首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the transforming growth factor‐β superfamily, including bone morphogenetic protein 4 (BMP‐4), have been implicated as regulators of neuronal and glial differentiation. To test for a possible role of BMP‐4 in early mammalian neural specification, we examined its effect on neurogenesis in aggregate cultures of mouse embryonic stem (ES) cells. Compared to control aggregates, in which up to 20% of the cells acquired immunoreactivity for the neuron‐specific antibody TuJ1, aggregates maintained for 8 days in serum‐free medium containing BMP‐4 generated 5‐ to 10‐fold fewer neurons. The action of BMP‐4 was dose dependent and restricted to the fifth through eighth day in suspension. In addition to the reduction in neurons, we observed that ES cell cultures exposed to BMP‐4 contained fewer cells that were immunoreactive for glial fibrillary acidic protein or the HNK‐1 neural antigen. Furthermore, under phase contrast, cultures prepared from BMP‐4–treated aggregates contained a significant proportion of nonneuronal cells with a characteristic flat, elongated morphology. These cells were immunoreactive for antibodies to the intermediate filament protein vimentin; they were rare or absent in control cultures. Treatment with BMP‐4 enhanced the expression of the early mesodermal genes brachyury and tbx6 but had relatively little effect on total cell number or cell death. Coapplication of the BMP‐4 antagonist noggin counteracted the effect of exogenous BMP‐4, but noggin alone had no effect on neuralization in either the absence or presence of retinoids. Collectively, our results suggest that BMP‐4 can overcome the neuralizing action of retinoic acid to enhance mesodermal differentiation of murine ES cells. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 271–287, 1999  相似文献   

2.
To examine the role of secreted signaling molecules and neurogenic genes in early development, we have developed a culture system for the controlled differentiation of mouse embryonic stem (ES) cells. In the current investigation, two of the earliest identified BMP antagonists/neural-inducing factors, noggin and chordin, were expressed in pluripotent mouse ES cells. Neurons were present as early as 24 h following transfection of ES cells with a pCS2/noggin expression plasmid, with differentiation peaking at 72 h. With neuronal differentiation, stem cell marker genes were down-regulated and neural determination genes expressed. Coculture experiments and exposure to noggin-conditioned medium produced similar neuronal differentiation of control ES cells, while addition of BMP-4 to noggin expressants strikingly inhibited neuronal differentiation. Transfection of ES cells with a pCS2/chordin expression vector or exposure to chordin-conditioned medium produced a more complex pattern of differentiation; ES cells formed neurons, mesenchymal cells as well as N-CAM-positive, nestin-positive neuroepithelial progenitors. These data suggest that, consistent with their different expression fields, noggin and chordin may play distinct roles in patterning the early mouse embryo.  相似文献   

3.
4.
We have developed a new simple method to induce serotonergic neurons from embryonic stem (ES) and induced pluripotent stem cells. When ES or induced pluripotent stem cells were cultured on a thick gel layer of Matrigel, most colonies extended TuJ1-positive neurites. We found that noggin, a known antagonist of bone morphogenic protein, induces ES cells to express genes involved in serotonergic differentiation, such as Nkx2.2, Pet-1, Sonic hedgehog, tryptophan hydroxylase 2, and serotonin transporter, as well as increases high potassium-induced release of serotonin. To concentrate serotonergic neurons, ES cells carrying Pet-1-enhancer-driven enhanced green fluorescent protein were differentiated and sorted into about 80% pure cultures of serotonergic neurons. Whole cell voltage-clamp recordings showed a voltage-dependent current in dissociated neurons. This simplified method provides an alternative option for serotonergic differentiation of pluripotent stem cells and will likely contribute a deeper understanding regarding the nature of serotonergic neurons and open new therapeutic perspectives for the treatment of psychiatric disorders.  相似文献   

5.
6.
Recent studies show that specification of some neural crest lineages occurs prior to or at the time of migration from the neural tube. We investigated what signaling events establish the melanocyte lineage, which has been shown to migrate from the trunk neural tube after the neuronal and glial lineages. Using in situ hybridization, we find that, although Wnts are expressed in the dorsal neural tube throughout the time when neural crest cells are migrating, the Wnt inhibitor cfrzb-1 is expressed in the neuronal and glial precursors and not in melanoblasts. This expression pattern suggests that Wnt signaling may be involved in specifying the melanocyte lineage. We further report that Wnt-3a-conditioned medium dramatically increases the number of pigment cells in quail neural crest cultures while decreasing the number of neurons and glial cells, without affecting proliferation. Conversely, BMP-4 is expressed in the dorsal neural tube throughout the time when neural crest cells are migrating, but is decreased coincident with the timing of melanoblast migration. This expression pattern suggests that BMP signaling may be involved in neural and glial cell differentiation or repression of melanogenesis. Purified BMP-4 reduces the number of pigment cells in culture while increasing the number of neurons and glial cells, also without affecting proliferation. Our data suggest that Wnt signaling specifies melanocytes at the expense of the neuronal and glial lineages, and further, that Wnt and BMP signaling have antagonistic functions in the specification of the trunk neural crest.  相似文献   

7.
We examined the potential neurotrophic effects of bone morphogenetic protein (BMP)-2 on the survival and differentiation of neurons cultured from the rat developing striatum at embryonic day 16, a period during which the mRNAs for BMP-2 and its receptor subunits (types IA, IB, and II) were detected. BMP-2 exerted potent activity to promote the survival of striatal neurons and increased the number of surviving microtubule-associated protein-2-positive cells by 2.4-fold as compared with the control cultures after 4 days in vitro. Although basic fibroblast growth factor (bFGF) also showed relatively high activity to promote the survival of striatal neurons, transforming growth factor-beta1, -beta2, and -beta3, glial cell line-derived neurotrophic factor, or brain-derived neurotrophic factor promoted their survival weakly. Striatal neurons cultured in the presence of BMP-2 or bFGF possessed extensive neurite outgrowths, the majority of which were GABA-immunoreactive. Inhibition of glial cell proliferation by 5-fluorodeoxyuridine did not affect the capacity of BMP-2 to promote the survival of striatal GABAergic neurons. In contrast, the ability of bFGF to promote the survival of striatal neurons was inhibited significantly by the treatment of cells with 5-fluorodeoxyuridine. All these results suggest that BMP-2 exerts potent neurotrophic effects on the striatal GABAergic neurons in a glial cell-independent manner.  相似文献   

8.
Human embryonic stem (ES) cells have the capacity for self-renewal and are able to differentiate into any cell type. However, obtaining high-efficient neural differentiation from human ES cells remains a challenge. This study describes an improved 4-stage protocol to induce a human ES cell line derived from a Chinese population to differentiate into neural cells. At the first stage, embryonic bodies (EBs) were formed in a chemically-defined neural inducing medium rather than in traditional serum or serum-replacement medium. At the second stage, rosette-like structures were formed. At the third stage, the rosette-like structures were manually selected rather than enzymatically digested to form floating neurospheres. At the fourth stage, the neurospheres were further differentiated into neurons. The results show that, at the second stage, the rate of the formation of rosette-like structures from EBs induced by noggin was 88+/-6.32%, higher than that of retinoic acid 55+/-5.27%. Immunocytochemistry staining was used to confirm the neural identity of the cells. These results show a major improvement in obtaining efficient neural differentiation of human ES cells.  相似文献   

9.
Differentiation of monkey embryonic stem cells into neural lineages   总被引:5,自引:0,他引:5  
Embryonic stem (ES) cells are self-renewing, pluripotent, and capable of differentiating into all of the cell types found in the adult body. Therefore, they have the potential to replace degenerated or damaged cells, including those in the central nervous system. For ES cell-based therapy to become a clinical reality, translational research involving nonhuman primates is essential. Here, we report monkey ES cell differentiation into embryoid bodies (EBs), neural progenitor cells (NPCs), and committed neural phenotypes. The ES cells were aggregated in hanging drops to form EBs. The EBs were then plated onto adhesive surfaces in a serum-free medium to form NPCs and expanded in serum-free medium containing fibroblast growth factor (FGF)-2 before neural differentiation was induced. Cells were characterized at each step by immunocytochemistry for the presence of specific markers. The majority of cells in complex/cystic EBs expressed antigens (alpha-fetal protein, cardiac troponin I, and vimentin) representative of all three embryonic germ layers. Greater than 70% of the expanded cell populations expressed antigenic markers (nestin and musashi1) for NPCs. After removal of FGF-2, approximately 70% of the NPCs differentiated into neuronal phenotypes expressing either microtubule-associated protein-2C (MAP2C) or neuronal nuclear antigen (NeuN), and approximately 28% differentiated into glial cell types expressing glial fibrillary acidic protein. Small populations of MAP2C/NeuN-positive cells also expressed tyrosine hydroxylase (approximately 4%) or choline acetyltransferase (approximately 13%). These results suggest that monkey ES cells spontaneously differentiate into cells of all three germ layers, can be induced and maintained as NPCs, and can be further differentiated into committed neural lineages, including putative neurons and glial cells.  相似文献   

10.
11.
The major role of radial glial cells in neuronal development is to provide support and guidance for neuronal migration. In vitro, neurons, astrocytes and oligodendrocytes have also been generated from neural stem cells and embryonic stem cells, but the generation of radial glial cells in vitro has not yet been reported. Since radial glial cells can lead to neurons and astrocytes during brain development, neurogenesis and gliogenesis of stem cells in vitro may at least in part also utilize the same mechanisms. To test this hypothesis, we utilized five different clones of embryonic (ES) and embryonal carcinoma (EC) stem cell lines to investigate the differentiation of radial glial cells during in vitro neural differentiation. Here, we demonstrate that radial glial cells can be generated from ES/EC cell lines. These ES/EC cell‐derived radial glial cells are similar in morphology to radial glial cells in vivo. They also express several cytoskeletal markers that are characteristics of radial glial cells in vivo. The processes of these in vitro‐generated radial glial cells are organized into scaffolds that appear to support the migration of newly generated neurons in culture. Like radial glial cells in vivo, they appear to differentiate subsequently into astrocytes. Differentiation of radial glial cells may be a common pathway during in vitro neural differentiation of ES cells. This novel in vitro model system may facilitate the investigation of regulation of radial glial cell differentiation and its biological function. Acknowledgements: Supported by USPHS Grant NS11853 and a grant from the Children's Medical Research Foundation.  相似文献   

12.
Neural cultures derived from differentiating embryonic stem (ES) cells are a potentially powerful in vitro model of neural development. We show that neural cells derived from mouse ES cells express mRNAs characteristic of GABAergic neurons. The glutamate decarboxylase genes (Gad1 and Gad2), required for GABA synthesis and the vesicular inhibitory amino acid transporter (Viaat) gene, required for GABA vesicular packaging are activated in the ES-derived cultures. Nearly half of the ES-derived neurons express the GAD67 protein, the product of the Gad1 gene. Building on these results we show that Gad1-lacZ "knockin" reporter ES cell lines can be used to easily monitor Gad1 expression patterns and expression levels during ES differentiation. We also demonstrate that the ES-derived neural progenitors can be infected with retroviruses or transfected with plasmids via lipofection. These experiments outline the basic strategies and methods required for studies of GABAergic gene expression and regulation in ES-derived neuronal cultures.  相似文献   

13.
A detailed protocol is described allowing the generation of essentially pure populations of glutamatergic neurons from mouse embryonic stem (ES) cells. It is based on the culture of ES cells that are kept undifferentiated by repeated splitting and subsequently amplified as non-adherent cell aggregates. Treatment with retinoic acid causes these ES cells to essentially become neural progenitors with the characteristics of Pax6-positive radial glial cells. As they do in vivo, these progenitors differentiate in glutamatergic pyramidal neurons that form functional synaptic contacts and can be kept in culture for long periods of time. This protocol does not require the use of ES lines expressing resistance or fluorescent markers and can thus be applied in principle to any wild-type or mutant ES line of interest. At least 2 weeks are required from starting ES cell culture until plating progenitors and differentiating neurons establish synaptic transmission within about 10 days.  相似文献   

14.
15.
Serum-free mouse embryo (SFME) cells are an epidermal growth factor (EGF)-dependent established line derived from brains of 16-d-old Balb/c mouse embryos. SFME cells grow indefinitely in serum-free medium without replicative senescence, chromosomal abnormalities, or malignant transformation. SFME cells express nestin, a neural stem cell marker, under serum-free conditions. Exposure to serum or transforming growth factor β (TGF-β) leads to a marked increase in differentiation toward the astrocytic lineage with expression of glial fibrillary acidic protein and other astrocyte markers. In this study, we show that treatment of SFME cells with bone morphogenetic protein-4 (BMP-4), another member of the TGF-β family, led to differentiation toward a neuronal lineage under conditions of low mitogenic stimulation (0.5 ng/mL) by EGF and fibroblast growth factor. Maximum mitogenic stimulation with 50 ng/mL EGF blocked the BMP-4 effect on neuronal differentiation, but did not block TGF-β-induced expression of markers of the astrocytic lineage. BMP-4 treatment also enhanced the activity of the neuron-specific enolase (NSE) promoter in SFME-NSE-lacZ cells that carry the gene for bacterial β-galactosidase under the control of the NSE promoter. Extended BMP-4 treatment caused SFME cells to express a neuronal phenotype synthesizing gamma-aminobutyric acid. These results indicate that SFME cells have the capacity to generate both neurons and astrocytes in vitro, which resemble the behavior of EGF-dependent multipotential stem cells in the central nervous system, and establish a relationship between effects of BMP-4 and degree of mitogenic stimulation by other peptide growth factors.  相似文献   

16.
17.
18.
Embryonic ectoderm is fated to become either neural or epidermal, depending on patterning processes that occur before and during gastrulation. It has been stated that epidermal commitment proceeds from a bone morphogenetic protein-4 (BMP-4)-dependent inhibition of dorsal ectoderm neuralization. We recently demonstrated that murine embryonic stem (ES) cells treated with BMP-4 undergo effective keratinocyte commitment and epidermogenesis. Focusing on the precise role of BMP-4 in the early choice between neural and epidermal commitment, we show here that BMP-4 treatment of ES cells leads to a dramatic apoptotic death of Sox-1+ neural precursors with concomitant epidermal engagement. In addition, neutralization of the Smad pathway prevents both the BMP-4 apoptotic process and the inhibition of neural differentiation. Our results suggest that, in mammals, BMP-4, as an active inducer of epidermal commitment, interferes with the survival of neural precursors through induction of their apoptotic cell death.  相似文献   

19.
Culture of embryonic stem (ES) cells at high density inhibits both beta-catenin signaling and neural differentiation. ES cell density does not influence beta-catenin expression, but a greater proportion of beta-catenin is targeted for degradation in high-density cultures. Moreover, in high-density cultures, beta-catenin is preferentially localized to the membrane further reducing beta-catenin signaling. Increasing beta-catenin signaling by treatment with Wnt3a-conditioned medium, by overexpression of beta-catenin, or by overexpression of a dominant-negative form of E-cadherin promotes neurogenesis. Furthermore, beta-catenin signaling is sufficient to induce neurogenesis in high-density cultures even in the absence of retinoic acid (RA), although RA potentiates the effects of beta-catenin. By contrast, RA does not induce neurogenesis in high-density cultures in the absence of beta-catenin signaling. Truncation of the armadillo domain of beta-catenin, but not the C terminus or the N terminus, eliminates its proneural effects. The proneural effects of beta-catenin reflect enhanced lineage commitment rather than proliferation of neural progenitor cells. Neurons induced by beta-catenin overexpression either alone or in association with RA express the caudal neuronal marker Hoxc4. However, RA treatment inhibits the beta-catenin-mediated generation of tyrosine hydroxylase-positive neurons, suggesting that not all of the effects of RA are dependent upon beta-catenin signaling. These observations suggest that beta-catenin signaling promotes neural lineage commitment by ES cells, and that beta-catenin signaling may be a necessary co-factor for RA-mediated neuronal differentiation. Further, enhancement of beta-catenin signaling with RA treatment significantly increases the numbers of neurons generated from ES cells, thus suggesting a method for obtaining large numbers of neural species for possible use in for ES cell transplantation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号