首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiac myocyte cultures usually require pharmacological intervention to prevent overproliferation of contaminating nonmyocytes. Our aim is to prevent excessive fibroblast cell proliferation without the use of cytostatins. We have produced a silicone surface with 10-µm vertical projections that we term "pegs," to which over 80% of rat neonatal cardiac fibroblasts attach within 48 h after plating. There was a 50% decrease in cell proliferation by 5 days of culture compared with flat membranes (P < 0.001) and a concomitant 60% decrease (P < 0.01) in cyclin D1 protein levels, suggesting a G1/S1 cell cycle arrest due to microtopography. Inhibition of Rho kinase with 5 or 20 µM Y-27632 reduced attachment of fibroblasts to the pegs by over 50% (P < 0.001), suggesting that this signaling pathway plays an important role in the process. Using mobile and immobile 10-µm polystyrene spheres, we show that reactive forces are important for inhibiting fibroblast cell proliferation, because mobile spheres failed to reduce cell proliferation. In primary myocyte cultures, pegs also inhibit fibroblast proliferation in the absence of cytostatins. The ratio of aminopropeptide of collagen protein from fibroblasts to myosin from myocytes was significantly reduced in cultures from pegged surfaces (P < 0.01), suggesting an increase in the proportion of myocytes on the pegged surfaces. Connexin43 protein expression was also increased, suggesting improved myocyte-myocyte interaction in the presence of pegs. We conclude that this microtextured culture system is useful for preventing proliferation of fibroblasts in myocyte cultures and may ultimately be useful for tissue engineering applications in vivo. tissue engineering; cell culture; cell cycle  相似文献   

2.
Although the cause for bone marrow fibrosis in patients with myelofibrosis remains controversial, it has been hypothesized that it is caused by extensive fibroblast proliferation under the influence of cytokines generated by the malignant megakaryocytes. Moreover, there is no known drug therapy which could reverse the process. We studied the fibroblasts in a novel system using the hanging drop method, evaluated whether the fibroblasts obtain from patients are part of the malignant clone of not and, using this system, we screen a large library of FDA‐approved drugs to identify potential drugs candidates that might be useful in the treatment of this disease, specifically which would inhibit fibroblast proliferation and the development of bone marrow fibrosis. We have found that the BM fibroblasts are not part of the malignant clone, as previously suspected and two immunosuppressive medications—cyclosporine and mycophenolate mophetil, as most potent suppressors of the fibroblast collagen production thus potentially inhibitors of bone marrow fibrosis production in myelofibrosis.  相似文献   

3.
Acupuncture has many advantages in the treatment of certain diseases as opposed to drug therapy. Besides, adenosine has been revealed to affect cellular progression including proliferation. Therefore, this study aimed at exploring the mechanism involving acupuncture stress and adenosine in fibroblast proliferation. The fibroblasts from fascia tissues of the acupoint area (Zusanli) were stimulated by different levels of stress, different concentrations of adenosine, and agonist or antagonist of A3 receptor (A3R) to investigate the effect of stress stimulation, adenosine, and adenosine-A3R inhibition on fibroblasts. Then, the fibroblasts were treated with stress stimulation of 200 kPa or/and mitogen-activated protein kinase (MAPK) blocker. We revealed that stress stimulation and the binding of adenosine and A3R promoted fibroblast proliferation in the fascial tissue, increased the expression of immune-related factors, adenosine and A3R, and activated the MAPK signaling pathway. MAPK signaling pathway also directly affected the expression of adenosine, A3R, and immune-related factors. Stress stimulation and adenosine treatment upregulated A3R expression, and then activated the MAPK signaling pathway, which could in turn upregulate expression of adenosine, A3R and immune-related factors, and promote cell proliferation. Adenosine is shown to form a positive feedback loop with the MAPK signaling pathway. Collectively, stress stimulation in vitro induces the increase of adenosine in fibroblasts through the energy metabolism and activation of the MAPK signaling pathway through A3R, ultimately promoting fibroblast proliferation.  相似文献   

4.
5.
Alveolar type II (ATII) cells inhibit fibroblast proliferation in coculture by releasing or secreting a factor(s) that stimulates fibroblast production of prostaglandin E2 (PGE2). In the present study, we sought to determine the factors released from ATII cells that stimulate PGE2 production in fibroblasts. Exogenous addition of rat IL-1alpha to cultured lung fibroblasts induced PGE2 secretion in a dose-response manner. When fibroblasts were cocultured with rat ATII cells, IL-1alpha protein was detectable in ATII cells and in the coculture medium between days 8 and 12 of culture, correlating with the highest levels of PGE2. Furthermore, under coculture conditions, IL-1alpha gene expression increased in ATII cells (but not fibroblasts) compared with either cell cultured alone. In both mixed species (human fibroblasts-rat ATII cells) and same species cocultures (rat fibroblasts and ATII cells), PGE2 secretion was inhibited by the presence of IL-1 receptor antagonist (IL-1Ra) or selective neutralizing antibody directed against rat IL-1alpha (but not IL-1beta). Conditioned media from cocultures inhibited fibroblast proliferation, and this effect was abrogated by the addition of IL-1Ra. Addition of keratinocyte growth factor (KGF) resulted in an earlier increase in PGE2 secretion and fibroblast inhibition (day 8 of coculture). This effect was inhibited by indomethacin but was not altered by IL-1Ra. We conclude that in this coculture system, IL-1alpha secretion by ATII cells is one factor that stimulates PGE2 production by lung fibroblasts, thereby inhibiting fibroblast proliferation. In addition, these studies demonstrate that KGF enhances ATII cell PGE2 production through an IL-1alpha-independent pathway.  相似文献   

6.
Subepithelial tissue cell types in vivo are separated from air by the surface-covering epithelial layer of various organs, e.g., the skin, cornea, and respiratory and upper alimentary tracts. The epithelial defect caused by inflammatory, traumatic or surgical injury would be expected to expose the subepithelial tissue-localized fibroblasts to influx air. However, it is unclear what effects air stimulation elicits in fibroblast growth, which is critical for wound healing. To address this question, we examined the proliferation of 3T3 fibroblasts with bromodeoxyuridine (BrdU) uptake, using fibroblast-embedded collagen gel culture with or without air exposure. The BrdU intake of air-exposed fibroblasts was about 6 times that of air-nonexposed cells. To further characterize this fibroblast growth, we examined the expression of mitogen-activated protein kinase (MAPK) cascade, which plays a key role in the growth-signaling pathway of various cell types. Immunohistochemistry and Western blotting showed that air exposure increased MAPK cascade expression of the cells more strongly than air nonexposure. The data indicate that air exposure promotes MAPK cascade-associated fibroblast growth, suggesting in turn that in wound repair air stimulation itself may be involved in the basic mechanisms of subepithelial fibroblast proliferation and that it may be related to the pathogenesis of excessive fibroplasia through fibroblast overgrowth.  相似文献   

7.
Tumor stroma plays an important role in cancer development. In a variety of tumors, such as breast carcinomas, a desmoplastic response, characterized by stromal fibroblast and collagen accumulation, is observed having synergistic effects on tumor progression. However, the effect of known anticancer drugs on stromal cells has not been thoroughly investigated. Imatinib mesylate is a selective inhibitor of several protein tyrosine kinases, including the receptor of platelet-derived growth factor, an important mediator of desmoplasia. Recently, we have shown that imatinib inhibits the growth and invasiveness of human epithelial breast cancer cells. Here, we studied the effect of imatinib on the proliferation and collagen accumulation in breast stromal fibroblasts. We have shown that it blocks the activation of the extracellular signal-regulated kinase and Akt signaling pathways and up-regulates cyclin-dependent kinase inhibitor p21(WAF1), leading to the inhibition of fibroblast proliferation, by arresting them at the G(0)/G(1) phase of the cell cycle. Imatinib inhibits more potently the platelet-derived growth factor-mediated stimulation of breast fibroblast proliferation. By using specific inhibitors, we have found that this is due to the inhibition of the Akt pathway. In addition, imatinib inhibits fibroblast-mediated collagen accumulation. Conventional and quantitative PCR analysis, as well as gelatin zymography, indicates that this is due to the down-regulation of mRNA synthesis of collagen I and collagen III-the main collagen types in breast stroma-and not to the up-regulation or activation of collagenases matrix metalloproteinase 2 and matrix metalloproteinase 9. These data indicate that imatinib has an antifibrotic effect on human breast stromal fibroblasts that may inhibit desmoplastic reaction and thus tumor progression.  相似文献   

8.
This study aims to understand the role of the matrix polysaccharide hyaluronan (HA) in influencing fibroblast proliferation and thereby affecting wound healing outcomes. To determine mechanisms that underlie scarred versus scar-free healing, patient-matched dermal and oral mucosal fibroblasts were used as models of scarring and non-scarring fibroblast phenotypes. Specifically, differences in HA generation between these distinct fibroblast populations have been examined and related to differences in transforming growth factor-beta(1) (TGF-beta(1))-dependent proliferative responses and Smad signaling. There was a differential growth response to TGF-beta(1), with it inducing proliferation in dermal fibroblasts but an anti-proliferative response in oral fibroblasts. Both responses were Smad3-dependent. Furthermore, the two fibroblast populations also demonstrated differences in their HA regulation, with dermal fibroblasts generating increased levels of HA, compared with oral fibroblasts. Inhibition of HA synthesis in dermal fibroblasts was shown to abrogate the TGF-beta(1)-mediated induction of proliferation. Inhibition of HA synthesis also led to an attenuation of Smad3 signaling in dermal fibroblasts. Microarray analysis demonstrated no difference in the genes involved in TGF-beta(1) signaling between dermal and oral fibroblasts, whereas there was a distinct difference in the pattern of genes involved in HA regulation. In conclusion, these two distinct fibroblast populations demonstrate a differential proliferative response to TGF-beta(1), which is associated with differences in HA generation. TGF-beta(1) regulates proliferation through Smad3 signaling in both fibroblast populations; however, it is the levels of HA generated by the cells that influence the outcome of this response.  相似文献   

9.
《FEBS letters》1999,442(2-3):178-182
Several recent studies have shown that proteins of the cadherin-catenin complex are not only involved in cell-cell adhesion but also in the proliferation and differentiation processes. For the first time, we investigated the effect of the quantity of cytoplasmic β-catenin on dermal fibroblast proliferation by overexpressing human β-catenin in human dermal fibroblasts. Our results show that dermal fibroblasts overexpressing normal β-catenin or a stabilized β-catenin mutant have a higher growth rate than control fibroblasts. Moreover, when confluence is reached, the number of fibroblasts is increased when the cells overexpress β-catenin suggesting a role for β-catenin in the regulation of contact growth arrest. Finally, by comparing proliferation in normal dermal fibroblasts and dermal fibroblasts expressing E-cadherin we observed a negative regulatory effect of E-cadherin expression on fibroblast proliferation. These data demonstrate the involvement of β-catenin and cadherin in the dermal fibroblast proliferation process and in contact growth arrest.  相似文献   

10.
ObjectivesThe present study clarified the role and signalling pathway of Ski in regulating proliferation and apoptosis in fibroblasts under high‐glucose (HG) conditions.Materials and MethodsThe proliferation and apoptosis of rat primary fibroblasts were assessed using EdU incorporation and TUNEL assays. The protein and phosphorylation levels of the corresponding factors were measured using immunofluorescence staining and Western blotting. Immunoprecipitation was used to determine the interactions between Ski and FoxO1 or Ski and HDAC1. The Ski protein was overexpressed via recombinant adenovirus transfection, and FoxO1 and HDAC1 were knocked down using targeted small‐interfering RNA.ResultsThe present study found that HG inhibited fibroblast proliferation, increased apoptosis and reduced Ski levels in rat primary fibroblasts. Conversely, increasing Ski protein levels alleviated HG‐induced proliferation inhibition and apoptosis promotion. Increasing Ski protein levels also increased Ski binding to FoxO1 to decrease FoxO1 acetylation, and interfering with FoxO1 caused loss of the regulatory effect of Ski in fibroblasts under HG. Increasing Ski protein levels decreased FoxO1 acetylation via HDAC1‐mediated deacetylation.ConclusionsTherefore, these findings confirmed for the first time that Ski regulated fibroblast proliferation and apoptosis under HG conditions via the FoxO1 pathway.  相似文献   

11.
The proliferation of fibroblasts creates an environment favoring post-operative tendon adhesion, but targeted therapy of this pathology remains in its infancy. In this study, we explored the effect of heat shock protein 72 (HSP72), a major inducible member of the heat shock protein family that can protect cells against many cellular stresses including heat shock, on fibroblast proliferation in tendon adhesion, with its underlying mechanisms investigated. HSP72 expression was examined in an established rat model of tendon injury using RT-qPCR and immunoblot analysis. After conducting ectopic expression and depletion experiments in fibroblast NIH3T3 cells, we determined the effects of HSP72 on the expression of α-SMA and STAT3 signaling pathway-related genes, fibroblast proliferation, as well as collagen production. The mRNA (65.46%) and protein (63.65%) expression of HSP72 was downregulated in the rat model of tendon injury. The in vitro experiments revealed that overexpression of HSP72 inhibited fibroblast proliferation (42.57%) and collagen production (45.60%), as well as reducing α-SMA expression (42.49%) and the extent of STAT3 phosphorylation (55.46%). Moreover, we observed that HSP72 overexpression reduced inflammation as well as the number of inflammatory cell infiltration and fibroblasts in vivo. Furthermore, the inhibited extent of STAT3 phosphorylation contributed to the impaired fibroblast proliferation and collagen production evoked by upregulated HSP72. In summary, the present study unveils an inhibitory role of HSP72 in tendon adhesion via inactivation of the STAT3 signaling pathway. This finding may enable the development of new therapeutic strategies for the prevention against tendon adhesion.  相似文献   

12.
Macrophages are considered promoters of fibroblast proliferation; however, suppression by activated macrophages may outweigh this effect. Activated murine peritoneal macrophages obtained by in vivo exposure to C. parvum or by in vitro LPS-activation of thioglycollate-induced macrophages, were tested for their effect on normal syngeneic dermal fibroblasts. C. parvum-activated macrophages, but not resident peritoneal macrophages suppressed fibroblast proliferation. Similarly, macrophages activated in vitro by LPS, but not those unexposed to LPS, suppressed fibroblast proliferation. Catalase partially protected fibroblasts from suppression by either activated macrophage population, suggesting involvement of H2O2 in the suppression. The effect of cyclooxygenase inhibitors on the suppression was also tested. Indomethacin, acetylsalicyclic acid, or eicosatetraynoic acid, all partially protected the fibroblasts from macrophage-mediated suppression. Prostaglandins E2, E1, and F2 alpha, added exogenously at concentrations as high as 10(-6) M, failed to suppress the proliferation of the fibroblasts. These findings suggest that a non-prostaglandin product of the cyclooxygenase pathway is involved in macrophage-mediated suppression of fibroblast proliferation.  相似文献   

13.
To elucidate mechanisms involved in the regulation of lung collagen content we studied hamsters with bleomycin-induced pulmonary fibrosis. Lung collagen in this model is increased as the result of greatly increased lung collagen synthesis rates. However, collagen synthesis rates are subsequently restored to normal. Hamster lung explants from both normal and bleomycin-exposed hamsters were cultured, and the effects of explant conditioned medium (CM) on lung fibroblast (IMR-90) proliferation and collagen production in vitro were determined. Lung explant CM increased fibroblast prostaglandin (PG)E2 production and intracellular cAMP, and decreased both fibroblast proliferation and collagen production in a dose-dependent manner. Greater activity was observed with lung explant CM from bleomycin-exposed lungs. Incubation of fibroblasts with indomethacin prior to addition of CM blocked CM-mediated changes in PGE2 and cAMP and inhibited changes in fibroblast proliferation and collagen production. Exogenous PGE2 or dibutyryl cAMP also suppressed fibroblast proliferation and collagen production. The suppressive activity in lung-conditioned medium is nondialyzable, has an apparent molecular weight of 15,000-20,000 by gel filtration, and is heat-stable. It is not species-restricted since CM from hamster lung affected human and hamster lung fibroblasts similarly. Activity is present preformed in lung and bronchoalveolar lavage fluid, although bronchoalveolar macrophages produce a nondialyzable factor in culture which suppresses fibroblast proliferation. The suppressive activity identified in fibrotic lung may represent a means for limiting collagen accumulation following tumor injury.  相似文献   

14.
Idiopathic pulmonary fibrosis (IPF) is a progressive fibroproliferative disease characterized by an accumulation of fibroblasts and myofibroblasts in the alveolar wall. Even though the pathogenesis of this fatal disorder remains unclear, transforming growth factor-β (TGF-β)-induced differentiation and proliferation of myofibroblasts is recognized as a primary event. The molecular pathways involved in TGF-β signalling are generally Smad-dependent yet Smad-independent pathways, including phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), have been recently proposed. In this research we established ex-vivo cultures of human lung fibroblasts and we investigated the role of the PI3K/Akt pathway in two critical stages of the fibrotic process induced by TGF-β: fibroblast proliferation and differentiation into myofibroblasts. Here we show that the pan-inhibitor of PI3Ks LY294002 is able to abrogate the TGF-β-induced increase in cell proliferation, in α- smooth muscle actin expression and in collagen production besides inhibiting Akt phosphorylation, thus demonstrating the centrality of the PI3K/Akt pathway in lung fibroblast proliferation and differentiation. Moreover, for the first time we show that PI3K p110δ and p110γ are functionally expressed in human lung fibroblasts, in addition to the ubiquitously expressed p110α and β. Finally, results obtained with both selective inhibitors and gene knocking-down experiments demonstrate a major role of p110γ and p110α in both TGF-β-induced fibroblast proliferation and differentiation. This finding suggests that specific PI3K isoforms can be pharmacological targets in IPF.  相似文献   

15.
16.
Uncontrolled fibroblast activation is one of the hallmarks of fibrotic lung disease. Prostaglandin E(2) (PGE(2)) has been shown to inhibit fibroblast migration, proliferation, collagen deposition, and myofibroblast differentiation in the lung. Understanding the mechanisms for these effects may provide insight into the pathogenesis of fibrotic lung disease. Previous work has focused on commercially available fibroblast cell lines derived from tissue whose precise origin and histopathology are often unknown. Here, we sought to define the mechanism of PGE(2) inhibition in patient-derived fibroblasts from peripheral lung verified to be histologically normal. Fibroblasts were grown from explants of resected lung, and proliferation and collagen I expression was determined following treatment with PGE(2) or modulators of its receptors and downstream signaling components. PGE(2) inhibited fibroblast proliferation by 33% and collagen I expression by 62%. PGE(2) resulted in a 15-fold increase in intracellular cAMP; other cAMP-elevating agents inhibited collagen I in a manner similar to PGE(2). These effects were reproduced by butaprost, a PGE(2) analog selective for the cAMP-coupled E prostanoid (EP) 2 receptor, but not by selective EP3 or EP4 agonists. Fibroblasts expressed both major cAMP effectors, protein kinase A (PKA) and exchange protein activated by cAMP-1 (Epac-1), but only a selective PKA agonist was able to appreciably inhibit collagen I expression. Treatment with okadaic acid, a phosphatase inhibitor, potentiated the effects of PGE(2). Our data indicate that PGE(2) inhibits fibroblast activation in primary lung fibroblasts via binding of EP2 receptor and production of cAMP; inhibition of collagen I proceeds via activation of PKA.  相似文献   

17.
Chiang HS  Wu WB  Fang JY  Chen DF  Chen BH  Huang CC  Chen YT  Hung CF 《Life sciences》2007,81(21-22):1509-1517
In melanoma development and progression, platelet-derived growth factor (PDGF) has been suggested to modulate the microenvironment, especially stromal fibroblasts, to the benefit of melanoma growth, invasion, and metastasis. Lycopene, a natural carotenoid that is abundant in tomato, has been shown to inhibit proliferation of several types of cancer cells. However, little attention has been paid to skin fibroblasts and melanoma cells. In the present study, we determined the effects of lycopene on stromal fibroblasts and their interactions with melanoma cells. We found that lycopene inhibited PDGF-BB-induced human Hs68 skin fibroblast migration on gelatin and collagen. Further analysis showed that lycopene inhibited PDGF-BB-induced signaling in human Hs68 and primary cultured skin fibroblasts. PDGF-BB-induced phosphorylation of PDGF receptor beta (PDGFR-beta), extracellular signal-regulated kinase 1/2 (ERK1/2), p38, and c-Jun N-terminal kinase (JNK) was attenuated by lycopene in a concentration-dependent manner, whereas the total expression of each protein was not affected. Interestingly, dot binding assay revealed that lycopene could directly bind to human PDGF-BB in PBS and human plasma, indicating that lycopene can bind to PDGF-BB in both in vitro and in vivo conditions. In functional studies, lycopene inhibited melanoma-induced fibroblast migration in a noncontact coculture system and attenuated signaling in fibroblasts simulated by melanoma-derived conditioned medium. Our results provide the first evidence showing that lycopene is an effective inhibitor of migration of stromal fibroblasts and this effect may contribute to its antitumor activity.  相似文献   

18.
Tubulointerstitial fibrosis is largely mediated by (myo)fibroblasts present in the interstitium. In this study, we investigated the role of mTOR and phosphatidylinositol 3-kinase in the regulation of fibroblast kinetics, fibroblast differentiation, and collagen synthesis. Rat renal fibroblasts were propagated from kidneys 3 days post-ureteric obstruction and specific inhibitors of mTOR (RAD) and phosphatidylinositol 3-kinase (LY294002) were used to examine the regulation of fibrogenesis. LY294002 but not RAD completely inhibited phosphorylation of Akt, while both inhibitors decreased phosphorylation of the S6 ribosomal protein. RAD and LY decreased foetal calf serum stimulated proliferation and DNA synthesis. In addition to their individual effects, treatment with both RAD and LY294002 decreased serum-induced fibroblast proliferation and DNA synthesis significantly more than either drug alone. TUNEL positive cells (apoptosis) in RAD and LY294002 treated groups were not different from control groups. In addition to their effect on proliferation, both inhibitors also reduced total collagen synthesis. Differentiation studies indicated an increase in alpha-smooth muscle actin expression relative to beta-actin (western blotting), with cytochemistry confirming that all doses of RAD and LY294002 increased the proportion of alpha-smooth muscle actin positive cells, and hence myofibroblasts. Effects were independent of cell toxicity. These results highlight the potential significance of PI3K and mTOR, in the regulation of renal (myo)fibroblast activity. The synergistic effects of LY and RAD on proliferation suggest that mTOR signalling involves pathways other than phosphatidylinositol 3-kinase. These results provide a novel insight into the mechanisms of fibroblast regulation during fibrogenesis.  相似文献   

19.
Increases in cardiovascular load (pressure overload) are known to elicit ventricular remodeling including cardiomyocyte hypertrophy and interstitial fibrosis. While numerous studies have focused on the mechanisms of myocyte hypertrophy, comparatively little is known regarding the response of the interstitial fibroblasts to increased cardiovascular load. Fibroblasts are the most numerous cell type in the mammalian myocardium and have long been recognized as producing the majority of the myocardial extracellular matrix. It is only now becoming appreciated that other aspects of fibroblast behavior are important to overall cardiac function. The present studies were performed to examine the temporal alterations in fibroblast activity in response to increased cardiovascular load. Rat myocardial fibroblasts were isolated at specific time-points (3, 7, 14, and 28 days) after induction of pressure overload by abdominal aortic constriction. Bioassays were performed to measure specific parameters of fibroblast function including remodeling and contraction of 3-dimensional collagen gels, migration, and proliferation. In addition, the expression of extracellular matrix receptors of the integrin family was examined. Myocardial hypertrophy and fibrosis were evident within 7 days after constriction of the abdominal aorta. Collagen gel contraction, migration, and proliferation were enhanced in fibroblasts from pressure-overloaded animals compared to fibroblasts from sham animals. Differences in fibroblast function and protein expression were evident within 7 days of aortic constriction, concurrent with the onset of hypertrophy and fibrosis of the intact myocardium. These data provide further support for the idea that rapid and dynamic changes in fibroblast phenotype accompany and contribute to the progression of cardiovascular disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号