimentation (e.g. for growth, infection, enzyme production, gene expression assays or ‘omics’ approaches). In this review, we explain the basic concepts of flow cytometry and FACS, define its advantages and disadvantages in comparison with microscopy, and describe the wide range of applications in which these powerful technologies have been used with filamentous fungi.  相似文献   

16.
The aim of this article is to provide a brief review about the ImageStream system a novel tool for multiparameter cell analysis in flow. The instrument integrates the features of flow cytometry and fluorescence microscopy combined with a modern methodology for image analysis. Similar to flow cytometry, ImageStream allows analysis of a large number of cells based on their fluorescence features and provides statistical analysis of these features. Additionally, ImageStream allows detailed morphometric cellular analysis based on acquired cellular images integrating various morphometric and photometric features of the examined cells. Simply stated, ImageStream system is an advanced flow cytometer acquiring both integrated fluorescence signals as well as high quality fluorescence images and allowing muliparameter analysis. The innovative features of the instrument offer new analytical capabilities and allow for a multitude of possible applications beyond the current means of flow cytometry. While this article summarizes basic information about the features of ImageStream and its applications based on the available literature and it also describes our own experience.  相似文献   

17.
Flow cytometry offers numerous advantages over traditional techniques for measuring intracellular Ca(2+) in lymphoid and nonlymphoid cells. In particular, the heterogeneity of cell responses can be defined by flow cytometry, and multiparameter analyses permit the determination of intracellular Ca(2+) in surface-marker-defined target cells as well as correlation of changes in Ca(2+) with other biochemical markers, including ligand binding. This article presents several established methods for measuring intracellular Ca(2+) by flow cytometry in lymphoid and nonlymphoid cells. Examples are provided for determination of Ca(2+) in human peripheral blood leukocytes and two human epithelial cell lines grown in monolayer. In addition, applications are reviewed or presented for correlating changes in intracellular Ca(2+) with other cell parameters, including cell cycle analysis, changes in cell membrane integrity, and the induction of apoptosis markers. Finally, a number of novel sample handling capabilities useful for performing kinetic analyses of Ca(2+) changes by flow cytometry are now available and one application is presented which is finding utility in pharmacologic studies.  相似文献   

18.
Erythropoiesis is a process during which multipotential hematopoietic stem cells proliferate, differentiate and eventually form mature erythrocytes. Interestingly, unlike most cell types, an important feature of erythropoiesis is that following each mitosis the daughter cells are morphologically and functionally different from the parent cell from which they are derived, demonstrating the need to study erythropoiesis in a stage-specific manner. This has been impossible until recently due to lack of methods for isolating erythroid cells at each distinct developmental stage. This review summarizes recent advances in the development of methods for isolating both murine and human erythroid cells and their applications. These methods provide powerful means for studying normal and impaired erythropoiesis associated with hematological disorders.  相似文献   

19.
Acute myeloid leukemia (AML) is a hematological cancer comprising of cancer stem cells (CSCs) that are responsible for the disease progression, drug resistance and post treatment relapses. Advances in genomic technologies have identified AML as a genetically heterogenous disease with dysregulated gene expression networks. Furthermore, observation of intracellular signaling in individual CSCs by mass cytometry has demonstrated the dysregulation of the mitogen associated protein kinase (MAPK) pathways. It has been envisaged that the future treatment for AML would entail upon formulating individualized treatment plans leading to decreased drug related toxicities for patients. However the emerging role of signaling pathways as dynamic molecular switches influencing the cell cycle process, thereby leading to varying stages of cell differentiation, is making community rethink about the current strategies used for the treatment of AML. This commentary will focus on discovering novel biomarkers and identifying new therapeutic targets, to analyze and treat AML, on a platform enabled by systems biology approach.  相似文献   

20.

Monomeric streptavidin (mSA) offers a combination of structural and binding properties that are useful in many applications, including a small size and monovalent biotin binding. Because mSA contains a structurally important disulfide bond, the molecule does not fold correctly when expressed inside the cell. We show that mSA can be expressed in a functional form in Escherichia coli by fusing the OmpA signal sequence at the amino terminus. Expressed mSA is exported to the periplasm, from which the molecule leaks to the medium under vigorous shaking. Purified mSA can be conjugated with FITC and used to label microbeads and yeast cells for analysis by flow cytometry, further expanding the scope of mSA-based applications. Some applications require recombinant fusion of mSA with another protein. mSA fused to EGFP cannot be secreted to the medium but was successfully expressed in an engineered cell line that supports oxidative folding in the cytoplasm. Purified mSA-EGFP and mSA-mCherry bound biotin with high affinity and were successfully used in conventional flow cytometry and imaging flow cytometry. Finally, we demonstrate the use of mSA in ELISA, in which horseradish peroxidase-conjugated mSA and biotinylated secondary antibody are used together to detect primary antibody captured on an ELISA plate. Engineering mSA to introduce additional lysine residues can increase the reporter signal above that of wild-type streptavidin. Together, these examples establish mSA as a convenient reagent with a potentially unique role in biotechnology.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号