首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamics of a relativistic electron beam in the vicinity of an injector in the form of a spherical conducting body in a space plasma is considered. An equation describing the radial evolution of a steady electron beam with a self-similar density profile in the electric field of the injector is formulated. A method for calculating the radial evolution of a relativistic electron beam in the vicinity of an injector is developed. The method is based on the numerical integration of a set of ordinary differential equations for the beam radius and field potential in the space charge region under the relevant boundary conditions at the injector surface. Results are presented from numerical simulations of the radial dynamics of an electron beam in the vicinity of a spherical screen system for neutralizing the electric charge carried away by the beam. The numerical results show that the electric field of the injector hastens the beam expansion.  相似文献   

2.
Profiles of the magnetic and electric fields and electron density in a stationary collisionless skinning layer in plasma at relativistic current velocities are analyzed in detail.  相似文献   

3.
The problem is considered of determining the electric field induced in the vicinity of a conducting spherical body that is at rest in a collisionless plasma and at the surface of which there is a prescribed sink of negative charge. The problem is solved for the general relativistic case under the assumption that the electron velocity in the neutralizing current is comparable with the speed of light. An integrodifferential equation is derived that describes the radial behavior of the electric field potential in the vicinity of the injector. A simplified method for determining the potential in the perturbed region is developed. The method implies that the problems of the potentials in a space charge region of radius R* (with a prescribed boundary potential ?*) adjacent the body and in the outer region r>R* are solved separately and then the solutions obtained are matched at boundary between these regions.  相似文献   

4.
One-dimensional dynamics of a plane slab of cold (β ? 1) isothermal plasma accelerated by a magnetic field is studied in terms of the MHD equations with a finite constant conductivity. The passage to the limit β → 0 is analyzed in detail. It is shown that, at β = 0, the character of the solution depends substantially on the boundary condition for the electric field at the inner plasma boundary. The relationship between the boundary condition for the pressure at β > 0 and the conditions for the electric field at β = 0 is found. The stability of the solution against one-dimensional longitudinal perturbations is analyzed. It is shown that, in the limit β → 0, the stationary solution is unstable if the time during which the acoustic wave propagates across the slab is longer than the time of magnetic field diffusion. The growth rate and threshold of instability are determined, and results of numerical simulation of its nonlinear stage are presented.  相似文献   

5.
A general mathematical model is proposed that is based on the Vlasov kinetic equation with a self-consistent field and describes the nonlinear dynamics of the electromagnetic instabilities of a relativistic electron beam in a spatially bounded plasma. Two limiting cases are analyzed, namely, high-frequency (HF) and low-frequency (LF) instabilities of a relativistic electron beam, of which the LF instability is a qualitatively new phenomenon in comparison with the known Cherenkov resonance effects. For instabilities in the regime of the collective Cherenkov effect, the equations containing cubic nonlinearities and describing the nonlinear saturation of the instabilities of a relativistic beam in a plasma are derived by using the methods of expansion in small perturbations of the trajectories and momenta of the beam electrons. Analytic expressions for the amplitudes of the interacting beam and plasma waves are obtained. The analytical results are shown to agree well with the exact solutions obtained numerically from the basic general mathematical model of the instabilities in question. The general mathematical model is also used to discuss the effects associated with variation in the constant component of the electron current in a beam-plasma system.  相似文献   

6.
A heuristic procedure is proposed for deriving quasi-optical equations for wave beams in anisotropic gyrotropic media with allowance for aberrations, spatial dispersion, and absorption. To solve such equations numerically, a method is developed that generalizes the operator exponent method. The applicability limits of the aberration-free approximation for simulating the propagation of beams in absorbing media are determined. Numerical examples of the propagation of beams in the vicinity of the electron cyclotron resonance in plasmas in actual devices are presented.  相似文献   

7.
Characteristic features of the propagation of electromagnetic electron cyclotron waves in the vicinity of the electron cyclotron resonance surface are investigated both analytically and numerically with allowance for variation in the magnetic field strength and a corresponding variation in the magnetic field direction. It is demonstrated that variation in the magnetic field direction can qualitatively change the wave propagation pattern and can markedly affect the efficiency of electron cyclotron resonance plasma heating in an axisymmetric magnetic trap.  相似文献   

8.
Results are presented from experiments on the acceleration of electrons by a 2.45-GHz microwave field in an adiabatic mirror trap under electron cyclotron resonance conditions, the electric and wave vectors of the wave being orthogonal to the trap axis. At a microwave electric field of ≥10 V/cm and air pressures of 10?6–10?4 Torr (the experiments were also performed with helium and argon), a self-sustained discharge was initiated in which a fraction of plasma electrons were accelerated to energies of 0.3–0.5 MeV. After the onset of instability, the acceleration terminated; the plasma decayed; and the accelerated electrons escaped toward the chamber wall, causing the generation of X-ray emission. Estimates show that electrons can be accelerated to the above energies only in the regime of self-phased interaction with the microwave field, provided that the electrons with a relativistically increased mass penetrate into the region with a higher magnetic field. It is shown that the negative-mass instability also can contribute to electron acceleration. The dynamic friction of the fast electrons by neutral particles in the drift space between the resonance zones does not suppress electron acceleration, so the electrons pass into a runaway regime. Since the air molecules excited by relativistic runaway electrons radiate primarily in the red spectral region, this experiment can be considered as a model of high-altitude atmospheric discharges, known as “red sprites.”  相似文献   

9.
The results of the numerical simulation of the electron cyclotron resonance (ECR) heating of plasma particles in the CERA-RX facility under a randomly pulsating electric field (the collective effects taken into account) are presented. Under these conditions, the electron energy spectrum was found to be depleted to the low energy region due to an increase in the number of particles in the high energy region. The obtained effect depends on the polarity of the pulsating electric field.  相似文献   

10.
Conditions for the phase synchronism between high-frequency electromagnetic waves with frequencies ω and 2ω propagating in magnetized plasma are investigated. The variety of the values of the plasma density and magnetic field, as well as of wave polarizations, obeying the synchronism conditions are shown to provide resonant broadband wide-angle nonlinear generation of the second harmonic of the pumping wave. Special attention is given to oblique propagation of interacting waves. The coupling strengths for the resonant mode conversion in magnetized collisional plasma are obtained. The double resonance ensuring efficient nonlinear generation of extraordinary mode in the vicinity of the electron cyclotron resonance (ω(2k) = ω ce ) is considered. Examples illustrating these nonlinear phenomena for some plasma and radiation parameters are presented.  相似文献   

11.
A study is made of the propagation of steady-state large-amplitude longitudinal plasma waves in a cold collisionless plasma with allowance for both electron and ion motion. Conditions for the existence of periodic potential waves are determined. The electric field, potential, frequency, and wavelength are obtained as functions of the wave phase velocity and ion-to-electron mass ratio. Taking into account the ion motion results in the nonmonotonic dependence of the frequency of the waves with the maximum possible amplitudes on the wave phase velocity. Specifically, at low phase velocities, the frequency is equal to the electron plasma frequency for linear waves. As the phase velocity increases, the frequency first decreases insignificantly, reaches its minimum value, and then increases. As the phase velocity increases further, the frequency continues to increase and, at relativistic phase velocities, again becomes equal to the plasma frequency. Finally, as the phase velocity approaches the speed of light, the frequency increases without bound.  相似文献   

12.
The propagation of a nonlinear right-hand polarized wave along an external magnetic field in subcritical plasma in the electron cyclotron resonance region is studied using numerical simulations. It is shown that a small-amplitude plasma wave excited in low-density plasma is unstable against modulation instability with a modulation period equal to the wavelength of the excited wave. The modulation amplitude in this case increases with decreasing detuning from the resonance frequency. The simulations have shown that, for large-amplitude waves of the laser frequency range propagating in plasma in a superstrong magnetic field, the maximum amplitude of the excited longitudinal electric field increases with the increasing external magnetic field and can reach 30% of the initial amplitude of the electric field in the laser wave. In this case, the energy of plasma electrons begins to substantially increase already at magnetic fields significantly lower than the resonance value. The laser energy transferred to plasma electrons in a strong external magnetic field is found to increase severalfold compared to that in isotropic plasma. It is shown that this mechanism of laser radiation absorption depends only slightly on the electron temperature.  相似文献   

13.
Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. The possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.  相似文献   

14.
A study is made of the one-dimensional linear problem of the absorption of the energy of an extraordinary wave propagating along a nonuniform magnetic field by a plasma in the ECR region. The plasma electrons are assumed to be nonrelativistic and are described by a collisionless kinetic equation. The distribution of the absorbed power among the electrons and the distribution of the self-consistent field over the confinement system are obtained. The conditions under which the ECRH power is distributed uniformly among the bulk electrons are determined. The limits of applicability of the locally nonuniform magnetic field approximation are established. The solutions derived are compared with the solution to an analogous problem with the collisional absorption mechanism.  相似文献   

15.
Excitation of surface waves by a relativistic electron beam propagating over a conducting cylindrical medium (metal or highly ionized plasma) is investigated theoretically. Dispersion relations describing the linear interaction of surface electromagnetic waves with a monoenergetic electron beam are derived, and the growth rates and spatial amplification factors of excited waves are determined. Condition for the nonlinear trapping of the beam electrons by a surface wave is used to determine the maximum amplitude of the excited wave and the optimal radiator length. The electric field of a surface wave excited by an electron beam is estimated for a particular case.  相似文献   

16.
The regimes of the instabilities of an annular relativistic electron beam in a waveguide with an annular plasma are systematically analyzed and classified. The growth rates of the instabilities are calculated different limiting cases, and the resonance conditions for the development of the instabilities are determined. The fastest growing instability of a high-current relativistic electron beam in a waveguide with a dense plasma is considered. The possible onset of a low-frequency instability of a beam in a waveguide with a low-density plasma is investigated. Typical examples of how the growth rates depend on the perturbation wavenumbers are presented for systems with parameters close to the experimental ones.  相似文献   

17.
It is shown that, at the wing of the cyclotron absorption line, the relativistic effects associated with the dependence of the gyrofrequency on the particle energy can play an important role even far from the relativistic cyclotron cutoff region, i.e., even when the resonance lines in velocity space are mainly determined by the nonrelativistic Doppler synchronizm. Simple relationships for the relativistic absorption coefficient and power deposition profile in a nonuniformly magnetized plasma slab, as well as a new condition, which was not discussed earlier, for the applicability of the nonrelativistic approximation, are derived from illustrative physical considerations.  相似文献   

18.
Nonlinear solutions to a set of Maxwell’s equations and the relativistic equations of electron motion are obtained that describe the equilibrium of a high-power ring relativistic electron beam against the background of immobile ions. By transforming the basic equations, a set of equations for a three-component vortex vector field is derived that describes ring beam configurations for plasma confinement. An example of a numerical calculation of the steady state of a compact beam torus of immobile ions and relativistic electrons is presented.  相似文献   

19.
Nonlinear oscillations of a semiconductor plasma with a low-density electron beam in the absence of an external magnetic field are studied in the hydrodynamic approximation. The beam is assumed to be nonrelativistic and monoenergetic. Cases are studied in which the Langmuir frequency of the electron oscillations in a semiconductor is much higher or much lower than the electron momentum relaxation rate. The self-similar solution obtained for the first case describes the damping of the nonlinear oscillations of the wave potential. Numerical analysis of the second case shows that the electric field distribution in the beam may correspond to that in a shock wave.  相似文献   

20.
Results are presented from experimental studies of the interaction of a modulated relativistic electron beam with a plasma. The electron energy spectra at the exit from the interaction chamber are measured for electron beams with energies of about 50 and 20 MeV. The coherent interaction of an electron beam with a microwave-driven plasma is studied. It is shown that, in strong electric fields that can be generated in the coherent interaction, the beam current is very sensitive to the phase of the microwave field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号