首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress is one of the earliest events in the pathogenesis of Alzheimer's disease (AD) and can markedly exacerbate amyloid pathology. Modulation of antioxidant and anti-inflammatory pathways represents an important approach for AD therapy. Synthetic triterpenoids have been found to facilitate antioxidant response and reduce inflammation in several models. We investigated the effect of the triterpenoid, 2-Cyano-3,12-Dioxooleana-1,9-Dien-28-Oic acid-MethylAmide (CDDO-MA) in Tg19959 mice, which carry the human amyloid precursor protein with two mutations. These mice develop memory impairments and amyloid plaques as early as 2–3 months of age. CDDO-MA was provided with chow (800 mg/kg) from 1 to 4 months of age. CDDO-MA significantly improved spatial memory retention and reduced plaque burden, Aβ42 levels, microgliosis, and oxidative stress in Tg19959 mice.  相似文献   

2.
Mitochondrial dysfunction and oxidative stress are involved in Alzheimer disease (AD) pathogenesis. In human AD brains, the activity of the α-ketoglutarate dehydrogenase enzyme complex (α-KGDHC) is reduced. KGDHC is mostly involved in NADH production. It can also participate in oxidative stress and reactive oxygen species (ROS) production. The mitochondrial dihydrolipoyl succinyltransferase enzyme (DLST) is a key subunit specific to the α-KGDHC. In cultured cells, reduction of DLST increased H2O2-induced ROS generation and cell death. Thus, we asked whether partial genetic deletion of DLST could accelerate the onset of AD pathogenesis, using a transgenic mouse model of amyloid deposition crossed with DLST+/− mice. Tg19959 mice, which carry the human amyloid precursor protein with two mutations, develop amyloid deposits and progressive behavioral abnormalities. We compared Tg19959 mice to Tg19959-DLST+/− littermates at 2–3 months of age and studied the effects of DLST deficiency on amyloid deposition, spatial learning and memory, and oxidative stress. We found that α-KGDHC activity was reduced in DLST+/− mice. We also found that DLST deficiency increased amyloid plaque burden, Aβ oligomers, and nitrotyrosine levels and accelerated the occurrence of spatial learning and memory deficits in female Tg19959 mice. Our data suggest that α-KGDHC may be involved in AD pathogenesis through increased mitochondrial oxidative stress.  相似文献   

3.
Oxidative stress is observed in Alzheimer's disease (AD) brain, including protein oxidation and lipid peroxidation. One of the major pathological hallmarks of AD is the brain deposition of amyloid beta-peptide (Abeta). This 42-mer peptide is derived from the beta-amyloid precursor protein (APP) and is associated with oxidative stress in vitro and in vivo. Mutations in the PS-1 and APP genes, which increase production of the highly amyloidogenic amyloid beta-peptide (Abeta42), are the major causes of early onset familial AD. Several lines of evidence suggest that enhanced oxidative stress, inflammation, and apoptosis play important roles in the pathogenesis of AD. In the present study, primary neuronal cultures from knock-in mice expressing mutant human PS-1 and APP were compared with those from wild-type mice, in the presence or absence of various oxidizing agents, viz, Abeta(1-42), H2O2 and kainic acid (KA). APP/PS-1 double mutant neurons displayed a significant basal increase in oxidative stress as measured by protein oxidation, lipid peroxidation, and 3-nitrotyrosine when compared with the wild-type neurons (p < 0.0005). Elevated levels of human APP, PS-1 and Abeta(1-42) were found in APP/PS-1 cultures compared with wild-type neurons. APP/PS-1 double mutant neuron cultures exhibited increased vulnerability to oxidative stress, mitochondrial dysfunction and apoptosis induced by Abeta(1-42), H2O2 and KA compared with wild-type neuronal cultures. The results are consonant with the hypothesis that Abeta(1-42)-associated oxidative stress and increased vulnerability to oxidative stress may contribute significantly to neuronal apoptosis and death in familial early onset AD.  相似文献   

4.
beta-site APP cleaving enzyme 1 (BACE1) is the beta-secretase enzyme required for generating pathogenic beta-amyloid (Abeta) peptides in Alzheimer's disease (AD). BACE1 knockout mice lack Abeta and are phenotypically normal, suggesting that therapeutic inhibition of BACE1 may be free of mechanism-based side effects. However, direct evidence that BACE1 inhibition would improve cognition is lacking. Here we show that BACE1 null mice engineered to overexpress human APP (BACE1(-/-).Tg2576(+)) are rescued from Abeta-dependent hippocampal memory deficits. Moreover, impaired hippocampal cholinergic regulation of neuronal excitability found in the Tg2576 AD model is ameliorated in BACE1(-/-).Tg2576(+) bigenic mice. The behavioral and electrophysiological rescue of deficits in BACE1(-/-).Tg2576(+) mice is correlated with a dramatic reduction of cerebral Abeta40 and Abeta42 levels and occurs before amyloid deposition in Tg2576 mice. Our gene-based approach demonstrates that lower Abeta levels are beneficial for AD-associated memory impairments, validating BACE1 as a therapeutic target for AD.  相似文献   

5.
Alzheimer's disease (AD) involves amyloid beta (Abeta) accumulation, oxidative damage, and inflammation, and risk is reduced with increased antioxidant and anti-inflammatory consumption. The phenolic yellow curry pigment curcumin has potent anti-inflammatory and antioxidant activities and can suppress oxidative damage, inflammation, cognitive deficits, and amyloid accumulation. Since the molecular structure of curcumin suggested potential Abeta binding, we investigated whether its efficacy in AD models could be explained by effects on Abeta aggregation. Under aggregating conditions in vitro, curcumin inhibited aggregation (IC(50) = 0.8 microM) as well as disaggregated fibrillar Abeta40 (IC(50) = 1 microM), indicating favorable stoichiometry for inhibition. Curcumin was a better Abeta40 aggregation inhibitor than ibuprofen and naproxen, and prevented Abeta42 oligomer formation and toxicity between 0.1 and 1.0 microM. Under EM, curcumin decreased dose dependently Abeta fibril formation beginning with 0.125 microM. The effects of curcumin did not depend on Abeta sequence but on fibril-related conformation. AD and Tg2576 mice brain sections incubated with curcumin revealed preferential labeling of amyloid plaques. In vivo studies showed that curcumin injected peripherally into aged Tg mice crossed the blood-brain barrier and bound plaques. When fed to aged Tg2576 mice with advanced amyloid accumulation, curcumin labeled plaques and reduced amyloid levels and plaque burden. Hence, curcumin directly binds small beta-amyloid species to block aggregation and fibril formation in vitro and in vivo. These data suggest that low dose curcumin effectively disaggregates Abeta as well as prevents fibril and oligomer formation, supporting the rationale for curcumin use in clinical trials preventing or treating AD.  相似文献   

6.
Recently, a relationship between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the beta-amyloid precursor protein (betaAPP) in relationship with the pathogenesis of Alzheimer's disease (AD) has been suggested. Therefore, we studied the specific activity of GAPDH in the different animal models of AD: transgenic mice (Tg2576) and rats treated with beta-amyloid, or thiorphan, or lipopolysaccharides (LPS) and interferon gamma (INFgamma). We observed that GAPDH activity was significantly decreased in the brain samples from TG mice. The injection of beta-amyloid, or thiorphan, an inhibitor of neprilysin involved in beta-amyloid catabolism, in rat brains resulted in a pronounced reduction of the enzyme activity. The infusion of LPS and IFNgamma, which can influence the progression of the AD, significantly reduced the enzyme activity.  相似文献   

7.
Amyloid beta-peptide (1-42) [Abeta(1-42)] has been proposed to play a central role in the pathogenesis of Alzheimer's disease, a neurodegenerative disorder associated with cognitive decline and aging. AD brain is under extensive oxidative stress, and Abeta(1-42) has been shown to induce protein oxidation, lipid peroxidation, and reactive oxygen species formation in neurons and synaptosomes, all of which are inhibited by the antioxidant vitamin E. Additional studies have shown that Abeta(1-42) induces oxidative stress when expressed in vivo in Caenorhabditis elegans, but when methionine 35 is replaced by cysteine, the oxidative stress is attenuated. This finding coupled with in vitro studies using mutant peptides have demonstrated a critical role for methionine 35 in the oxidative stress and neurotoxic properties of Abeta(1-42). In this review, we discuss the role of methionine 35 in the oxidative stress and neurotoxicity induced by Abeta(1-42) and the implications of these findings in the pathogenesis of AD.  相似文献   

8.
Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD): tau phosphorylation, and beta-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2) die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau) in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576) with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Ass load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.  相似文献   

9.
Several lines of evidence suggest that enhanced oxidative stress is involved in the pathogenesis and/or progression of Alzheimer's disease (AD). Amyloid beta-protein (Abeta) that composes senile plaques, a major neuropathological hallmark of AD, is considered to have a causal role in AD. Thus, we have studied the effect of oxidative stress on Abeta metabolism within the cell. Here, we report that oxidative stress induced by H(2)O(2) (100-250 microM) caused an increase in the levels of intracellular Abeta in human neuroblastoma SH-SY5Y cells. Treatment with 200 microM H(2)O(2) caused significant decreases in the protein levels of full-length beta-amyloid precursor protein (APP) and its COOH-terminal fragment that is generated by beta-cleavage, while the gene expression of APP was not altered under these conditions. A pulse-chase experiment further showed a decrease in the half-life of this amyloidogenic COOH-terminal fragment but not in that of nonamyloidogenic counterpart in the H(2)O(2)-treated cells. These results suggest that oxidative stress promotes intracellular accumulation of Abeta through enhancing the amyloidogenic pathway.  相似文献   

10.
Homocysteine potentiates β-amyloid neurotoxicity: role of oxidative stress   总被引:5,自引:0,他引:5  
The cause of neuronal degeneration in Alzheimer's disease (AD) has not been completely clarified, but has been variously attributed to increases in cytosolic calcium and increased generation of reactive oxygen species (ROS). The beta-amyloid fragment (Abeta) of the amyloid precursor protein induces calcium influx, ROS and apoptosis. Homocysteine (HC), a neurotoxic amino acid that accumulates in neurological disorders including AD, also induces calcium influx and oxidative stress, which has been shown to enhance neuronal excitotoxicity, leading to apoptosis. We examined the possibility that HC may augment Abeta neurotoxicity. HC potentiated the Abeta-induced increase in cytosolic calcium and apoptosis in differentiated SH-SY-5Y human neuroblastoma cells. The antioxidant vitamin E and the glutathione precursor N-acetyl-L-cysteine blocked apoptosis following cotreatment with HC and Abeta, indicating that apoptosis is associated with oxidative stress. These findings underscore that moderate accumulation of excitotoxins at concentrations that alone do not appear to initiate adverse events may enhance the effects of other factors known to cause neurodegeneration such as Abeta.  相似文献   

11.
Increased expression and altered processing of the amyloid precursor protein (APP) and generation of beta-amyloid peptides is important in the pathogenesis of amyloid plaques in Alzheimer's disease (AD). Transgenic Tg2576 mice overexpressing the Swedish mutation of human APP exhibit beta-amyloid deposition in the neocortex and limbic areas, accompanied by gliosis and dystrophic neurites. However, murine plaques appear to be less cross-linked and the mice show a lower degree of inflammation and neurodegeneration than AD patients. 'Advanced glycation endproducts (AGEs)', formed by reaction of proteins with reactive sugars or dicarbonyl compounds, are able to cross-link proteins and to activate glial cells, and are thus contributing to plaque stability and plaque-induced inflammation in AD. In this study, we analyze the tissue distribution of AGEs and the pro-inflammatory cytokines IL-1beta and TNF-alpha in 24-month-old Tg2576 mice, and compare the AGE distribution in these mice with a younger age group (13 months old) and a typical Alzheimer's disease patient. Around 70% of the amyloid plaque cores in the 24-month-old mice are devoid of AGEs, which might explain their solubility in physiological buffers. Plaque associated glia, which express IL-1beta and TNF-alpha, contain a significant amount of AGEs, suggesting that plaques, i.e. Abeta as its major component, can induce intracellular AGE formation and the expression of the cytokines on its own. In the 13-month-old transgenic mice, AGEs staining can neither be detected in plaques nor in glial cells. In contrast, AGEs are present in high amounts in both plaques and glia in the human AD patient. The data obtained in this show interesting differences between the transgenic mouse model and AD patients, which should be considered using the transgenic approach to test therapeutical strategies to eliminate plaques or to attenuate the inflammatory response in AD.  相似文献   

12.
Strong evidence indicates oxidative stress in the pathogenesis of Alzheimer's disease (AD). Amyloid beta (Abeta) has been implicated in both oxidative stress mechanisms and in neuronal apoptosis. Glutaredoxin-1 (GRX1) and thioredoxin-1 (TRX1) are antioxidants that can inhibit apoptosis signal-regulating kinase (ASK1). We examined levels of GRX1 and TRX1 in AD brain as well as their effects on Abeta neurotoxicity. We show an increase in GRX1 and a decrease in neuronal TRX1 in AD brains. Using SH-SY5Y cells, we demonstrate that Abeta causes an oxidation of both GRX1 and TRX1, and nuclear export of Daxx, a protein downstream of ASK1. Abeta toxicity was inhibited by insulin-like growth factor-I (IGF-I) and by overexpressing GRX1 or TRX1. Thus, Abeta neurotoxicity might be mediated by oxidation of GRX1 or TRX1 and subsequent activation of the ASK1 cascade. Deregulation of GRX1 and TRX1 antioxidant systems could be important events in AD pathogenesis.  相似文献   

13.
Butterfield DA  Kanski J 《Peptides》2002,23(7):1299-1309
Amyloid beta-peptide 1-42 [Abeta(1-42)] is central to the pathogenesis of Alzheimer's disease (AD), and the AD brain is under intense oxidative stress. Our laboratory combined these two aspects of AD into the Abeta-associated free radical oxidative stress model for neurodegeneration in AD brain. Abeta(1-42) caused protein oxidation, lipid peroxidation, reactive oxygen species formation, and cell death in neuronal and synaptosomal systems, all of which could be inhibited by free radical antioxidants. Recent studies have been directed at discerning molecular mechanisms by which Abeta(1-42)-associated free radical oxidative stress and neurotoxicity arise. The single methionine located in residue 35 of Abeta(1-42) is critical for these properties. This review presents the evidence supporting the role of methionine in Abeta(1-42)-associated free radical oxidative stress and neurotoxicity. This work is of obvious relevance to AD and provides a coupling between the centrality of Abeta(1-42) in the pathogenesis of AD and the oxidative stress under which the AD brain exists.  相似文献   

14.
Shin SJ  Lee SE  Boo JH  Kim M  Yoon YD  Kim SI  Mook-Jung I 《Proteomics》2004,4(11):3359-3368
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that is characterized by the extracellular deposition of beta-amyloid and intracellular hyperphosphorylation of tau in the cortex and hippocampus of the brain. These characterizations are caused by abnormal expression, modification and deposition of certain proteins. Post-translational modifications of proteins including oxidation and nitration might be involved in the pathogenesis of AD. In this study, AD-related proteins were identified in the cortex of Tg2576 mice used as a model for studying AD. Tg2576 mice express high levels of the Swedish mutated form of human beta-amyloid precursor protein (APP) and generated high levels of beta-amyloid in the brains. Using Western blotting and two-dimensional electrophoresis, proteins with differences in expression, oxidation and nitration in the cortex of Tg2576 mice brains were compared to littermate mice brains used as a control. The proteins with different expression levels were identified using matrix-assisted laser desorption/ionization-time of flight and liquid chromatography-tandem mass spectrometry analyses. As a result, 12 proteins were identified among 37 different proteins using the PDQuest program. Furthermore, two proteins, laminin receptor and alpha-enolase, were more susceptible to oxidative modification in the brains of Tg2576 mice compared to those of littermates. Similarly, alpha-enolase, calpain 12, and Atp5b were more modified by nitration in brains of Tg2576 mice than those of littermates. Taken together, these proteins and their modifications may play an important role in the plaque deposition of Tg2576 mice brains.  相似文献   

15.
Constitutive and PKC-regulated alpha-secretase pathways have been reported to produce the secreted form of alpha-secretase-derived APP (sAPPalpha). Here, we examined putative role of furin in the regulation of alpha-secretase activity in vitro and in vivo. Overexpression of the prodomain of furin and infection with a furin-specific inhibitor significantly reduced the levels of sAPPalpha regardless of PKC activity, whereas total APP levels remained unchanged. Furin mRNA levels in the brains of AD patients and Tg2576 mice were significantly lower than those in controls, whereas ADAM10 and TACE mRNA levels were much alike between Tg2576 and littermate mice. Moreover, the injection of furin-adenovirus into Tg2576 mouse brains markedly increased alpha-secretase activity and reduced beta-amyloid protein (Abeta) production in infected brain regions. Our results suggest that furin enhances alpha-secretase activity via the cleavage of ADAM10 and TACE, and that attenuated furin activity is connected to the production of Abeta.  相似文献   

16.
Increased cerebral levels of Abeta(42) peptide, either as soluble or aggregated forms, are suggested to play a key role in the pathogenesis of Alzheimer's disease (AD). The identification of genetic defects in presenilins and beta-amyloid precursor protein (beta-APP) has led to the development of cellular and animal models that have helped in understanding aspects of the pathophysiology of the inherited early onset forms of AD. However, the majority of AD cases are sporadic with no clear or defined genetic basis. While genetic mutations are responsible for the accumulation of Abeta in early onset AD, the causative factors for accumulation of Abeta in the late onset AD forms are not known. This raises the possibility that Abeta accumulation in the absence of genetic mutations might result from abnormalities that indirectly affect Abeta production or its clearance. Currently, there is no consensus as to what are the mechanisms by which Abeta accumulates or as to which mechanisms underlie Abeta-induced neuronal death in AD. In this review, I will first describe the physiological role of endoplasmic reticulum in the cell and review some of the data supporting dysfunction of the endoplasmic reticulum as an early event leading to Abeta accumulation in familial AD. I will also discuss the possible role of oxidative stress and other factors as contributors in Abeta accumulation by reducing the clearance of Abeta from the endoplasmic reticulum. Finally, I will summarize data that show the endoplasmic reticulum stress as a mechanism underlying exogenous Abeta neurotoxicity.  相似文献   

17.
Long-term vaccinations with human beta-amyloid peptide 1-42 (Abeta1-42) have recently been shown to prevent or markedly reduce Abeta deposition in the PDAPP transgenic model of Alzheimer's disease (AD). Using a similar protocol to vaccinate 7.5-month-old APP (Tg2576) and APP+PS1 transgenic mice over an 8-month period, we previously reported modest reductions in brain Abeta deposition at 16 months. In these same mice, Abeta vaccinations had no deleterious behavioral effects and, in fact, benefited the mice by providing partial protection from age-related deficits in spatial working memory in the radial arm water maze task (RAWM) at 15.5 months. By contrast, control-vaccinated transgenic mice exhibited impaired performance throughout the entire RAWM test period at 15.5 months. The present study expands on our initial report by presenting additional behavioral results following long-term Abeta vaccination, as well as correlational analyses between cognitive performance and Abeta deposition in vaccinated animals. We report that 8 months of Abeta vaccinations did not reverse an early-onset balance beam impairment in transgenic mice. Additionally, in Y-maze testing at 16 months, all mice showed comparable spontaneous alternation irrespective of genotype or vaccination status. Strong correlations were nonetheless present between RAWM performance and extent of "compact" Abeta deposition in both the hippocampus and the frontal cortex of vaccinated APP+PS1 mice. Our results suggest that the behavioral protection of long-term Abeta vaccinations is task specific, with preservation of hippocampal-associated working memory tasks most likely to occur. In view of the early short-term memory deficits exhibited by AD patients, Abeta vaccination of presymptomatic AD patients could be an effective therapeutic to protect against such cognitive impairments.  相似文献   

18.
The possibility of detecting progressive changes in cognitive function reflecting the spatio-temporal pattern of beta-amyloid peptide (Abeta) deposition was investigated in Tg2576 mice overexpressing the human mutant amyloid precursor protein (hAPP). Here, we show that at 7 months of age, Tg2576 mice exhibited a selective deficit in hippocampus-based operations including a defective habituation of object exploration, a lack of reactivity to spatial novelty and a disruption of allothetic orientation in a cross-shaped maze. At 14 months of age, Tg2576 mice displayed a more extended pattern of behavioral abnormalities, because they failed to react to object novelty and exclusively relied on motor-based orientation in the cross-shaped maze. However, an impaired reactivity to spatial and object novelty possibly reflecting age-related attention deficits also emerged in aged wild-type mice. These findings further underline that early cognitive markers of AD can be detected in Tg2576 mice before Abeta deposition occurs and suggest that as in humans, cognitive deterioration progressively evolves from an initial hippocampal syndrome to global dementia because of the combined effect of the neuropathology and aging.  相似文献   

19.
Oxidative stress is strongly implicated in the progressive decline of cognition associated with aging and neurodegenerative disorders. In the brain, free radical-mediated oxidative stress plays a critical role in the age-related decline of cellular function as a result of the oxidation of proteins, lipids, and nucleic acids. A number of studies indicate that an increase in protein oxidation and lipid peroxidation is associated with age-related neurodegenerative diseases and cellular dysfunction observed in aging brains. Oxidative stress is one of the important factors contributing to Alzheimer's disease (AD), one of whose major hallmarks includes brain depositions of amyloid beta-peptide (Abeta) derived from amyloid precursor protein (APP). Mutation in APP and PS-1 genes, which increases production of the highly amyloidogenic amyloid beta-peptide (Abeta42), is the major cause of familial AD. In the present study, protein oxidation and lipid peroxidation in the brain from knock-in mice expressing human mutant APP and PS-1 were compared with brain from wild type, as a function of age. The results suggest that there is an increased oxidative stress in the brain of wild-type mice as a function of age. In APP/PS-1 mouse brain, there is a basal increase (at 1 month) in oxidative stress compared to the wild type (1 month), as measured by protein oxidation and lipid peroxidation. In addition, age-related elevation of oxidative damage was observed in APP/PS-1 mice brain compared to that of wild-type mice brain. These results are discussed with reference to the importance of Abeta42-associated oxidative stress in the pathogenesis of AD.  相似文献   

20.
Oxidized neprilysin in aging and Alzheimer's disease brains   总被引:6,自引:0,他引:6  
Deposition of amyloid in the brain is important in the pathogenesis of Alzheimer's disease (AD), but it remains to be determined if deposition is due to increased production or decreased clearance of fibrillogenic forms of beta-amyloid (Abeta). Except for rare genetic forms of AD, there is little evidence for increased production of Abeta, but decreases in enzymes involved in the clearance of Abeta are increasingly being investigated. Neprilysin (NEP) is a major enzyme for degradation of Abeta and changes in amount or activity of NEP may play a role in Abeta deposition in AD. Since oxidative damage to proteins, including formation of adducts such as 4-hydroxynonenal (HNE), has been reported in AD, it was of interest to determine if NEP might be susceptible to oxidative modification. To address this question, monoclonal antibody immunoprecipitates of NEP were probed with polyclonal antibodies to NEP and HNE. The results showed decreased NEP in AD compared to normal controls. NEP in both AD and controls had HNE-modification and the ratio of oxidized to total NEP was greater in AD than in controls. These findings suggest that decreased NEP may contribute to Abeta deposition in AD and that age-related oxidative damage to NEP may play a role in age-related cerebral amyloidosis that is exacerbated in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号