首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cosmic ray (CR) energy spectra for H, He, Si, and Fe nuclei with energy-to-charge number ratios ?/Z in the range from 10 to 5 × 107 GeV are studied using observational data obtained at different times in different energy ranges: AMS-02, CREAM, Tibet ASγ, Tibet (hybrid), GRAPES-3, KASCADE, and KASCADE-Grande. Comparison of the H and He CR fluxes according to the KASCADE and KASCADE-Grande data (for different models of deconvolving CR spectra) with the Tibet ASγ and Tibet (hybrid) data obtained at another time in the range of ?/Z ~ 3 × 106 GeV demonstrates space weather-caused variability of the CR flux. This feature of CR energy spectra in the Tibet ASγ data is most clearly observed in the spectra of heavier nuclei (Si and Fe) according to the KASCADE-Grande and GRAPES-3 data. The variability in the energy spectra of all CRs in the vicinity of the “knee” is shown in the data of Yakutsk EAS, CASA-BLANCA, and Tibet-III experiments. The variability of the CR flux on a time scale on the order of several years exists only if the source corresponding to the peak in the energy spectrum is situated at a distance of no more than 1 pc from the Sun. Rapid surfatron acceleration of CRs may result from colliding interstellar clouds nearest to the Sun (LIC and G). This acceleration mechanism allows one to explain the variability of the CR spectrum in the range 103 GeV < ?/Z < 108 GeV. Conditions for the trapping of strongly relativistic Fe nuclei by an electromagnetic wave, the dynamics of the components of the particle velocity and momentum, and the dependence of the particle acceleration rate on the initial parameters of the problem are analyzed using numerical calculations. The structure of the phase plane of the accelerated Fe nuclei is examined. Optimal conditions for the implementation of ultrarelativistic surfatron acceleration of Fe nuclei by an electromagnetic wave are formulated.  相似文献   

2.
The parameters of a multispecies metal ion beam extracted with the help of a set of grids from a plasma jet of a pulsed vacuum arc are studied experimentally. It is shown that the beam contains ions with energies that are both significantly lower and higher than the expected energy E Z = \(\bar Z\) eU acc, where \(\bar Z\) is the average ion charge number and U acc is the extracting voltage. As a result, the mean ion energy is lower than E Z and the ion energy spectrum is substantially wider than that in the plasma jet. It is found that this effect weakens with decreasing discharge current amplitude and that the shape of the spectrum depends on the accelerating voltage. Probe measurements show that, at accelerating voltages higher than 1 kV, a positive space charge forms in the drift gap, due to which the electric potential in the drift gap increases to a few hundred electronvolts. Analysis of experimental data indicates that the observed features of the ion spectrum can be attributed to the effect of the unsteady electric field of the space charge of the ion beam transported through the drift gap.  相似文献   

3.
A three-component phenomenological model describing the specific features of the spectrum of cosmic-ray protons and helium nuclei in the rigidity range of 30–2×105 GV is proposed. The first component corresponds to the constant background; the second, to the variable “soft” (30–500 GV) heliospheric source; and the third, to the variable “hard” (0.5–200 TV) source located inside a local bubble. The existence and variability of both sources are provided by the corresponding “surfatron accelerators,” whose operation requires the presence of an extended region with an almost uniform (in both magnitude and direction) magnetic field, orthogonally (or obliquely) to which electromagnetic waves propagate. The maximum energy to which cosmic rays can be accelerated is determined by the source size. The soft source with a size of ~100 AU is located at the periphery of the heliosphere, behind the front of the solar wind shock wave. The hard source with a size of >0.1 pc is located near the boundary of an interstellar cloud at a distance of ~0.01 pc from the Sun. The presence of a kink in the rigidity spectra of p and He near 230 GV is related to the variability of the physical conditions in the acceleration region and depends on the relation between the amplitudes and power-law exponents in the dependences of the background, soft heliospheric source, and hard near galactic source. The ultrarelativistic acceleration of p and He by an electromagnetic wave propagating in space plasma across the external magnetic field is numerically analyzed. Conditions for particle trapping by the wave and the dynamics of the particle velocity and momentum components are considered. The calculations show that, in contrast to electrons and positrons (e +), the trapped protons relatively rapidly escape from the effective potential well and cease to accelerate. Due to this effect, the p and He spectra are softer than that of e +. The possibility that the spectra of accelerated protons deviate from standard power-law dependences due to the surfatron mechanism is discussed.  相似文献   

4.
Photosynthetic parameters including net photosynthetic rate (PN), transpiration rate (E), water-use efficiency (WUE), and stomatal conductance (gs) were studied in indoor C3 plants Philodendron domesticum (Pd), Dracaena fragans (Df), Peperomia obtussifolia (Po), Chlorophytum comosum (Cc), and in a CAM plant, Sansevieria trifasciata (St), exposed to various low temperatures (0, 5, 10, 15, 20, and 25°C). All studied plants survived up to 0°C, but only St and Cc endured, while other plants wilted, when the temperature increased back to room temperature (25°C). The PN declined rapidly with the decrease of temperature in all studied plants. St showed the maximum PN of 11.9 μmol m?2 s?1 at 25°C followed by Cc, Po, Pd, and Df. E also followed a trend almost similar to that of PN. St showed minimum E (0.1 mmol m?2 s?1) as compared to other studied C3 plants at 25°C. The E decreased up to ≈4-fold at 5 and 0°C. Furthermore, a considerable decline in WUE was observed under cold stress in all C3 plants, while St showed maximum WUE. Similarly, the gs also declined gradually with the decrease in the temperature in all plants. Among C3 plants, Pd and Po showed the maximum gs of 0.07 mol m?2 s?1 at 25°C followed by Df and Cc. However, St showed the minimum gs that further decreased up to ~4-fold at 0°C. In addition, the content of photosynthetic pigments [chlorophyll a, b, (a+b), and carotenoids] was varying in all studied plants at 0°C. Our findings clearly indicated the best photosynthetic potential of St compared to other studied plants. This species might be recommended for improving air quality in high-altitude closed environments.  相似文献   

5.
Surface residues have a significant impact on the enantioselectivity of lipases. But the molecular basis of this has never been explained. In this work, transition state complexes of Rhizomucor miehei lipase (RmL) and (R)- or (S)-n-butyl 2-phenxypropinate were studied using molecular dynamics. According to comparison between B-factor of the two simulated complexes, the β 1β 2 loop and α 2 helix were considered the enantioselectivity-determining domains of RmL. Interaction analysis of these domains suggested an Asp61–Arg86 electrostatic interaction linking the loop and helix strongly impacting enantioselectivity of RmL. Modification of Arg86 by 1, 2-cyclohexanedione weakening this interaction decreased the E ratio from 6 to 1, modification by 1-iodo-2, 3-butanedione covalently bonding Asp61 and Arg86 strengthening the interaction increased the E ratio to 45. Dynamics simulation and energy calculation of the modified lipases also displayed corresponding decreases or increases of enantioselectivity.  相似文献   

6.
This study reports the primary production of phytoplankton determined with a 13C tracer, and their related variables, in Lake Kasumigaura, a shallow, hyper-eutrophic lake, and the second largest lake in Japan. Measurements were conducted monthly from August 1981 to December 2013 at four stations within the lake. Monitoring was a component of the Lake Kasumigaura Long-term Environmental Monitoring program, conducted by the National Institute for Environmental Studies (NIES) since 1977. The program collects data on water quality, and plankton and benthic communities. Lake Kasumigaura is registered as a core site of the Japan Long-term Ecological Research Network (JaLTER), which is a member of the International Long-term Ecological Research Network (ILTER). This dataset includes daily primary production (Pzd gC m?2 d?1) and the six parameters required to calculate Pzd: maximum photosynthesis rate (P max gC gC?1 h?1); light irradiance at the junction of the initial slope (α (gC gC?1 h?1) (μmol photon m?2 s?1)?1) and P max of the photosynthesis vs. irradiance (P vs. E) curve (E k μmol photon m?2 s?1); attenuation coefficient of photosynthetically available radiation (PAR) (K PAR m?1); water depth at each sampling station (Z b , m); dissolved inorganic carbon (DIC mgC L?1) and particulate organic carbon concentrations (POC gC m?3); and chlorophyll a amounts (Chl.a μg L?1). Daily primary production was calculated by obtaining a P vs. E curve over a short-term incubation (approximately 1 h) in a water tank using in situ water temperature in the laboratory, based on the field conditions of the sampling date. The dataset has been used for ecological studies as well as for management studies on water quality and ecosystems. This dataset is unique among the available published papers concerning lakes or primary production in various ecosystems, collected over a long period of time and freely available.  相似文献   

7.
The potential energy curves of the 19 lowest-lying singlet and triplet electronic states in the 2S+1Λ(+/?) representation of the AsCl molecule have been investigated using the complete active space self-consistent field (CASSCF) with multireference configuration interaction (MRCI+Q) method including single and double excitations and with the Davidson correction. The harmonic frequency ω e, the internuclear distance R e, the dipole moment, and the electronic energy with respect to the ground state T e were calculated for the electronic states considered. By using the canonical functions approach, the eigenvalue E v, the rotational constant B v, and the abscissae of the turning points R min and R max were calculated for the electronic states up to the vibrational level v?=?60. The values obtained in the present work agree well with corresponding values available in the literature for several electronic states. Fifteen new electronic states were investigated here for the first time.  相似文献   

8.
It has been shown that micromycetes Aspergillus ustus 1 and Tolypocladium inflatum k1 secrete proteolytic enzymes that possess high collagenolytic, fibrinolytic, and elastolytic activity. The activity of proteinases hydrolyzing fibrillar proteins, which was determined by the cleavage of azo-collagen, was 122.6 × 10–3EAzc/mL in A. ustus 1 and 69.7 × 10–3EAzc/mL in T. inflatum k1 (EAzc is the amount of azocollagen cleaved in 1 min (μg). The maximum values of activity were observed during submerged cultivation of A. ustus 1 for 4 days and of T. inflatum k1 for 5 days. It has been shown that the maximum of collagenolytic and general proteolytic activity during the cultivation of A. ustus 1 are time-separated, unlike T. inflatum k1, which, presumably, can simplify the procedure for obtaining proteinases active against fibrillar proteins.  相似文献   

9.
The COMPASS tokamak (R = 0.56 m, a = 0.2 m, BT = 1.3 T, Ip ~ 300 kA, pulse duration 0.4 s) operates in ITER-like plasma shape in H-mode with Type-I ELMs. In 2019, we plan to install into the divertor a test target based on capillary porous system filled with liquid lithium/tin. This single target will be inclined toroidally in order to be exposed to ITER-relevant surface heat flux (20 MW/m2). Based on precisely measured actual heat fluxes, our simulations predict (for 45° inclination, without accounting for the lithium vapor shielding) the surface temperature rises up to 700°C within 120 ms of the standard ELMy H-mode heat flux with ELM filaments reaching hundreds MW/m2. Significant lithium vaporization is expected. The target surface will be observed by spectroscopy, fast visible and infrared cameras. The scientific program will be focused on operational issues (redeposition of the evaporated metal, ejection of droplets, if any) as well as on the effect on the plasma physics (improvement of plasma confinement, L–H power threshold, Zeff, etc.). After 2024, a closed liquid divertor may be installed into the planned COMPASS Upgrade tokamak (R = 0.84 m, a = 0.3 m, BT = 5 T, Ip = 2 MA, Pin = 8 MW, pulse duration ~2 s) with ITER-relevant heat fluxes loading the entire toroidal divertor.  相似文献   

10.
In this paper, the supermodes, long-range surface plasmon polaritons (LRSPPs), have been theoretically studied to enhance the optical coupling of AlGaN/GaN quantum well infrared photodetector (QWIP) based on gold–Si3N4 hybrid architecture. The electromagnetic field, energy flow, and current density are analyzed by finite element method (FEM). In time domain, the electric field component E z and current density J z perpendicular to the multi-quantum wells (MQWs) are symmetric and asymmetric distributions over the gold grating, respectively, which precisely prove the existence of LRSPPs. The averaged |E z |2 across the whole quantum well region reaches 1.51?(V/m)2 when the electric field intensity (|E 0|2) of normal incidence is 1?(V/m)2 at 4.65 μm. Extraordinarily low loss of the LRSPPs results in a coupling efficiency enhancement ratio of 2.23 in AlGaN/GaN QWIP compared with that obtained via bare gold grating with different polarized sources, exhibiting great potential for application in the focal plane arrays.  相似文献   

11.
Based on the numerical solution of the nonlinear nonstationary second-order equation for the wave phase on the particle trajectory, the dynamics of surfatron acceleration of electrons by an electromagnetic wave propagating across the external magnetic field in space plasma is analyzed as a function of the electron momentum along the wave front. Numerical calculations show that, for strongly relativistic initial values of the electron momentum component along the wave front g y (0) (the other parameters of the problem being the same), electrons are trapped into the regime of ultrarelativistic surfatron acceleration within a certain interval of the initial wave phase Ψ(0) on the particle trajectory. It is assumed in the calculations that |Ψ(0)| ≤ π. For strongly relativistic values of g y (0), electrons are immediately trapped by the wave for 19% of the initial values of the phase Ψ(0) (favorable phases). For the rest of the values of Ψ(0), trapping does not occur even at long times. This circumstance substantially simplifies estimations of the wave damping due to particle acceleration in subsequent calculations. The dynamics of the relativistic factor and the components of the electron velocity and momentum under surfatron acceleration is also analyzed. The obtained results are of interest for the development of modern concepts of possible mechanisms of generation of ultrarelativistic particle fluxes in relatively calm space plasma, as well as for correct interpretation of observational data on the fluxes of such particles and explanation of possible reasons for the deviation of ultrarelativistic particle spectra detected in the heliosphere from the standard power-law scalings and the relation of these variations to space weather and large-scale atmospheric processes similar to tropical cyclones.  相似文献   

12.
The polyphagous planthopper Hyalesthes obsoletus Signoret is considered to be the principal vector of stolbur phytoplasma, which is associated with yellow diseases of grapevine. To explore the possibility of developing novel control strategies, the behavioral responses to six synthetic mixtures and nine single compounds, previously identified from the headspace of Vitex agnus-castus L. (chaste tree) and Urtica dioica L. (nettle), were investigated in Y-tube bioassays. Choice tests revealed differences in the behavioral responses of males and females to the volatiles that they were exposed to. Males were attracted to a mixture containing (E)-β-caryophyllene, 1,8-cineole, (E,E)-α-farnesene, (E)-β-farnesene, and methyl salicylate (mixture 2). The addition of methyl benzoate to this five-compound mixture (mixture 3) did not attract males but elicited positive responses in females. Furthermore, females were attracted to a mixture containing (E)-β-caryophyllene, (E,E)-α-farnesene, (Z)-3-hexenyl acetate, (Z)-3-hexen-1-ol, and benzothiazole (mixture 4), but here addition of methyl salicylate (mixture 5) did not attract females. Neither males nor females showed attractivity or repellency toward the singly tested compounds. This study enhances knowledge on the interaction of insect behaviorally effective constituents in complex plant volatile mixtures. The attractive mixtures of plant volatiles identified suggest the possibility of using them in monitoring and management of H. obsoletus.  相似文献   

13.
There are two close empirical scalings, namely, the T-11 and neo-Alcator ones, that provide correct estimates for the energy confinement time in tokamaks in ohmic heating regimes in the linear part of the dependence τ E (\(\bar n_e \)) in the range of low values of \(\bar n_e \) and 〈ν e * 〉 ≤ 1. The similar character of electron energy confinement in this range, which expands with increasing magnetic field B 0, has stimulated the search for dimensionless parameters and simple physical models that would explain the experimentally observed dependences χ e ~ 1/n e and τ Ee \(\bar n_e \). In 1987, T. Okhawa showed that the experimental data were satisfactorily described by the formula χe = (c 2 pe 2 )ν e /qR, in deriving of which the random spatial leap along the radius r on the electron trajectory was assumed to be the same as that in the coefficient of the poloidal field diffusion, while the repetition rate of these leaps was assumed to be ν e /qR. In 2004, J. Callen took into account the decrease in the fraction of transient electrons with increasing toroidal ratio ? = r/R and corrected the coefficient c 2 pe 2 in Okhawa equation by the factor σ Sp neo . If one takes into account this correction and assumes that the frequency of the stochastic process is equal to the reciprocal of the half-period of rotation of a trapped electron along its banana trajectory, then the resulting expression for χe will coincide with the T-11 scaling: χ e an ∞ ?1.75(T e /A i )0.5/(n e qR) at A i = 1. If the same stochastic process also involves ions, it may result in the opening of the orbit of a trapped ion at the distance ~(c pe )(m i /m e )1/4. In this case, the calculated coefficient of electron and ion diffusion D is close to D an ≈ χ e an /2.  相似文献   

14.
A novel Gram-negative and rod-shaped bacterial strain, designated as 16F6ET, was isolated from a water sample. Cells were yellowish in color and catalase- and oxidase-positive. The strain grew at 10–37°C (optimum at 25°C) but not at 4 and 42°C, and pH 5–7 (optimum at pH 7). It showed moderate resistance to gamma-ray irradiation. Comparative phylogenetic analysis showed that strain 16F6ET belonged to the family Cytophagaceae of the class Cytophagia. Furthermore, this isolate showed relatively low 16S rRNA gene sequence similarities (90.7–93.1%) to the members of the genus Spirosoma. The major fatty acids were summed feature 3 (C16:1 ω7c/C16:1 ω6c), C16:1 ω5c, C16:0 N alcohol, and C16:0. The polar lipid profile indicated presence of phosphatidylethanolamine, unknown aminophospholipids, an unknown amino lipid, unknown phospholipids, and unknown polar lipids. The predominant isoprenoid quinone was MK-7. The genomic DNA G+C content of strain 16F6ET was 56.5 mol%. Phenotypic, phylogenetic, and chemotaxonomic properties indicated that isolate 16F6ET represents a novel species within the genus Spirosoma, for which the name Spirosoma luteolum sp. nov. is proposed. The type strain is 16F6ET (=KCTC 52199T =JCM 31411T).  相似文献   

15.
Biocidal natural substances of botanical origin offer a promising ecofriendly option for controlling toxic cyanobacteria. Herein, we study 11 essential oils and some of their major components for their activity on Aphanizomenon gracile. On the basis of our results we support that Origanum vulgare and O. dictamnus, Ocimum basilicum, Eucalyptus meliodora, Melissa officinalis, and Pimpinella anisum exhibited the strongest activities, and the IC50/1d values of the extracts were calculated to be between 168.43 and 241.97 μg mL?1. When the major components of the biocidal essential oils were tested individually, (E)-anethole was found active, exhibiting an IC50/1d value of 71.35 μg mL?1. On the other hand, the half-life (t 1/2 ) of (E)-anethole was calculated at 1 h. A preliminary attempt of (E)-anethole microencapsulation was conducted, in order to slowly release this biocidal agent, increasing the residual life under open air conditions and thus the biological activity. Results were promising since the microencapsulated product exhibited better activity than did the non-formulated (E)-anethole. This is a first report on the biocidal activity of EOs and (E)-anethole on A. gracile and a preliminary indication of the microencapsulated (E)-anethole potential use as a natural biocidal in fresh waters.
Graphical abstract Filaments of Aphanizomenon gracile capable of bloom forming (strain SAG 31.79, in a batch culture) and (E)-anethole
  相似文献   

16.
Extensive research has found that nighttime transpiration (E n) is positively correlated to the vapour pressure deficit (VPD), that suggested E n was highest during the night under high temperatures and low humidity along with high soil water availability, typically for the riparian forest in the extreme arid region of China. This study used the heat ratio method to measure sap velocity (V s) for mature and saplings Populus euphratica Oliv., and then E n was conservatively calculated as total nocturnal sap flow (F s, the product of V s and sapwood area A s) between 01:00 to 06:00. A gas exchange system was used to measure the leaf transpiration rate (T r) and stomatal conductance (g s) of saplings. For mature trees, nighttime V s was extensive and logarithmic correlated to VPD (similar to daytime). For saplings, g s and T r was extensive in different months, and also a strong logarithmic relationship was found between V s and VPD for both daytime and nighttime periods. Both of stem sap flow and leaf gas exchange suggusted the occurrence of E n, whether mature or sapling trees. E n contribution to daily transpiration (E d) was high just as expected for P. euphratica, which was confirmed by proportional E n to E d (E n/E d) means taken in 2012 (24.99%) and 2013 (34.08%). Compared to mature trees, E n/E d of saplings in 2013 was lower with means of 12.06%, that supported further by the shorter duration times and less T r,n (16.64%) and g s,n (26.45%) of leaf, suggesting that E n magnitude is associated to individual the tree size, that effect to stored water of individual trees, although this hypothesis requires further research.  相似文献   

17.
The paper describes the calculation data on the physical parameters of a reactor-stellarator, where the nonuniformities of the helical field are smaller than the toroidal magnetic field nonuniformities: εh < εt. Unlike the previous studies, where the ion-component transport coefficients had the collision frequency dependence proportional to ν1/2, this being equivalent to the εh > εt case, in the present calculations, these coefficients were assumed to be in proportion to the first power of the collision frequency, Di ∝ ν for νeff < 2ωE, and to Di ∝ ν?1 for the inverse inequality. Here, ωE is the rotation frequency of plasma in the radial electric field. As before, the plasma electrons corresponded to the mode of De ∝ ν?1. As initial parameters for numerical calculations, a reactor with R = 8 m, rp = 2 m, and B0 = 5 Т was taken. A numerical code was used to solve the set of equations that describes the plasma space?time behavior in the reactor-stellarator under the conditions of equal diffusion fluxes. The start of reactor operation in the mode of thermonuclear burning was provided by heating sources with a power of several tens of megawatts. Steady-state operating conditions of a self-sustained thermonuclear reaction were attained by maintaining the plasma density through DT fuel pellet injection into the plasma.  相似文献   

18.
A mixture of E- and Z-(2-nitrovinyl)benzenes is a known allomone of two adult haplodesmid millipedes, Eutrichodesmus elegans (Miyosi) (Polydesmida: Haplodesmidae) and Eutrichodesmus armatus (Miyosi), as is (2-nitroethyl)benzene in E. armatus. However, the proportions of these compounds have not yet been studied in detail at the nymph stage. In the present study, the ratios of these three nitro compounds were shown to change during ontogenetic development. (2-Nitroethyl)benzene was newly detected as the second major component of the mixture in both species at stage I, just after eggs hatched (mean 43.0% in E. armatus and 7.8% in E. elegans), decreasing rapidly to less than 0.1% during growth. These changes occurred in a species-specific manner; field-collected E. armatus maintained a characteristic mixture of E- and Z-(2-nitrovinyl)benzenes (59.9–98.2 and 40.0–1.4%, respectively) during all stages including the adult stage. On the other hand, E. elegans contained E-(2-nitrovinyl)benzene as the major component (98.7–99.7%) with Z-(2-nitrovinyl)benzene as a trace component (less than 1.2%), while a minute amount of (2-nitroethyl)benzene was always retained during all nymph and adult stages. No volatiles were detected in eggs before hatching, and sequential changes of composition were observed among the three compounds after emergence in both species.  相似文献   

19.
In a single-barrier discharge with voltage sharpening and low gas consumption (up to 1 L/min), plane atmospheric pressure plasma jets with a width of up to 3 cm and length of up to 4 cm in air are formed in the slit geometry of the discharge zone. The energy, temperature, and spectral characteristics of the obtained jets have been measured. The radiation spectrum contains intense maxima corresponding to vibrational transitions of the second positive system of molecular nitrogen N2 (C3Π u B3Π g ) and comparatively weak transition lines of the first positive system of the N 2 + ion (B2Σ u + X2Σ g ). By an example of inactivation of the Staphylococcus aureus culture (strain ATCC 209), it is shown that plasma is a source of chemically active particles providing the inactivation of microorganisms.  相似文献   

20.
Shallow ponds with rapidly photosynthesising cyanobacteria or eukaryotic algae are used for growing biotechnology feedstock and have been proposed for biofuel production but a credible model to predict the productivity of a column of phytoplankton in such ponds is lacking. Oxygen electrodes and Pulse Amplitude Modulation (PAM) fluorometer technology were used to measure gross photosynthesis (P G) vs. irradiance (E) curves (P G vs. E curves) in Chlorella (chlorophyta), Dunaliella salina (chlorophyta) and Phaeodactylum (bacillariophyta). P G vs. E curves were fitted to the waiting-in-line function [P G = (P Gmax × E/Eopt) × exp(1 — E/Eopt)]. Attenuation of incident light with depth could then be used to model P G vs. E curves to describe P G vs. depth in pond cultures of uniformly distributed planktonic algae. Respiratory data (by O2-electrode) allowed net photosynthesis (P N) of algal ponds to be modelled with depth. Photoinhibition of photosynthesis at the pond surface reduced P N of the water column. Calculated optimum depths for the algal ponds were: Phaeodactylum, 63 mm; Dunaliella, 71 mm and Chlorella, 87 mm. Irradiance at this depth is ≈ 5 to 10 μmol m?2 s?1 photosynthetic photon flux density (PPFD). This knowledge can then be used to optimise the pond depth. The total net P N [μmol(O2) m?2 s?1] were: Chlorella, ≈ 12.6 ± 0.76; Dunaliella, ≈ 6.5 ± 0.41; Phaeodactylum ≈ 6.1 ± 0.35. Snell’s and Fresnel’s laws were used to correct irradiance for reflection and refraction and thus estimate the time course of P N over the course of a day taking into account respiration during the day and at night. The optimum P N of a pond adjusted to be of optimal depth (0.1–0.5 m) should be approximately constant because increasing the cell density will proportionally reduce the optimum depth of the pond and vice versa. Net photosynthesis for an optimised pond located at the tropic of Cancer would be [in t(C) ha?1 y?1]: Chlorella, ≈ 14.1 ± 0.66; Dunaliella, ≈ 5.48 ± 0.39; Phaeodactylum, ≈ 6.58 ± 0.42 but such calculations do not take weather, such as cloud cover, and temperature, into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号