首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yield of ultraweak photon emission in a cell culture model for biophotonic measurements using fibroblastic differentiation depended on the temperature of photonic measurement. The ultraweak photon emission of medium was significantly higher at 37 degrees C than at 25 degrees C and after UVB-irradiation this difference was even more pronounced. While with cells in the medium no temperature dependence could be determined in unirradiated samples, after UVB-irradiation of cells an increase of biophotonic emission was observed in postmitotic fibroblasts. While after several UVB exposures normal cells begin to absorb the ultraviolet light, cells from patients with the disease Xeroderma Pigmentosum loose this capacity. In view that fibroblasts play an essential role in skin aging, skin carcinogenesis and wound healing, the biophotonic model using the fibroblastic differentiation system provides to be a new and powerful non-invasive tool for the development of skin science.  相似文献   

2.
Living organisms have been known to spontaneously emit ultraweak photons in vivo and in vitro. Origin of the photon emission remains unclear, especially in the nervous system. The spontaneous ultraweak photon emission was detected here from cultured rat cerebellar granule neurons using a photomultiplier tube which was highly sensitive to visible light. The photon emission was facilitated by the membrane depolarization of neurons by a high concentration of K+ and was attenuated by application of tetrodotoxin or removal of extracellular Ca2+, indicating the photon emission depending on the neuronal activity and likely on the cellular metabolism. Furthermore, almost all the photon emission was arrested by 2,4-dinitrophenylhydrazine, indicating that the photon emission would be derived from oxidized molecules. Detection of the spontaneous ultraweak photon emission will realize noninvasive and real-time monitoring of the redox state of neural tissue corresponding to the neuronal activity and metabolism.  相似文献   

3.
We measured ultraweak emissions of the Xenopus laevis eggs and embryos during normal development and under the influence of stress factors in a spectral range of 250 to 800 nm using a photomultiplier. The registered emissions were analyzed by several basic characteristics: mean intensity, histograms, kurtosis, linear trends, and Fourier spectra. We followed relationships between these parameters and developmental stage, as well as the number of individuals in optic contact with each other. The ultraweak emissions did not differ from the background at all developmental stages according to the mean intensity. But Fourier analysis revealed the reliable presence of a number of spectral lines of ultraweak emission, predominantly in the range of 10?2–50 Hz, in the embryos at developmental stages 2 to 11. The intensity of ultraweak emissions reliably decreased within the first 10 min after egg activation and fertilization, as well as in the case of optic interaction between groups of embryos. Sharp cooling, increase in osmotic medium pressure, and transfer in a Ca2+ and Mg2+-free medium induced a short term (~1–5 min) increase in the mean intensity of ultraweak emission. We studied specific features of ultraweak emissions from different parts of the embryo. The intensity of emission from the animal part of early blastula exceeded those from the vegetal area and entire embryo. Separated fragments of the lateral ectoderm at the neurula stage had higher mean intensities of ultraweak emission than intact embryos at the same developmental stages.  相似文献   

4.
We measured ultraweak emissions of the Xenopus laevis eggs and embryos during normal development and under the influence of stress factors in a spectral range of 250 to 800 nm using a photomultiplier. The registered emissions were analyzed by several basic characteristics: mean intensity, histograms, kurtosis, linear trends, and Fourier spectra. We followed relationships between these parameters and developmental stage, as well as the number of individuals in optic contact with each other. The ultraweak emissions did not differ from the background at all developmental stages according to the mean intensity. But Fourier analysis revealed the reliable presence of a number of spectral lines of ultraweak emission, predominantly in the ranges of 10-20 and 30-40 Hz, in the embryos at developmental stages 2 to 11. The intensity of ultraweak emissions reliably decreased within the first 10 min after egg activation and fertilization, as well as in the case of optic interaction between groups of embryos. Sharp cooling, increase in osmotic medium pressure, and transfer in a Ca(2+)- and Mg(2+)-free medium induced a short term (approximately 1-5 min) increase in the mean intensity of ultraweak emission. We studied specific features of ultraweak emissions from different parts of the embryo. The intensity of emission from the animal part of early blastula exceeded those from the vegetal area and entire embryo. Separated fragments of the lateral ectoderm at the neurula stage had higher mean intensities of ultraweak emission than intact embryos at the same developmental stages.  相似文献   

5.
This study demonstrates that aequorin, a luminescent natural dye, is useful for vascular cell intracellular Ca2+ concentration ([Ca2+]i) determination. A new single-photon counting technique was developed to resolve the effects of fluid flow shear stress on [Ca2+]i in human aortic smooth muscle cells (HASMCs). Confluent HASMCs were grown on petri dishes loaded with aequorin. Then the dishes were placed in a luminometer chamber after the physiological level of shear stress was applied to the HASMC surfaces. The chamber was housed inside a highly sensitive photomultiplier tube. It detected ultraweak photon emission in response to the [Ca2+]i transient. In the presence of 2.0 mM extracellular Ca2+, a shear stress of 12 dyn cm2, applied for 60 s to the top surface of the HASMC monolayer, elicited a sharp increase in [Ca2+]i.  相似文献   

6.
N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG) was found to induce an ultraweak photon emission in cultures of Chinese hamster fibroblasts (CHL). Measurements suggest that the light emission is due to a reaction between MNNG and cellular metabolites. The light emission depended on the concentration of MNNG and was oxygen-dependent, disappearing in a nitrogen atmosphere. Superoxide dismutase (SOD) or sodium azide decreased the emission intensity. The production of chromosomal aberrations in CHL by MNNG was correlated with the light emission intensity and was inhibited in the presence of SOD.  相似文献   

7.
The emission of ultraweak light from cells is a phenomenon associated with the oxidation of biomolecules by reactive oxygen species. The indole moiety present in tryptophan, serotonin and melatonin is frequently associated with the emission of light during the oxidation of these metabolites. This study presents results for hypobromous acid (HOBr) oxidation of tryptophan as a putative endogenous source of ultraweak light emission. We found that chemiluminescence elicited by the oxidation of tryptophan by HOBr was significantly higher than by hypochlorous acid (HOCl). This difference was related to secondary oxidation reactions, which were more intense using HOBr. The products identified during oxidation by HOCl, but depleted by using HOBr, were N‐formylkynurenine, kynurenine, 1,2,3,3a,8,8a‐hexahydro‐3a‐hydroxypyrrolo[2,3‐b]‐indole‐2‐carboxylic acid, oxindolylalanine and dioxindolylalanine. The emission of light is dependent on the free α‐amino group of tryptophan, and hence, the indole of serotonin and melatonin, although efficiently oxidized, did not produce chemiluminescence. The emission of light was even greater using taurine monobromamine and dibromamine as the oxidant compared to HOBr. A mechanism based on bromine radical intermediates is suggested for the higher efficiency in light emission. Altogether, the experimental evidence described in the present study indicates that the oxidation of free tryptophan or tryptophan residues in proteins is an important source of ultraweak cellular emission of light. This light emission is increased in the presence of taurine, an amino acid present in large amounts in leukocytes, where this putative source of ultraweak light emission is even more relevant. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Ultraweak emissions of groups comprising several dozens of unfertilized and fertilized loach eggs, embryos, larvae, and their egg envelopes were measured on a photomultiplier tube. The envelopes absorbed the light from external sources but readily gave it back in the absence of embryos. We carried out statistical and frequency-amplitude analyses of ultraweak emissions and studied the autocorrelation structure of their frequency spectra. The frequencies of signals with different intensity underwent regular changes during development. Cascades of short-term (< or = 1 ms) flashes timed (during cleavage) to furrowing were a characteristic element of ultraweak emission. The Fourier spectra of developing embryos had pronounced frequency-amplitude peaks and higher, than in unfertilized eggs and inanimate samples, mutual correlation during successive time intervals. Stage-specific translational symmetry of the frequency spectra of ultraweak emissions was demonstrated, which suggests the presence in groups of embryos of a coordinated system of harmonic oscillators. The latter underwent regular changes during development. The measurement of ultraweak emissions represents a unique non-invasive method of analysis of these oscillators.  相似文献   

9.
The human body literally glimmers. The intensity of the light emitted by the body is 1000 times lower than the sensitivity of our naked eyes. Ultraweak photon emission is known as the energy released as light through the changes in energy metabolism. We successfully imaged the diurnal change of this ultraweak photon emission with an improved highly sensitive imaging system using cryogenic charge-coupled device (CCD) camera. We found that the human body directly and rhythmically emits light. The diurnal changes in photon emission might be linked to changes in energy metabolism.  相似文献   

10.
A scanning system for the detection of spontaneous ultraweak photon emission from nude mice with transplanted tumors is presented. A photomultiplier tube (PMT) with an effective area of 15 mm diameter was used for measuring photon emission in a wavelength range from 300 to 650 nm. Tumors were induced in nude mice by transplantation of an ovarian cancer cell line into the back of mice. The PMT was moved for scanning over the whole body of a mouse placed in a dark box. The profiles of the intensities of photon emissions from the tumor mice are presented and compared with those obtained from the control mice.  相似文献   

11.
电离辐射对活细胞超弱发光的影响   总被引:3,自引:0,他引:3  
本文报导了活细胞(CHO和V_(79)细胞)的辐射诱导低水平发光.实验证明,这种诱导的超弱光子发射要比未受辐照的细胞发光要高,我们发现该诱导发光的强度依赖于照射剂量.辐射增敏剂miso(Misonidazole)可以增强活细胞的超弱光子发射.  相似文献   

12.
Ultraweak emissions of groups comprising several dozens of unfertilized and fertilized loach eggs, embryos, larvae, and their egg envelopes were measured on a photomultiplier tube. The envelopes absorbed the light from external sources but readily gave it back in the absence of embryos. We carried out statistical and frequency-amplitude analyses of ultraweak emissions and studied the autocorrelation structure of their frequency spectra. The frequencies of signals with different intensity underwent regular changes during development. Cascades of short-term (1 ms) flashes timed (during cleavage) to furrowing were a characteristic element of ultraweak emission. The Fourier spectra of developing embryos had pronounced frequency-amplitude peaks and higher, than in unfertilized eggs and inanimate samples, mutual correlation during successive time intervals. Stage-specific translational symmetry of the frequency spectra of ultraweak emissions was demonstrated, which suggests the presence in groups of embryos of a coordinated system of harmonic oscillators. The latter underwent regular changes during development. The measurement of ultraweak emissions represents a unique non-invasive method of analysis of these oscillators.  相似文献   

13.
The ultraweak light emission of isolated chloroplasts (Hidegand Inaba (1991) Photochem. Photobiol. 52: 137) was investigatedin comparison to delayed light emission. We compared the concentrationdependence and the spectral distribution of the light emittedfrom isolated chloroplasts stored in the dark for 10 s, 2 min(delayed light emission), 4 and 10 h (ultraweak light emission),respectively. In samples with low chlorophyll concentration, spectra of allemission phenomena were maximal at 685–695 nm, but spectraof ultraweak light, especially that of long term (10 h) emission,were broader in the 700–800 nm region than spectra ofdelayed light, indicating emission from a bigger variety ofchlorophyll molecules. The intensity of delayed light and short term (4 h) ultraweaklight exhibited a simple, saturating exponential dependenceon chlorophyll concentration, while long term (10 h) ultraweaklight emission was best described as a saturating exponentialcontaining a quadratic function of the concentration. This differencesuggests that long term ultraweak light emission is broughtabout by reactions distinct from the earlier described mechanismof electron transport related dark photoemission. (Received November 15, 1991; Accepted May 18, 1992)  相似文献   

14.
Advent of the multichannel plate and position sensitive detector has made possible true single photon counting imaging tubes. We have investigated the application of these detectors in studies of the ultraweak light emission of biological materials. Initially, we focussed our efforts on two objectives: (1) obtaining single photon counting images of living tissues using only the light (chemiluminescence) emitted by the specimen and (2) developing means of obtaining well-resolved spectra of weakly emitting sources. We have obtained a variety of images. One striking result of this work is the first observation of tissue specific localization of photon emission in situ. Using this detector we have also obtained the first well-resolved spectra of some important ultraweak emission processes. These results illustrate the potential use of single photon imaging in bioluminescence and chemiluminescence research.  相似文献   

15.
The phenomenon of ultraweak photon emission from living systems was further investigated in order to elucidate the physical properties of this radiation and its possible source. We obtained evidence that the light has a high degree of coherence because of (1) its photon count statistics, (2) its spectral distribution, (3) its decay behavior after exposure to light illumination, and (4) its transparency through optically thick materials. Moroever, DNA is apparently at least an important source, since conformational changes induced with ethidium bromide in vivo are clearly reflected by changes of the photon emission of cells. The physical properties of the radiation are described, taking DNA as an exciplex laser system, where a stable state can be reached far from thermal equilibrium at threshold.  相似文献   

16.
Long term light emission was compared from leaves of paraquat-resistant and -susceptible tobacco plants. In the minutes time scale, delayed light emission of the two biotypes was similar both in kinetics and in intensity. However, after several hours in the dark, ultraweak light emission from leaves of resistant plants was about one third of the light emitted by susceptible samples. We suggest, that this difference is due to the higher activity of superoxide dismutase in resistant biotypes, earlier reported by Tanaka et al. (1988) (Plant Cell Physiol. 29, 743-746), and propose a model for the mechanism of ultraweak light emission from these samples.  相似文献   

17.
《Mutation Research Letters》1992,281(3):215-220
N-Methyl-N′-nitro-N-nitrosoguanidine (MNNG) was found to induce an ultraweak photon emission in cultures of Chinese hamster fibroblasts (CHL). Measurements suggest that the light emission is due to a reaction between MNNG and cellular metabolites. The light emission depended on the concentration of MNNG and was oxygen-dependent, disappearing in a nitrogen atmosphere. Superoxide dismutase (SOD) or sodium azide decreased the emission intensity. The production of chromosomal aberrations in CHL by MNNG was correlated with the light emission intensity and was inhibited in the presence of SOD.  相似文献   

18.
Biophoton emission. New evidence for coherence and DNA as source   总被引:3,自引:0,他引:3  
The phenomenon of ultraweak photon emission from living systems was further investigated in order to elucidate the physical properties of this radiation and its possible source. We obtained evidence that the light has a high degree of coherence because of (1) its photon count statistics, (2) its spectral distribution, (3) its decay behavior after exposure to light illumination, and (4) its transparency through optically thick materials. Moreover, DNA is apparently at least an important source, since conformational changes induced with ethidium bromide in vivo are clearly reflected by changes of the photon emission of cells. The physical properties of the radiation are described, taking DNA as an exciplex laser system, where a stable state can be reached far from thermal equilibrium at threshold.  相似文献   

19.
Phosphene phenomenon: a new concept   总被引:1,自引:0,他引:1  
Bókkon I 《Bio Systems》2008,92(2):168-174
This paper proposes a new biopsychophysical concept of phosphene phenomenon. Namely, visual sensation of phosphenes is due to the intrinsic perception of ultraweak bioluminescent photon emission of cells in the visual system. In other words, phosphenes are bioluminescent biophotons in the visual system induced by various stimuli (mechanical, electrical, magnetic, ionizing radiation, etc.) as well as random bioluminescent biophotons firings of cells in the visual pathway. This biophoton emission can become conscious if induced or spontaneous biophoton emission of cells in the visual system exceeds a distinct threshold. Neuronal biophoton communication can occur by means of non-visual neuronal opsins and natural photosensitive biomolecules. Our interpretation is in direct connection with the functional roles of free radicals and excited biomolecules in living cells.  相似文献   

20.
Within physiological engineering exogenous carbohydrates were recently confirmed as pharmacologically active compounds. To investigate potential dermatological activity purified polysaccharides from kiwi fruits (Actinidia chinensis L., Actinidiaceae) were characterized concerning monomer composition, linkage types and molecular weights and were tested under in vitro conditions for regulating activities on cell physiology of human keratinocytes, fibroblasts, and skin equivalents. Ten micrograms per milliliter of raw polysaccharide, neutral type-II-arabinogalactans, and acidic arabinorhamnogalacturonans of kiwi fruits stimulated cell proliferation of human keratinocytes (NHK, HaCaT) up to 30% significantly while mitochondrial activity was stimulated for nearly 25% in regard to control cells. Fibroblasts were not as sensitive as keratinocytes but >130 microg/ml kiwi fruit polysaccharides increased proliferation and ATP-synthesis significantly, too. Proliferation-stimulating activity was dependent on terminal 1-alpha-l-arabinose residues since enzymatic release of these sugar moieties caused significantly decreased proliferation of HaCaT and fibroblasts of about 10% in regard to untreated cells. In three dimensional skin equivalents, it was shown that the polysaccharides led to a doubled collagen synthesis of fibroblasts compared to the normally strongly reduced biosynthetic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号