首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To clarify the small-scale heterogeneity of light regimes in a rain forest, photosynthetic photon flux density (PFD) was measured at 1-min intervals during six days at 12 microsites in each of two plots, a small gap and an understory in Pasoh Forest Reserve, Peninsular Malaysia. Frequency distribution of microsite PFD was unimodal with the peak value between 16 and 32 μmol/m2/sec in the small gap, but between 8 and 16 μmol/m2/sec in the understory. In the small gap, PFD was more variable among microsites; total daily PFD and daily sunfleck PFD exceeding 10 μmol/ m2/sec tended to be higher (P <0.05; t-test) compared to those in the understory. Sunfleck PFD exceeding 50 μmol/ m2/sec, however, showed no difference between the two plots. Diffuse PFD transmittance, defined as the ratio of PFD in the forest to that measured at 43 m above ground during the periods 0800-0810 and 1750-1800 h, was significantly higher in the small gap than in the understory plot. Diffuse PFD transmittance was also positively correlated with microsite total daily PFD. To examine the effects of the subtle heterogeneity of light regimes on leaf carbon gain, we simulated carbon gain by sun and shade leaves in a typical shade-tolerant species, Brosimum aticastrum Sw. (Moraceae). Despite the similarity in total daily PFD, total daily carbon gain was considerably higher in the gap than in the understory for both sun and shade leaves. This study suggests that frequency distribution of PFD is critical in describing microsite PFD regimes and determining leaf carbon gain in the tropical forest floor.  相似文献   

2.
Polymer binders with high ion and electron conductivities are prepared by assembling ionic polymers (polyethylene oxide and polyethylenimine) onto the electrically conducting polymer poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) chains. Crosslinking, chemical reductions, and electrostatics increase the modulus of the binders and maintain the integrity of the anode. The polymer binder shows lithium‐ion diffusivity and electron conductivity that are 14 and 90 times higher than those of the widely used carboxymethyl cellulose (with acetylene black) binder, respectively. The silicon anode with the polymer binder has a high reversible capacity of over 2000 mA h g?1 after 500 cycles at a current density of 1.0 A g?1 and maintains a superior capacity of 1500 mA h g?1 at a high current density of 8.0 A g?1.  相似文献   

3.
A key challenge to apply aqueous zinc metal batteries (AZMBs) as next-generation energy storage device is to improve the rechargeability at high current densities, which is needed to circumvent slowly ion diffusion in anode and sluggish charge transfer of Zn2+. Herein, a zincophilic accordion array derived from MOF is developed as zinc host for simultaneously boosted ion diffusion and charge transfer. The designed host is prepared by etching and disproportionation reactions, the abundant zincophilic Sn sites with nano-size uniform disperse on accordion arrays nanosheets (Sn-AA). Then a composite Zn anode (Sn-AA@Zn) is obtained by compacting Sn-AA host with zinc power (Zn-P). The Sn-AA@Zn anode has an ultra-low activation energy (37.1 kJ mol−1) and nucleation overpotential (10 mV), achieving fast charge transfer of Zinc deposition. In addition, the cycle life of the symmetric cell with Sn-AA@Zn anode exceeds 13 000 cycles at 50 mA cm−2, which is 32 times than that of the Zn-P anode. And the full cell with Sn-AA@Zn anode and MnO2 cathode maintains a capacity of 122 mAh g−1 after 5000 cycles at 5 Ag−1. Hopefully, the 3D anode based on Sn-AA@Zn accordion array and Zn-P has significantly improved the rechargeability of AZMB at high current density.  相似文献   

4.
Lithium‐ion hybrid supercapacitors (LICs) are considered as a promising candidate in energy storage systems. Taking the factor of sluggish kinetics behavior, battery‐type anode plays a significant role in improving the performance of LICs. Here, onion‐shaped graphene‐like derivatives are synthesized via carbonization of metalorganic quantum dots (MQDs) accompanied with in situ catalytic graphitization by reduced metal. Notably MQDs, exhibiting water‐soluble character and ultrafine particles (2.5–5.5 nm) morphology, are prepared by the amidation reaction. The carbonized sample exhibits highly graphitic tendency with graphitization degree up to 95.6%, and shows graphene‐like porous structure, appropriate amorphous carbon decoration characteristic, as well as N‐doping and defective nature. When employed as anode material in LICs, it shows high energy density of 83.7 Wh kg–1 and high power density of 6527 W kg–1 when the mass ratio of cathode to anode is 1:1 and the operating voltage ranges from 2.0 to 4.0 V. It also possesses the long cyclic stability with the energy density retention maintains at 97.3% after 10 000 cycles at 5.0 A g–1. In addition, the energy density is further increased by altering cathode/anode mass ratio and extending working voltage. This work provides a novel strategy to develop unique carbon materials for energy storage.  相似文献   

5.
Potassium‐based energy storage devices (PESDs) are promising candidates for large‐scale energy storage applications owing to potassiums abundant in nature, the low standard redox potential (?2.93 V for K/K+ vs the standard hydrogen electrode) of potassium (K), and high ionic conductivity of K‐ion based electrolytes. However, lack of proper cathode and anode materials hinder practical applications of PESDs. In this work, carbon nanosheets doped with an ultrahigh content of nitrogen (22.7 at%) are successfully synthesized as an anode material for a K‐ion battery, which delivers a high capacity of 410 mAh g?1 at a current density of 500 mA g?1, which is the best result among the carbon based anodes for PESDs. Moreover, the battery exhibits an excellent cycling performance with a capacity retention of 70% after 3000 cycles at a high current density of 5 A g?1. In situ Raman, galvanostatic intermittent titration, and density functional theory calculations reveal that the ultrahigh N‐doped carbon nanosheet (UNCN) simultaneously combines the diffusion and pseudocapacitive mechanisms together, which remarkably improves its electrochemical performances in K‐ion storage. These results demonstrate the good potential of UNCNs as a high‐performance anode for PESDs.  相似文献   

6.
The last steps of chlorophyll (Chl) biosynthesis were studied at different light intensities and temperatures in dark‐germinated ginkgo (Ginkgo biloba L.) seedlings. Pigment contents and 77 K fluorescence emission spectra were measured and the plastid ultrastructure was analysed. All dark‐grown organs contained protochlorophyllide (Pchlide) forms with similar spectral properties to those of dark‐grown angiosperm seedlings, but the ratios of these forms to each other were different. The short‐wavelength, monomeric Pchlide forms were always dominating. Etioplasts with small prolamellar bodies (PLBs) and few prothylakoids (PTs) differentiated in the dark‐grown stems. Upon illumination with high light intensities (800 μmol m?2 s?1 photon flux density, PFD), photo‐oxidation and bleaching occurred in the stems and the presence of 1O2 was detected. When Chl accumulated in plants illuminated with 15 μmol m?2 s?1 PFD it was significantly slower at 10°C than at 20°C. At room temperature, the transformation of etioplasts into young chloroplasts was observed at low light, while it was delayed at 10°C. Grana did not appear in the plastids even after 48 h of greening at 20°C. Reaccumulation of Pchlide forms and re‐formation of PLBs occurred when etiolated samples were illuminated with 200 μmol m?2 s?1 PFD at room temperature for 24 h and were then re‐etiolated for 5 days. The Pchlide forms appeared during re‐etiolation had similar spectral properties to those of etiolated seedlings. These results show that ginkgo seedlings are very sensitive to temperature and light conditions during their greening, a fact that should be considered for ginkgo cultivation.  相似文献   

7.
Potassium ion storage technology as a promising substitute for the well‐developed lithium ion storage technology is still at the infancy stage of development, and exploring suitable electrode materials is critical for its practical application. Here, the great feasibility of disordered, large interlayer spacing, and oxygen‐rich carbon nanosheets (CNSs) prepared by chemical vapor deposition for potassium ion storage applications is demonstrated. As an anode material, the CNSs exhibit outstanding rate capability as well as excellent cyclic stability. Taking advantage of this, a potassium ion hybrid capacitor (PIHC) is constructed by employing such CNSs as the battery‐type anode and activated carbon as the capacitor‐type cathode. The resulting device displays a high energy density of 149 Wh kg?1, an ultrahigh power output of 21 kW kg?1, as well as a long cycling life (80% capacity retention after 5000 cycles), which are all close to the state‐of‐the‐art values for PIHCs. This work promotes the development of high‐performance anode material for potassium ion storage devices, and the designed PIHC pushes the energy density and power density to a higher level.  相似文献   

8.
Metal phosphides are promising anode candidates for sodium‐ion batteries (SIBs) due to their high specific capacity and low operating potential but suffer from poor cycling stability caused by huge volume expansion and poor solid‐state ion transfer rate. Herein, a new strategy to grow a new class of mesoporous metal phosphide nanoarrays on carbon felt (CF) as binder‐free anodes for SIBs is reported. The resultant integrated electrodes demonstrate excellent cycling life up to 1000 times (>90% retention rate) and high rate capability of 535 mAh g?1 at a current density of 4 A g?1. Detailed characterization reveals that the synergistic effect of unique mesoporous structure for accommodating huge volume expansion during sodiation/desodiation process, ultrasmall primary particle size (≈10 nm) for providing larger electrode/electrolyte contact area and shorter ion diffusion distance, and 3D conductive networks for facilitating the electrochemical reaction, leads to the extraordinary battery performance. Remarkably, a full SIB using the new CoP4/CF anode and a Na3V2(PO4)2F3 cathode delivers an average operating voltage of ≈3.0 V, a reversible capacity of 553 mAh g?1, and very high energy density of ≈280 Wh kg?1 for SIBs. A flexible SIB with outstanding mechanical strength based on this binder‐free new anode is also demonstrated.  相似文献   

9.
A dc plane glow discharge in a nitrogen-hydrogen (N2-H2) gas mixture has been operated at discharge currents of 10 and 20 mA. The electron energy distribution function (EEDF) at different hydrogen concentrations is measured. A Maxwellian EEDF is found in the positive column region, while in both cathode fall and negative glow regions, a non-Maxwellian one is observed. Langmuir electric probes are used at different axial positions, gas pressures, and hydrogen concentrations to measure the electron temperature and plasma density. The electron temperature is found to increase with increasing H2 concentration and decrease with increasing both the axial distance from the cathode and the mixture pressure. At first, with increasing distance from the cathode, the ion density decreases, while the electron density increases; then, as the anode is further approached, they remain nearly constant. At different H2 concentrations, the electron and ion densities decrease with increasing the mixture pressure. Both the electron and ion densities slightly decrease with increasing H2 concentration.  相似文献   

10.
An innovative and environmentally friendly battery chemistry is proposed for high power applications. A carbon‐coated ZnFe2O4 nanoparticle‐based anode and a LiFePO4‐multiwalled carbon nanotube‐based cathode, both aqueous processed with Na‐carboxymethyl cellulose, are combined, for the first time, in a Li‐ion full cell with exceptional electrochemical performance. Such novel battery shows remarkable rate capabilities, delivering 50% of its nominal capacity at currents corresponding to ≈20C (with respect to the limiting cathode). Furthermore, the pre‐lithiation of the negative electrode offers the possibility of tuning the cell potential and, therefore, achieving remarkable gravimetric energy and power density values of 202 Wh kg?1 and 3.72 W kg?1, respectively, in addition to grant a lithium reservoir. The high reversibility of the system enables sustaining more than 10 000 cycles at elevated C‐rates (≈10C with respect to the LiFePO4 cathode), while retaining up to 85% of its initial capacity.  相似文献   

11.
Potassium ion hybrid capacitors have great potential for large‐scale energy devices, because of the high power density and low cost. However, their practical applications are hindered by their low energy density, as well as electrolyte decomposition and collector corrosion at high potential in potassium bis(fluoro‐sulfonyl)imide‐based electrolyte. Therefore, anode materials with high capacity, a suitable voltage platform, and stability become a key factor. Here, N‐doping carbon‐coated FeSe2 clusters are demonstrated as the anode material for a hybrid capacitor, delivering a reversible capacity of 295 mAh g?1 at 100 mA g?1 over 100 cycles and a high rate capability of 158 mAh g?1 at 2000 mA g?1 over 2000 cycles. Meanwhile, through density functional theory calculations, in situ X‐ray diffraction, and ex situ transmission electron microscopy, the evolution of FeSe2 to Fe3Se4 for the electrochemical reaction mechanism is successfully revealed. The battery‐supercapacitor hybrid using commercial activated carbon as the cathode and FeSe2/N‐C as the anode is obtained. It delivers a high energy density of 230 Wh kg?1 and a power density of 920 W kg?1 (the energy density and power density are calculated based on the total mass of active materials in the anode and cathode).  相似文献   

12.
The ability to concentrate CO2 around Rubisco allows C4 crops to suppress photorespiration. However, as phosphoenolpyruvate regeneration requires ATP, the energetic efficiency of the C4 pathway at low photosynthetic flux densities (PFD) becomes a balancing act between primary fixation and concentration of CO2 in mesophyll (M) cells, and CO2 reduction in bundle sheath (BS) cells. At low PFD, retro‐diffusion of CO2 from BS cells, relative to the rate of bicarbonate fixation in M cells (termed leakiness φ), is known to increase. This paper investigates whether this increase in ? could be explained by incomplete inhibition of photorespiration. The PFD response of φ was measured at various O2 partial pressures in young Zea mays plants grown at 250 (LL) and 750 µmol m?2 s?1 PFD (HL). φ increased at low PFD and was positively correlated with O2 partial pressure. Low PFD during growth caused BS conductance and interveinal distance to be lower in the LL plants, compared to the HL plants, which correlated with lower φ. Model analysis showed that incomplete inhibition of photorespiration, especially in the HL plants, and an increase in the relative contribution of mitochondrial respiration at low PFD could explain the observed increases in φ.  相似文献   

13.
Phosphorene, monolayer or few‐layer black phosphorus (BP), has recently triggered strong scientific interest for lithium/sodium ion batteries (LIBs/SIBs) applications. However, there are still challenges regarding large‐scale fabrication, poor air stability. Herein, we report the high‐yield synthesis of phosphorene with good crystallinity and tunable size distributions via liquid‐phase exfoliation of bulk BP in formamide. Afterwards, a densely packed phosphorene–graphene composite (PG‐SPS, a packing density of 0.6 g cm?3) is prepared by a simple and easily up‐scalable spark plasma sintering (SPS) process. When working as anode materials of LIBs, PG‐SPS exhibit much improved first‐cycle Coloumbic efficiency (60.2%) compared to phosphorene (11.5%) and loosely stacked phosphorene–graphene composite (34.3%), high specific capacity (1306.7 mAh g?1) and volumetric capacity (256.4 mAh cm?3), good rate capabilities (e.g., 415.0 mAh g?1 at 10 A g?1) as well as outstanding long‐term cycling life (91.9% retention after 800 cycles at 10 A g?1). Importantly, excellent air stability of PG‐SPS over the 60 days observation in maintaining its high Li storage properties can be achieved. On the contrary, 95.2% of BP in PG sample was oxidized after only 10 days exposure to ambience, leading to severe degradation of electrochemical properties.  相似文献   

14.
Lithium (Li) metal anodes are promising candidates for high‐energy‐density batteries. However, uncontrollable dendritic plating behavior and infinite volume expansion are hindering their practical applications. Herein, a novel CuO@Ti‐mesh (CTM) is prepared by microwave‐assisted reactions, followed by pressing on Li wafers, leading to Li/CuO@Ti‐mesh (LCTM) composite anodes. The lithiophilic CuO nanoflowers on Ti‐mesh provides evenly distributed nucleation sites, inducing uniform Li‐ion lateral plating, which can effectively inhibit the growth of Li dendrites and volume expansion during cycling. The as‐prepared LCTM composite anode exhibits high Coulombic efficiency (CE) of 94.2% at 10 mA cm‐2 over 90 cycles. Meanwhile, the LCTM anode shows a low overpotential of 50 mV at 10 mA cm‐2 over 16 000 cycles and a low overpotential of 90 and 250 mV even at ultrahigh current densities of 20 and 40 mA cm‐2. When paired with Li4Ti5O12 (LTO), it enhances the capacity retention of LTO/Li wafer full cells by about two times from 36.6% to 73.0% and 42.0% to 80.0% at 5C and 10C with long‐term cycling. It is hoped that this LCTM anode with ultrahigh rates and ultralong cycle life may put Li‐metal anode forward to practical applications, such as in Li–S, Li‐air batteries, etc.  相似文献   

15.
Inspired by the great success of graphite in lithium‐ion batteries, anode materials that undergo an intercalation mechanism are considered to provide stable and reversible electrochemical sodium‐ion storage for sodium‐ion battery (SIB) applications. Though MoS2 is a promising 2D material for SIBs, it suffers from deformation of its layered structure during repeated intercalation of Na+, resulting in undesirable electrochemical behaviors. In this study, vertically oriented MoS2 on nitrogenous reduced graphene oxide sheets (VO‐MoS2/N‐RGO) is presented with designed spatial geometries, including sheet density and height, which can deliver a remarkably high reversible capacity of 255 mA h g?1 at a current density of 0.2 A g?1 and 245 mA h g?1 at a current density of 1 A g?1, with a total fluctuation of 5.35% over 1300 cycles. These results are superior to those obtained with well‐developed hard carbon structures. Furthermore, a SIB full cell composed of the optimized VO‐MoS2/N‐RGO anode and a Na2V3(PO4)3 cathode reaches a specific capacity of 262 mA h g?1 (based on the anode mass) during 50 cycles, with an operated voltage range of 2.4 V, demonstrating the potentially rewarding SIB performance, which is useful for further battery development.  相似文献   

16.
Mechanically bendable and flexible functionalities are urgently required for next‐generation battery systems that will be included in soft and wearable electronics, active sportswear, and origami‐based deployable space structures. However, it is very difficult to synthesize anode and cathode electrodes that have high energy density and structural reliability under large bending deformation. Here, vanadium oxide (V2O5) and nickel cobalt oxide (NiCo2O4) nanowire‐carbon fabric electrodes for highly flexible and bendable lithium ion batteries are reported. The vanadium oxide and nickel cobalt oxide nanowires were directly grown on plasma‐treated carbon fabric and were used as cathode and anode electrodes in a full cell lithium ion battery. Most importantly, a pre‐lithiation process was added to the nickel cobalt oxide nanowire anode to facilitate the construction of a full cell using symmetrically‐architectured nanowire‐carbon fabric electrodes. The highly bendable full cell based on poly(ethylene oxide) polymer electrolyte and room temperature ionic liquid shows high energy density of 364.2 Wh kg?1 at power density of 240 W kg?1, without significant performance degradation even under large bending deformations. These results show that vanadium oxide and lithiated nickel cobalt oxide nanowire‐carbon fabrics are a good combination for binder‐free electrodes in highly flexible lithium‐ion batteries.  相似文献   

17.
As a result of mixing and light attenuation, algae in a photobioreactor (PBR) alternate between light and dark zones and, therefore, experience variations in photon flux density (PFD). These variations in PFD are called light/dark (L/D) cycles. The objective of this study was to determine how these L/D cycles affect biomass yield on light energy in microalgae cultivation. For our work, we used controlled, short light path, laboratory, turbidostat‐operated PBRs equipped with a LED light source for square‐wave L/D cycles with frequencies from 1 to 100 Hz. Biomass density was adjusted that the PFD leaving the PBR was equal to the compensation point of photosynthesis. Algae were acclimated to a sub‐saturating incident PFD of 220 µmol m?2 s?1 for continuous light. Using a duty cycle of 0.5, we observed that L/D cycles of 1 and 10 Hz resulted on average in a 10% lower biomass yield, but L/D cycles of 100 Hz resulted on average in a 35% higher biomass yield than the yield obtained in continuous light. Our results show that interaction of L/D cycle frequency, culture density and incident PFD play a role in overall PBR productivity. Hence, appropriate L/D cycle setting by mixing strategy appears as a possible way to reduce the effect that dark zone exposure impinges on biomass yield in microalgae cultivation. The results may find application in optimization of outdoor PBR design to maximize biomass yields. Biotechnol. Bioeng. 2012; 109: 2567–2574. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The phototransformation pathways of protochlorophyllide forms were studied in 8?C14-day-old leaves of dark-germinated wheat (Triticum aestivum L.) using white, 632.8?nm He?CNe laser and 654?nm laser diode light. The photon flux density (PFD) values (0.75?C360???mol photons?m?2?s?1), the illumination periods (20?ms?C10?s) and the temperature of the leaves (between ?60?°C and room temperature) were varied. The 77?K fluorescence spectra of partially phototransformed leaves showed gradual accumulation or even the dominance of the 675?nm emitting chlorophyllide or chlorophyll form at room temperature with 632.8?nm of PFD less than 200???mol photons?m?2?s?1 or with 654?nm of low PFD (7.5???mol photons?m?2?s?1) up to 1?s. Longer wavelength (685 or 690?nm) emitting chlorophyllide forms appeared at illuminations under ?25?°C with both laser lights or at room temperature when the PFD values were higher or the illumination period was longer than above. We concluded that the formation of the 675?nm emitting chlorophyllide form does not indicate the direct photoactivity of the 633?nm emitting protochlorophyllide form; it can derive from 644 and 657?nm forms via instantaneous disaggregation of the newly-produced chlorophyllide complexes. The disaggregation is strongly influenced by the molecular environment and the localization of the complex.  相似文献   

19.
Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application of lithium‐pretreated HC (LPHC) as high‐performance anode materials for SIBs by manipulating the solid electrolyte interphase in tetraglyme (TEGDME)‐based electrolyte. The LPHC in TEGDME can 1) deliver > 92% ICE and ≈220 mAh g?1 specific capacity, twice of the capacity (≈100 mAh g?1) in carbonate electrolyte; 2) achieve > 85% capacity retention over 1000 cycles at 1000 mA g?1 current density (4 C rate, 1 C = 250 mA g?1) with a specific capacity of ≈150 mAh g?1, ≈15 times of the capacity (10 mAh g?1) in carbonate. The full cell of Na3V2(PO4)3‐LPHC in TEGDME demonstrated close to theoretical specific capacity of ≈98 mAh g?1 based on Na3V2(PO4)3 cathode, ≈2.5 times of the value (≈40 mAh g?1) with nontreated HC. This work provides new perception on the anode development for SIBs.  相似文献   

20.
The volume expansion and dendrite growth of metallic Li anode during charge/discharge processes hinder its practical application in energy storage. Seeking an appropriate host for distributing bulk Li in a 3D manner is an effective way to solve these problems. Here, a novel porous graphene scaffold with cellular chambers for incorporating Li metal is presented. Using such a unique host, ultrathin Li layers of 3 µm in thickness are anchored on graphene to form porous microstructures, which provides much more reaction sites for Li ions compared with that of bulk Li, significantly promoting the reversibility of Li stripping and plating. Also the high current density can be effectively dissipated by the graphene scaffold to remarkably improve the rate capability of Li anode. The symmetrical Li cell using such a Li anode can run stably for 200 cycles at 5 mA cm?2 and even 70 cycles at 10 mA cm?2 in an unmodified carbonate‐based electrolyte, which has rarely been achieved in such aggressive working conditions. Lithium‐ion capacitor cells using this anode also show outstanding rate capability and cycling stability, which can work at an ultrahigh current density of 30 A g?1 and keep steady for over 4000 cycles at 3.75 A g?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号