首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The steroidogenic capacity and oxidative stress-related parameters of the human corpus luteum (CL) at different stages of the luteal phase were studied under basal and human chorionic gonadotropin (hCG)-stimulated conditions. Mid CL exhibited the maximal steroidogenic capacity, together with lower levels of glutathione and higher thiobarbituric acid reactants content, macrophage count, and superoxide dismutase (SOD) activity, compared to the late CL. Addition of hCG to luteal cell cultures led to a preferential increase in progesterone synthesis in the late CL compared to the mid CL, without changes in the oxidative stress-related parameters, except for the increased SOD activity found in the late CL. It is concluded that an oxidative stress condition is established in the mid CL, coinciding with the maximal steroidogenic capacity and macrophage infiltration of the organ, which be of relevance as one of the major mechanisms initiating CL involution in the human.  相似文献   

2.
3.
Small (less than or equal to 15 microns diameter) and large (greater than 20 microns diam.) luteal cells of the rhesus monkey have been separated by flow cytometry based on light scatter properties. To determine whether the steroidogenic ability and agonist responsiveness of luteal cell subpopulations vary during the life span of the corpus luteum, small and large cells were obtained at early (Days 3-5), mid (Days 7-8), mid-late (Days 11-12), and late (Days 14-15) luteal phase of the cycle. Cells (n = 4 exp./group) were incubated in Ham's F-10 medium + 0.1% BSA for 3 h at 37 degrees C with or without hCG (100 ng/ml), prostaglandin E2 (PGE2; 14 microM), dibutyryl-cAMP (db-cAMP; 5 mM), or pregnenolone (1 microM). Basal progesterone (P) production by large cells was up to 30-fold that by small cells depending on the stage of the cycle. HCG stimulated (p less than 0.05) P secretion by both small (1.8 +/- 0.2-fold) and large (3.7 +/- 0.7-fold) cells in the early luteal phase. HCG responsiveness declined during the luteal lifespan; P production by small cells was not significantly enhanced by hCG by mid luteal phase, whereas that by large cells was stimulated 1.7 +/- 0.2-fold (p less than 0.05) even at late luteal phase. Cell responses to db-cAMP were similar to those for hCG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Peripheral concentrations of immunoreactive relaxin are undetectable in primates during the nonfertile menstrual cycle, but become measurable during the interval when chorionic gonadotropin (CG) rises in early pregnancy. The objectives of the current study were to determine if exogenous CG, administered in a dosage regimen which invoked patterns and concentrations resembling those of early pregnancy, would induce relaxin secretion in nonpregnant rhesus monkeys, and whether the induction was dependent on the age of the corpus luteum (CL) at the onset of treatment. Female rhesus monkeys received twice-daily i.m. injections of increasing doses of human CG (hCG) for 10 days beginning in the early (n = 4), mid (n = 6) or late (n = 4) luteal phase of the menstrual cycle [5.3 +/- 0.3, 8.3 +/- 0.5, and 12.0 +/- 0.4 days after the midcycle luteinizing hormone (LH) surge, respectively; means +/- SEM]. Whereas immunoreactive relaxin was nondetectable in the luteal phase of posttreatment cycles, detectable levels of relaxin were observed in 2 of 4, 5 of 6, and 3 of 4 monkeys during hCG treatment in the early, mid and late luteal phase, respectively. Although CG treatment rapidly enhance progesterone levels, the appearance of relaxin was deferred; relaxin was first detectable 9.0 +/- 1.0 and 4.7 +/- 1.9 days after the onset of CG treatment at early and late luteal phases. Patterns of relaxin concentrations differed among groups (P less than 0.05, ANOVA; split plot design) and relaxin levels were lowest (P less than 0.01) in monkeys treated during the early luteal phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The effect of prostaglandin PGF2 alpha on the hCG stimulated and basal progesterone production by human corpora lutea was examined in vitro. hCG (40 i.u./ml) stimulated progesterone formation in corpora lutea of early (days 16-19 of a normal 28 day cycle), mid (days 20-22) and late (days 23-27) luteal phases. This stimulation was inhibited by PGF2 alpha (10 micrograms/ml) in corpora lutea of mid and late luteal phases. PGF2 alpha alone did not show a consistent effect on basal progesterone production. The inhibition of hCG stimulated progesterone production by PGF2 alpha at times corresponding to luteolysis indicates a role for that prostaglandin in the process of luteolysis in the human corpus luteum.  相似文献   

6.
7.
This study was carried out to evaluate the luteotrophic influence of early (before Day 7 as well as after Day 7; Day 0=estrus) bovine embryos and the relationship between plasma progesterone (P4) concentrations and embryo survival. Virgin Holstein dairy heifers (n=325) from a single herd were randomly allocated to be nonbred, bred by artificial insemination (AI) or by embryo transfer (ET). Bred heifers were either treated with 1500 IU human chorionic gonadotrophin (hCG) on Day 7 of the estrous cycle or received no hCG treatment. Plasma P4 concentrations on Days 0, 5, 7, 10, 13, 15, 17, 19 and 21 were similar in pregnant AI- and ET-bred heifers and, this was observed in both hCG-treated and untreated females. Nonbred, AI- and ET-bred nonpregnant heifers (both hCG-treated and untreated) presented similar plasma P4 concentrations. Plasma P4 concentrations of pregnant heifers significantly deviated from those of nonpregnant and nonbred heifers on Day 17. In hCG-treated heifers, plasma P4 concentrations and Day 28 pregnancy rate were significantly higher in females with an induced accessory corpus luteum (CL) than in those females without an induced accessory CL. Treatment with hCG, although inducing the formation of accessory CL and significantly increasing plasma P4 concentrations had no significant effect on Day 28 pregnancy rate. In conclusion, this study does not support the existence of any peripherally detectable luteotrophic influence from early embryos (Days 5-7). Plasma P4 was only significantly related to embryo survival on Day 17, the time of expected onset of luteolysis.  相似文献   

8.
We hypothesized that administration of hCG to recipients at embryo transfer (ET) would induce accessory CL, increase serum progesterone concentrations, and reduce early embryonic loss (as measured by increased transfer pregnancy rates). At three locations, purebred and crossbred Angus, Simmental, and Hereford recipients (n = 719) were assigned alternately to receive i.m. 1,000 IU hCG or 1 mL saline (control) at ET. Fresh or frozen-thawed embryos were transferred to recipients with a palpable CL on Days 5.5 to 8.5 (median = Day 7) of the cycle (Locations 1 and 2), or on Day 7 after timed ovulation (Location 3). Pregnancy diagnoses (transrectal ultrasonography) were done 28 to 39 d (median = 35 d) and reconfirmed 58 to 77 d (median = 67 d) post-estrus. At Location 1 (n = 108), ovaries were examined at pregnancy diagnosis to enumerate CL. More (P < 0.001) pregnant hCG-treated cows (69.0%) had multiple CL than pregnant controls (0%). Serum progesterone (ng/mL) determined at Locations 1 and 2 (n = 471) at both pregnancy diagnoses in pregnant cows was greater (P ≤ 0.05) after hCG treatment than in controls (first: 8.1 ± 0.9 vs 6.1 ± 0.8; second: 8.8 ± 0.9 vs 6.6 ± 0.7), respectively. Unadjusted pregnancy rates at the first diagnosis were 61.8 and 53.9% for hCG and controls. At the second diagnosis, pregnancy rates were 58.6 and 51.3%, respectively. Treatment (P = 0.026), embryo type (P = 0.016), and BCS (P = 0.074) affected transfer pregnancy rates. Based on odds ratios, greater pregnancy rates occurred in recipients receiving hCG, a fresh embryo (66.3 vs 55.5%), and having BCS >5 (62.3 vs 55.3%). We concluded that giving hCG at ET increased incidence of accessory CL, serum progesterone in pregnant recipients, and transfer pregnancy rates. Furthermore, we inferred that increased progesterone resulting from hCG-induced ovulation reduced early embryonic losses after transfer of embryos to recipients.  相似文献   

9.
Effects of recombinant bovine somatotropin (bST) on growth of the corpus luteum (CL) and development of ovarian follicles were tested. Starting at estrus (Day=0), the following treatments were administered: control (saline injected Days 0 to 19, n=5); bST[0-9] (25 mg bST injected Days 0 to 9, saline injected Days 10 to 19, n=5); bST[10-19] (saline injected Days 0 to 9, 25 mg bST injected Days 10 to 19, n=5); and bST[0-19] (25 mg bST injected Days 0 to 19, n=6). Blood was collected daily for progesterone analysis, and ultrasound examinations were performed daily for measurement of follicles and CL. Compared with the heifers treated with saline, those treated with bST had larger CL and more progesterone during the early (/=10 mm) follicles was greater (P<0.01) and largest follicles were smaller (P<0.001) in bST than in saline-treated heifers. Estrous cycle length and ovulation rate were similar for each group. In conclusion, bST increased initial development of the CL and extended its function. Furthermore, the second follicular wave was earlier with bST.  相似文献   

10.
Members of the tumor necrosis factor (TNF)-receptor (R) family may be involved in the tissue remodeling that occurs in the primate corpus luteum (CL) during development and regression. As a first step towards addressing this issue, studies assessed TNF ligand-R expression and regulation in CL collected from monkeys during the early (ECL, Days 3-5), mid (MCL, Days 7-8), mid-late (MLCL, Days 10-11), late (LCL, Days 14-16), and very late (VLCL, menses) luteal phase of the menstrual cycle. CL were also collected after gonadotropin and/or steroid ablation and replacement (with hLH and the progestin R5020) for 3 days at mid-late luteal phase. TNF-alpha, -beta, FAS ligand (FASL), and TNF-R1 mRNA levels were two- to sixfold greater (P < 0.05) at the MLCL or LCL phase as compared to earlier (ECL, MCL). In contrast, TNF-R2 and FAS mRNA levels did not change during the luteal phase. Immunohistochemical staining for TNF-beta, TNF-R1, TNF-R2, FAS, and FASL was observed in luteal cells, whereas only TNF-beta staining was observed in endothelial cells. Several TNF-R components were influenced by LH and/or steroid ablation; notably, steroid ablation reduced (P < 0.05) luteal TNF-alpha, but not TNF-beta, mRNA levels, which was prevented by progestin treatment. In contrast, steroid ablation increased (P < 0.05) luteal cell immunostaining for FAS and FASL, which was reduced by progestin treatment. Thus, several members of the TNF R-ligand family are expressed in the primate CL in an LH- and/or progestin-dependent manner. Peak expression in the late luteal phase may signify a role for the TNF-R system in death receptor-mediated apoptosis during luteolysis.  相似文献   

11.
Luteal regression is initiated by prostaglandin F(2 alpha) (PGF(2 alpha)). In domestic species and primates, demise of the corpus luteum (CL) enables development of a new preovulatory follicle. However, during early stages of the cycle, which are characterized by massive neovascularization, the CL is refractory to PGF(2 alpha). Our previous studies showed that endothelin-1 (ET-1), which is produced by the endothelial cells lining these blood vessels, plays a crucial role during PGF(2 alpha)-induced luteolysis. Therefore, in this study, we compared the effects of PGF(2 alpha) administered at the early and mid luteal phases on ET-1 and its type A receptors (ETA-R) along with plasma ET-1 and progesterone concentrations, and the mRNA levels of PGF(2 alpha) receptors (PGF(2 alpha)-R) and steroidogenic genes. As expected, ET-1 and ETA-R mRNA levels were markedly induced in midcycle CL exposed to luteolytic dose of PGF(2 alpha) analogue (Cloprostenol). In contrast, neither ET-1 mRNA nor its receptors were elevated when the same dose of PGF(2 alpha) analogue was administered on Day 4 of the cycle. In accordance with ET-1 expression within the CL, plasma ET-1 concentrations were significantly elevated 24 h after PGF(2 alpha) injection only on Day 10 of the cycle. The steroidogenic capacity of the CL (plasma progesterone as well as the mRNA levels of steroidogenic acute regulatory protein and cytochrome P450(scc)) was only affected when PGF(2 alpha) was administered during midcycle. Nevertheless, PGF(2 alpha) elicited certain responses in the early CL: progesterone and oxytocin secretion were elevated, and PGF(2 alpha)-R was transiently affected. Such effects probably result from PGF(2 alpha) acting on luteal steroidogenic cells. These findings may suggest, however, that the cell type mediating the luteolytic actions of PGF(2 alpha), possibly the endothelium, could yet be nonresponsive during the early luteal phase.  相似文献   

12.
13.
Phosphorylation of immunopurified chicken oviduct progesterone receptor (PR) was studied in intact cells and under cell-free conditions. Cytosol PR was isolated by incubation with anti-PR monoclonal antibody alpha PR22 adsorbed to protein A-Sepharose and suspended in a reaction mixture containing 10 mM Mg2+, 0.1 mM [gamma-32P]ATP, and the catalytic subunit of cAMP-dependent protein kinase (cAMP-PK) from bovine heart. All three major proteins of avian PR (PR-A, 79 kDa; PR-B, 110 kDa; 90 kDa) incorporated 32P-radioactivity on serine residues. The phosphorylation reaction was inhibited by synthetic inhibitors of protein kinases, H-8 and 20-residue peptide IP20. A 40 degrees C preexposure of PR oligomer increased phosphorylation of the 90-kDa protein, known to be a heat-shock protein (hsp-90). The extent of the phosphorylation reaction was temperature-dependent as the 32P-incorporation into PR-A and PR-B increased gradually, showing a maximum at 37 degrees C. Multiple phosphopeptides (4-7) were resolved by two-dimensional electrophoresis chromatography following cleavage of 32P-labeled peptides with trypsin. Both A and B forms of receptor showed similar phosphorylation patterns with B receptor digestion exhibiting two to three additional peptides. Under physiological conditions, preincubation of oviduct mince with forskolin, a regulator of intracellular cAMP levels, caused a greater extent of phosphorylation of PR-A and PR-B proteins. The results of this study demonstrate that chicken oviduct PR is an excellent substrate for the action of cAMP-PK in vitro and that this enzyme may be a physiological regulator of progesterone action in the oviduct.  相似文献   

14.
15.
16.
Ovarian response to hCG treatment during the oestrous cycle in heifers   总被引:2,自引:0,他引:2  
The aims of this study were to investigate whether treatment with a single ovulatory dose of hCG, between the day of oestrus and the end of the luteal phase, could induce extra ovulations in heifers and whether the presence of an existing corpus luteum (CL) affected the response. Heifers (N = 32) were injected with 1500 i.u. hCG or saline on a given day of the oestrous cycle. Treatments were repeated during subsequent cycles to provide a total of 71 observations, 57 of which followed an injection of hCG, given between Day 0 (oestrus) and Day 16, and 14 of which followed saline injections as controls. Ovulatory responses were noted by laparoscopy 2 days after hCG treatment. No heifers injected with saline produced additional CL. Of the hCG-treated cycles, 23 resulted in the formation of an additional CL, and this was significantly affected by the stage of the oestrous cycle when hCG was given; a greater response was observed during the early (Days 4-7) and late (Days 14-16) stages of the luteal phase than at the mid-luteal phase of the oestrous cycle. Two heifers were also treated with hCG on Days 17 or 18 of the oestrous cycle, but before oestrus; both had induced CL. There were no significant differences between the left-right orientation of the existing CL or the hCG-induced CL. These results demonstrate that the large, luteal-phase follicle of the cow is capable of ovulating in response to hCG and that the induced CL is not affected by the presence of an existing CL.  相似文献   

17.
Recent studies suggest that the progesterone receptor isoforms (PR-A and PR-B) activate genes differentially and that PR-A may act as a repressor of PR-B function. Hence, the absolute and relative expression of the two isoforms will determine the response to progesterone. We have measured their relative expression in the uterus of cycling women who underwent endometrial biopsy. PR isoforms were identified on blots of SDS-PAGE gels by reaction with the AB-52 antibody after immunoprecipitation from endometrial extract. Both isoforms were highest in the peri-ovulatory phase, but levels of PR-A were always higher than those of PR-B. The ratio of PR-A to PR-B changed during the menstrual cycle. Between days 2 and 8, PR-B is almost undetectable and the A:B ratio is >10:1. From days 9 to 13, the ratio is about 5:1, and it is about 2:1 between days 14 and 16. Thereafter, PR-B dwindles rapidly and is virtually undetectable at the end of the cycle. In various hypoestrogenic environments, PR-B expression was reduced. However, exogenous estrogens in the follicular phase in the form of oral contraceptives, enhanced PR-B expression. These data support the possibility that progesterone acts through cycle-specific PR isoforms.  相似文献   

18.
Cyclic GMP (cGMP)-dependent protein kinase II (Prkg2, cGK II) was identified as a potential target of the progesterone receptor (Nr3c3) in the mouse ovary based on microarray analyses. To document this further, the expression patterns of cGK II and other components of the cGMP signaling pathway were analyzed during follicular development and ovulation using the pregnant mare serum gonadotropin (PMSG)-human chorionic gonadotropin (hCG)-primed immature mice. Levels of cGK II mRNA were low in ovaries of immature mice, increased 4-fold in response to pregnant mare serum gonadotropin and 5-fold more within 12 h after hCG, the time of ovulation. In situ hybridization localized cGK II mRNA to granulosa cells and cumulus oocyte complexes of periovulatory follicles. In progesterone receptor (PR) null mice, cGK II mRNA was reduced significantly at 12 h after hCG in contrast to heterozygous littermates. In primary granulosa cell cultures, cGK II mRNA was induced by phorbol 12-myristate 13-acetate enhanced by adenoviral expression of PR-A and blocked by RU486 and trilostane. PR-A in the absence of phorbol 12-myristate 13-acetate was insufficient to induce cGK II. Expression of cGK I (Prkg1) was restricted to the residual tissue and not regulated by hormones. Guanylate cyclase-A (Npr1; GC-A) mRNA expression increased 6-fold by 4 h after hCG treatment in contrast to pregnant mare serum gonadotropin alone and was localized to granulosa cells of preovulatory follicles. Collectively, these data show for the first time that cGK II (not cGK I) and GC-A are selectively induced in granulosa cells of preovulatory follicles by LH- and PR-dependent mechanisms, thereby providing a pathway for cGMP function during ovulation.  相似文献   

19.
Beg MA  Sanwal PC  Yadav MC 《Theriogenology》1997,47(2):423-432
A study was designed to determine whether superovulatory and endocrine responses in buffalo differ when gonadotropin treatment is initiated at midluteal and late luteal stages of the estrous cycle. Twenty-eight buffalo were randomized into 4 groups (A, B, C and D). Buffalo in Groups A and B (n = 8 each) were superovulated with Folltropin (total dose 25 mg) and Lutalyse. Treatments in Group A were initiated between Days 8 to 10 (midluteal group) and in Group B between Days 13 to 15 (late luteal group) of the estrous cycle. Buffalo in Groups C and D (n = 6 each) were not superovulated and served as controls. Blood samples from all groups of buffalo were collected daily for plasma progesterone and estradiol determinations. The number of corpora lutea (CL) and unovulated follicles was recorded (following per rectum palpations) 5 or 6 d post-estrus. Buffalo in Groups A and B exhibited estrus in larger proportions and earlier (49.33 +/- 3.82 h and 46.67 +/- 2.46 h, respectively) than the control Groups C and D (77.33 +/- 5.33 h and 78.0 +/- 3.83 h, respectively). Mean number of CL was higher in Group B (3.38 +/- 0.46) than in Group A (2.25 +/- 0.75), however,the difference was not significant (P > 0.05). Plasma progesterone concentrations on the day of treatment were higher in late luteal superovulated and control groups than in midluteal superovulated and control groups. In both Groups A and B progesterone levels were significantly related (r = 0.78,0.76; P < 0.05) to the number of CL palpated after the superovulatory estrus. Progesterone levels on the day of estimation of ovarian response were approximately 4 times higher in Groups A and B than in Groups C and D. Peak estradiol concentrations were approximately twice as high in superovulated groups as in control groups.  相似文献   

20.
The influence of different estrogen and/or progesterone treatments on concentrations of A and B forms of progesterone receptor (PR-A and PR-B) in the different cell types of chick oviduct was studied. A semiquantitative immunohistochemical assay for cellular PR concentrations was developed using a computer-assisted image analysis system. The staining intensity of nuclear PR in the basal layer of epithelial cells, glandular, smooth muscle and mesothelial cells was analysed separately using two monoclonal antibodies, PR6 and PR22. The measured concentrations of PR varied between different cell types and from cell to cell. A significant decrease in PR concentration, as noted by a decrease in staining intensity, was observed in all cell types studied 2 or 6 h after a single injection of progesterone with or without simultaneous estrogen administration. The decrease was also verified with immunoblotting and an immunoenzymometric assay (IEMA) for chicken PR. After down-regulation the concentration of PR recovered to the control level within 48 h after progesterone or estrogen administration. Estrogen administration alone was observed to cause changes in the concentration of PR-A only, having little or no effect on PR-B concentration depending on the cell type studied.

These findings indicate that estrogen and progesterone cause cell-specific changes not only to the total concentration of PR but also to the cellular ratio of PR-A and PR-B.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号