首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of reactive oxygen and nitrogen species on lux-biosensors based on the Escherichia coli K12 MG1655 and Salmonella typhimurium LT2 host strains was investigated. The bioactivity of exogenous free radicals to the constitutively luminescent E. coli strain with plasmid pXen7 decreased in the order H2O2 > OCl > NO? > RОO? > ONOO> O2?- while the bioluminescence of S. typhimurium strain transformed with this plasmid decreased in the order NO? > H2O2 > ONOO > RОO? > OCl > O2?- The cross-reactivity of induced lux-biosensors to reactive oxygen and nitrogen species, the threshold sensitivity and the luminescence amplitude dependences from the plasmid specificity and the host strain were indicated. The biosensors with plasmid pSoxS′::lux possessed a wider range of sensitivity, including H2O2 and OCl, along with O2?- and NO?. Among the used reactive oxygen and nitrogen species, H2O2 showed the highest induction activity concerning to the plasmids pKatG′::lux, pSoxS′::lux and pRecA′::lux. The inducible lux-biosensors based on S. typhimurium host strain possessed a higher sensitivity to the reactive oxygen and nitrogen species in comparison with the E. coli lux-biosensors.  相似文献   

2.
Decellularised tissue allografts have been used in reconstructive surgical applications and transplantation for many years. Some of the current methods of sterilisation have a detrimental effect on the tissue graft structure and function. The anti-microbial activity of cupric ions and hydrogen peroxide (H2O2) are well known however their combined application is not currently utilised as a decontamination agent in the tissue banking world sector. The aim of this study was to determine the combined concentrations of copper chloride (CuCl2) and H2O2 that have the optimal bactericidal and sporicidal activity on decellularised (dCELL) human dermis. The first part of this study established the decimal reduction time (D-value) of CuCl2 (0.1 mg/L and 1 mg/L) together with H2O2 (0.01, 0.1, 0.5 and 1%) for Staphylococcus epidermidis, Escherichia coli and Bacillus subtilis spores. The second part of this study identified the most effective CuCl2 and H2O2 concentration that decontaminated dCELL human dermis inoculated with these pathogens. Of all the concentrations tested, 0.1 mg/L CuCl2 in combination with 1% H2O2 had the shortest D-value; S. epidermidis D = 3.15 min, E. coli D = 2.62 min and B. subtilis spores D = 18.05 min. However when adsorbed onto dCELL dermis, S. epidermidis and E. coli were more susceptible to 1 mg/L CuCl2 together with 0.5% H2O2. These studies show promise of CuCl2–H2O2 formulations as potential sterilants for decellularised dermal allografts.  相似文献   

3.
Many studies have shown that hydrogen sulfide (H2S) is both detrimental and beneficial to animals and plants, whereas its effect on bacteria is not fully understood. Here, we report that H2S, released by sodium hydrosulfide (NaHS), significantly inhibits the growth of Escherichia coli in a dose-dependent manner. Further studies have shown that H2S treatment stimulates the production of reactive oxygen species (ROS) and decreases glutathione (GSH) levels in E. coli, resulting in lipid peroxidation and DNA damage. H2S also inhibits the antioxidative enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) and induces the response of the SoxRS and OxyR regulons in E. coli. Moreover, pretreatment with the antioxidant ascorbic acid (AsA) could effectively prevent H2S-induced toxicity in E. coli. Taken together, our results indicate that H2S exhibits an antibacterial effect on E. coli through oxidative damage and suggest a possible application for H2S in water and food processing.  相似文献   

4.
The production of reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI) is an important host defense mechanism in response to infection by Mycobacterium tuberculosis. A variety of genes have been implicated in resistance to ROI and RNI, including noxR1. However, studies in Mycobacterium avium, an important pathogen among nontuberculous mycobacteria, are limited. We aim to investigate the role of a novel gene cloned from M. avium with high similarity to noxR1, noA, in resistance against RNI and ROI in M. tuberculosis. After subcloning noA into vector for expression in E. coli, we performed survival rate analysis in the bacteria transformed with noA (pET-noA) and without noA (pET-his) after exposure to nitrosative stresses by S-nitrosoglutathione (GSNO) and sodium nitrite, and oxidative stresses by H2O2. Compared with pET-his, the survival rate of pET-noA was 1 log10-fold higher after exposure to GSNO and sodium nitrite. We observed 1 log10-fold, 2 log10-fold and 3 log10-fold higher survival rate in pET-noA than pET-his after exposure to H2O2 for 3, 6 and 9 h, respectively. With the combined treatment of H2O2 and GSNO, we found more than 2 log10-fold increase in survival rate in pET-noA comparing with pET-his, suggesting a possible synergistic effect. In summary, noA gene cloned from M. avium has been shown to protect E. coli from both RNI and ROI.  相似文献   

5.
The production of O2(a1Δg) singlet oxygen in non-self-sustained discharges in pure oxygen and mixtures of oxygen with noble gases (Ar or He) was studied experimentally. It is shown that the energy efficiency of O2(a1Δg production can be optimized with respect to the reduced electric field E/N. It is shown that the optimal E/N values correspond to electron temperatures of 1.2–1.4 eV. At these E/N values, a decrease in the oxygen percentage in the mixture leads to an increase in the excitation rate of singlet oxygen because of the increase in the specific energy deposition per O2 molecule. The onset of discharge instabilities not only greatly reduces the energy efficiency of singlet oxygen production but also makes it impossible to achieve high energy deposition in a non-self-sustained discharge. A model of a non-self-sustained discharge in pure oxygen is developed. It is shown that good agreement between the experimental and computed results for a discharge in oxygen over a wide range of reduced electric fields can be achieved only by taking into account the ion component of the discharge current. The cross section for the electron-impact excitation of O2(a1Δg and the kinetic scheme of the discharge processes with the participation of singlet oxygen are verified by comparing the experimental and computed data on the energy efficiency of the production of O2(a1Δg and the dynamics of its concentration. It is shown that, in the dynamics of O2(a1Δg molecules in the discharge afterglow, an important role is played by their deexcitation in a three-body reaction with the participation of O(3P) atoms. At high energy depositions in a non-self-sustained discharge, this reaction can reduce the maximal attainable concentration of singlet oxygen. The effect of a hydrogen additive to an Ar: O2 mixture is analyzed based on the results obtained using the model developed. It is shown that, for actual electron beam current densities, a significant energy deposition in a non-self-sustained discharge in the mixtures under study can be achieved due to the high rate of electron detachment from negative ions. In this case, however, significant heating of the mixture can lead to a rapid quenching of O2(a1Δg molecules by atomic hydrogen.  相似文献   

6.
The level of active oxygen species (AOS)—superoxide anion radical (O 2 ·? ) and hydrogen peroxide (H2O2)—in pea (Pisum sativum L.) cultivar Marat seedlings was studied upon their inoculation with symbiotic (Rhizobium leguminosarum bv. viceae strain CIAM 1026) and pathogenic (Pseudomonas syringae pv. pisi Sackett) microorganisms. Different patterns of the changes in AOS in pea seedlings during the interactions with the symbiont and the phytopathogen were recorded. It is assumed that O 2 ·? and H2O2 are involved in the defense and regulatory mechanisms of the host plant.  相似文献   

7.
8.
RING-finger-containing E3 ubiquitin ligases play important roles in plant response to biotic and abiotoc stresses. In this study, through homology analysis, a Malus× domestica MYB30-Interacting E3 Ligase 1 gene, MdMIEL1, was identified and subsequently cloned from apple ‘Gala’ (Malus×domestica). MdMIEL1 contained a zinc finger domain close to N-terminus and a RING finger domain close to Cterminus. Expression of MdMIEL1 was significantly induced by NaCl and H2O2 treatments. Further study demonstrated that the MdMIEL1-overexpressing Arabidopsis and apple calli were less tolerance to salt stress than wild-type control. In addition, transgenic plants had higher levels of reactive oxygen species (ROS) (H2O2 and O2 ). And transgenic Arabidopsis and apple calli exhibited more sensitive phenotype to H2O2 treatment, which was associated with increased levels of ROS. These findings indicate MdMIEL1 is an important regulator involved in plant response to salt and oxidative stresses tolerance.  相似文献   

9.
Reactive oxygen species (ROS) play key roles in plants and are regulated by several ROS-scavenging enzymes. Ascorbate peroxidase (APX), which catalyzes the reduction of hydrogen peroxide to water, a vital part of ROS formation, plays a significant role in higher plants. In this study, a cytosolic APX gene from Populus tomentosa, named PcAPX, was identified and characterized. Recombinant PcAPX had a calculated mass of 33.24 kD and showed high activity towards ascorbic acid (ASA) and hydrogen peroxide (H2O2). Real-time PCR analysis showed that APX mRNA expression levels were higher in leaves than roots or stems of P. tomentosa. Compared with wild-type, transgenic tobacco plants overexpressing PcAPX showed no significant difference in morphology under normal conditions. However, the transgenic plants were more resistant to drought, salt and oxidative stress conditions, as shown by decreased levels of malondialdehyde and increased levels of chlorophyll. Moreover, decreased H2O2 levels, increased ASA consumption, an increase in the NADP to NADPH ratio, and higher APX activity in the transgenic plants suggested an increased ability to eliminate ROS. These data suggest that PcAPX overexpression in transgenic tobacco plants can enhance tolerance to drought, salt and oxidative stress. Therefore, APX has a crucial role in abiotic stress tolerance in plants.  相似文献   

10.
This study aimed to identify suitable reference genes under three chemical inducers, methyl jasmonate (MeJA), salicylic acid (SA) and hydrogen peroxide (H2O2) in Ganoderma lucidum. In this study, expression stabilities of 14 candidate reference genes had been validated. Four algorithms were used: geNorm, NormFinder, BestKeeper, and RefFinder. Our results showed that, in short time, UCE2 (ubiquitin conjugating enzyme) was the most stable gene both in MeJA and H2O2 treatments, ACTIN (beta-actin) was the most suitable reference gene for SA treatment. ACTIN/UCE2 were considered the most suitable genes to normalize in MeJA, SA and H2O2 conditions. In long time, PP2A (protein phosphatase 2A regulatory subunit) was the most stable gene in MeJA and SA treatments, UCE2 was the most suitable reference gene for H2O2 treatment. PP2A/UBQ1 (polyubiquitin 1) were considered the most suitable genes to normalize in MeJA, SA and H2O2 conditions. Furthermore, target gene, oxidosqualene cyclase (osc), was selected to validate the most and least stable reference genes under different treatments. Our work provided a better support to study the regulatory mechanism of MeJA, SA and H2O2 on biological functions.  相似文献   

11.
Drought-stressed plants accumulate cyclitols such as myo-inositol, pinitol, quercitol in the cytosol. These solutes (compatible solutes) protect plants from stress effects. Synthetic myo-inositol was used in the investigation of drought stress tolerance in pepper plants. Hydrogen peroxide (H2O2), membrane damage, ascorbate peroxidase (AP), catalase (CAT), proline and calcium increased in plants under drought conditions. Water status, calcium level, glutathione reductase activities increased in myo-inositol treated Capsicum annuum L. (pepper) under drought stress. Exogenous myo-inositol significantly decreased H2O2, membrane damage and proline levels and AP (except for 5 µM) and CAT activity, compared with untreated plants. Myo-inositol can play a role as effective as proline in signal transduction and in regulating concentrations of reactive oxygen species within tolerable ranges and in maintaining cell turgor by binding water molecules. Myo-inositol may become a useful instrument to eliminate the negative effects of drought environments.  相似文献   

12.
13.
14.

Objective

Palladised cells of Desulfovibrio desulfuricans and Shewanella oneidensis have been reported as fuel cell electrocatalysts but growth at scale may be unattractive/costly; we have evaluated the potential of using E. coli, using H2/formate for Pd-nanoparticle manufacture.

Results

Using ‘bio-Pd’ made under H2 (20 wt%) cyclic voltammograms suggested electrochemical activity of bio-NPs in a native state, attributed to proton adsorption/desorption. Bio-Pd prepared using formate as the electron donor gave smaller, well separated NPs; this material showed no electrochemical properties, and hence little potential for fuel cell use using a simple preparation technique. Bio-Pd on S. oneidensis gave similar results to those obtained using E. coli.

Conclusion

Bio-Pd is sufficiently conductive to make an E. coli-derived electrochemically active material on intact, unprocessed bacterial cells if prepared at the expense of H2, showing potential for fuel cell applications using a simple one-step preparation method.
  相似文献   

15.
Serine proteinases play important roles in innate immunity and insect development. We isolated a serine proteinase gene, designated AccSp10, from the Chinese honeybees (Apis cerana cerana). RT-qPCR and a Western blot analysis at different pupal development stages indicated that AccSp10 might be involved in melanin formation in pupae and promote pupal development. In adult workers, the expression of AccSp10 was upregulated by treatments mimicking harmful environments such as the presence of Bacillus bombysepticus, different temperatures (4, 24 and 42 °C), HgCl2, H2O2 and paraquat; the exception was treatment with VC (vitamin C), which did not upregulate AccSp10 expression. Western blot confirmed the results. A disc diffusion assay indicated that recombinant AccSp10 accelerated E. coli cell death during stimulation with harmful substances (HgCl2, paraquat and cumene hydroperoxide). These findings suggest that AccSp10 may be involved in the pupal development of Chinese honeybees and protection against microorganisms and abiotic harms.  相似文献   

16.
Bacterial bioluminescence was applied to detection of general toxicity (MIT test) and genotoxicity (SOS-lux test) of some chemicals, seawater, and fresh water. The SOS-induced luminescence of E. coli WP2s (cda::luxCDABE) cells was higher than in E. coli C 600 (cda::luxCDABE) at 37°C and pH 6.5. The mutagenic effect of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), mitomycin C, and hydrogen peroxide determined from the induction of E. coli WP2s cell luminescence was detected at lower concentrations than in the assessment of reversion frequencies. General toxicity was demonstrated by using luminescence inhibition for hydrogen peroxide, Zn2+, and Cd2+ at low concentrations. Regions of the Krasnodar Krai where sea and fresh waters exerted toxic action on luminescence were determined by the microbioluminescent method.  相似文献   

17.
The cytochrome b 6 f complex of oxygenic photosynthesis produces substantial levels of reactive oxygen species (ROS). It has been observed that the ROS production rate by b 6 f is 10–20 fold higher than that observed for the analogous respiratory cytochrome bc1 complex. The types of ROS produced (O2??, 1O2, and, possibly, H2O2) and the site(s) of ROS production within the b 6 f complex have been the subject of some debate. Proposed sources of ROS have included the heme b p , PQ p ?? (possible sources for O2??), the Rieske iron–sulfur cluster (possible source of O2?? and/or 1O2), Chl a (possible source of 1O2), and heme c n (possible source of O2?? and/or H2O2). Our working hypothesis is that amino acid residues proximal to the ROS production sites will be more susceptible to oxidative modification than distant residues. In the current study, we have identified natively oxidized amino acid residues in the subunits of the spinach cytochrome b 6 f complex. The oxidized residues were identified by tandem mass spectrometry using the MassMatrix Program. Our results indicate that numerous residues, principally localized near p-side cofactors and Chl a, were oxidatively modified. We hypothesize that these sites are sources for ROS generation in the spinach cytochrome b 6 f complex.  相似文献   

18.
To evaluate the effectiveness of a germin-like protein (GLP) in legumes against the serious soil-borne pathogen Fusarium oxysporum f. sp. lentis, an Oryza sativa root-expressed GLP (OsRGLP1) was expressed in the model legume Medicago truncatula using the recombinant vector pCOsRGLP1. The transgene was highly expressed in M. truncatula transformed lines as assessed by RT-qPCR. Consistent with the active status of the transgene there was an elevated accumulation of H2O2 in transformed progeny. Enzymatic characterization of T1 transgenic progeny showed increased superoxide dismutase (SOD) activity. The additional SOD activity in transgenic lines was insensitive to potassium cyanide and sensitive to H2O2 indicating its resemblance to FeSOD. The effectiveness of the OsRGLP1 gene was tested by monitoring the root disease after infection of wild-type and transgenic lines. Wild-type plants were greatly affected by the pathogen infection showing a percent disease index value of 50 compared to 10–18 for the transgenic lines. The tolerance of the transgenic lines leads to recovery in fresh weight and pod production to an almost normal level. Analysis of defense-related genes downstream of hydrogen peroxide (H2O2) in transgenic plants showed induction of salicylic acid and jasmonate signaling pathways and increased expression of some pathogenesis-related-1 (PR-1) genes and a plant defensin gene. Overall, the findings suggest that OsRGLP1 provides protection against the fungal pathogen F. oxysporum that may involve the direct influence of H2O2 on signaling pathways leading to the activation of defense-related genes.  相似文献   

19.
20.
In a single-barrier discharge with voltage sharpening and low gas consumption (up to 1 L/min), plane atmospheric pressure plasma jets with a width of up to 3 cm and length of up to 4 cm in air are formed in the slit geometry of the discharge zone. The energy, temperature, and spectral characteristics of the obtained jets have been measured. The radiation spectrum contains intense maxima corresponding to vibrational transitions of the second positive system of molecular nitrogen N2 (C3Π u B3Π g ) and comparatively weak transition lines of the first positive system of the N 2 + ion (B2Σ u + X2Σ g ). By an example of inactivation of the Staphylococcus aureus culture (strain ATCC 209), it is shown that plasma is a source of chemically active particles providing the inactivation of microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号