首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of a peaked bell-shaped profile of the electron density n e (r) in the T-11M tokamak (B t=1 T, R/a = 0.7/0.2 m, I p = 100 kA, t shot ≤ 300 ms, Li and C limiters) was observed in Li experiments carried out in the near-plateau collisionality regime (the collisionality parameter at one-half of the minor radius was v* ≥ 0.5) under the conditions of low hydrogen recycling and intense hydrogen influx from the plasma edge. It is well known that peaked n e (r) profiles are observed in collisionless regimes at v* values as low as 10?1–10?2 or in impurity-contaminated discharges, in which this effect can be attributed to the impurity accumulation on the plasma column axis. Moreover, a bell-shaped n e (r) profile in discharges with low n e can result from the ionization of hydrogen atoms at the column axis, where they arrive from the plasma edge due to cascade charge-exchange. In quasi-steady lithium discharges in T-11M, however, peaked n e (r) profiles were observed at a relatively high central electron density n e (0) and relatively high collision frequency, such that the influence of impurities on the n e (r) profile could be ignored (Z eff = 1.1±0.1). To explain this effect, one has to assume that the pinching of hydrogen ions in T-11M is anomalous. The lower estimate of the observed pinch velocity is 4 ± 1 m/s, which is three to five times higher than the velocity of the neoclassical (Ware) pinch, characteristic of these conditions. The work is devoted to the experimental study of this effect.  相似文献   

2.
Results are presented from laboratory modeling of the dynamics of space cyclotron masers. A selfoscillatory mode of cyclotron instability in the nonequilibrium plasma of an ECR discharge in a magnetic mirror trap is found. The plasma comprises two electron populations: the background population with a density of N e ~ 1013–1014 cm?3 and temperature of T e ≈ 300 eV and the energetic population with a density of N e ~ 1010 cm?3 and temperature of T e ≈ 10 keV. Quasi-periodic pulsed precipitation of energetic electrons from the trap, accompanied by microwave bursts at frequencies below the electron gyrofrequency in the center of the trap, is detected. The study of the microwave plasma emission and the energetic electrons precipitated from the trap shows that the precipitation is related to the excitation of whistler-mode waves propagating nearly parallel to the trap axis. The observed instability has much in common with phenomena in space magnetic traps, such as radiation belts of magnetized planets and solar coronal loops. The experimental results demonstrate the opportunity of laboratory modeling of space cyclotron masers. The main tasks and possibilities of such modeling are discussed.  相似文献   

3.
This work presents results of experimental studies of the spectral and photometric characteristics of optical radiation generated by a pulse-periodic microwave discharge close to ECR (2.45 GHz, average power of up to 200 W, argon pressure of 10–4–10–1 Torr). Under these conditions, dense (n e = 1010–4 × 1011 cm–3) low-temperature (T e = 3–5 eV) plasma is produced in the working volume at an ionization rate of 10–3–5 × 10–5. It is shown that the increase in the electron density near the upper boundary of the pressure range at a constant level of the input power leads to a drastic change in the type and spectral composition of plasma radiation and a jumplike increase in the light flux. The results of probe and optical measurements made it possible to determine the range of the operating parameters defining the character and parameters of the radiation processes under study.  相似文献   

4.
The applicability of emission of the N 3Λσ triplet states of molecular hydrogen for spectral diagnostics of the positive column of a dc glow discharge in hydrogen at translational gas temperatures of 360–600 K, specific absorbed powers of 0.8–4.25 W/cm, gas pressures of p = 0.3–15.0 Torr, reduced fields of E/N = 30–130 Td, and electron densities of n e = 4.0 × 109–6.5 × 1010 cm–3 is analyzed by using an advanced level-based semi-empirical collisional?radiative model. It is found that secondary processes make the main contribution to the population and decay of the N 3Λσ = a 3Σ+ g , c 3Π u , g 3Σ+ g , h 3Σ+ g , and i 3Π g triplet states. The dipole-allowed transitions e 3Σ+ g a 3Σ+ g , f 3Σ+ g a 3Σ+ g , g 3Σ+ g and k 3Π u a 3Σ+ g can be used for spectral diagnostics of a dc discharge within a simplified coronal model.  相似文献   

5.
There are two close empirical scalings, namely, the T-11 and neo-Alcator ones, that provide correct estimates for the energy confinement time in tokamaks in ohmic heating regimes in the linear part of the dependence τ E (\(\bar n_e \)) in the range of low values of \(\bar n_e \) and 〈ν e * 〉 ≤ 1. The similar character of electron energy confinement in this range, which expands with increasing magnetic field B 0, has stimulated the search for dimensionless parameters and simple physical models that would explain the experimentally observed dependences χ e ~ 1/n e and τ Ee \(\bar n_e \). In 1987, T. Okhawa showed that the experimental data were satisfactorily described by the formula χe = (c 2 pe 2 )ν e /qR, in deriving of which the random spatial leap along the radius r on the electron trajectory was assumed to be the same as that in the coefficient of the poloidal field diffusion, while the repetition rate of these leaps was assumed to be ν e /qR. In 2004, J. Callen took into account the decrease in the fraction of transient electrons with increasing toroidal ratio ? = r/R and corrected the coefficient c 2 pe 2 in Okhawa equation by the factor σ Sp neo . If one takes into account this correction and assumes that the frequency of the stochastic process is equal to the reciprocal of the half-period of rotation of a trapped electron along its banana trajectory, then the resulting expression for χe will coincide with the T-11 scaling: χ e an ∞ ?1.75(T e /A i )0.5/(n e qR) at A i = 1. If the same stochastic process also involves ions, it may result in the opening of the orbit of a trapped ion at the distance ~(c pe )(m i /m e )1/4. In this case, the calculated coefficient of electron and ion diffusion D is close to D an ≈ χ e an /2.  相似文献   

6.
It was shown theoretically that the increase in the cathode emission current in a low-voltage cesium-hydrogen discharge to ≈10 A/cm2 leads to an increase in the electron temperature in the anode plasma to T e ≥ 1 eV. In this regime, the rate constant for the production of H? ions via dissociative electron attachment to vibrationally excited H2 molecules is close to its maximum value and the density of H? ions is maximal (about 1013 cm?3) in the anode plasma.  相似文献   

7.
In experiments on lower hybrid current drive (LHCD) carried out at the FT-2 tokamak, a substantial increase in the central electron temperature T e (r = 0 cm) from 550 to 700 eV was observed. A complex simulation procedure is used to explain a fairly high LHCD efficiency and the observed additional heating, which can be attributed to a transition into the improved core confinement (ICC) mode. For numerical simulations, data obtained in experiments with deuterium plasma at 〈n e 〉 = 1.6 × 1019 m–3 were used. Simulations by the GRILL3D, FRTC, and ASTRA codes have shown that the increase in the density and central temperature is apparently caused by a significant suppression of heat transport in the electron component. The mechanism for transition into the improved confinement mode at r < 3 cm can be associated with the broadening of the plasma current channel due to the lower hybrid drive of the current carried by superthermal and runaway electrons. In this case, the magnetic shear s = (r/q)(dq/dr) in the axial region of the plasma column almost vanishes during the RF pulse. In this study, the effect of lower hybrid waves on the plasma parameters, resulting in a transition into the ICC mode, is considered. New experimental and calculated data are presented that evidence in favor of such a transition. Special attention is paid to the existence of a threshold for the transition into the ICC mode in deuterium plasma.  相似文献   

8.
The parameters of the electrode region of an electrode microwave discharge in nitrogen are studied by emission spectroscopy. The radial and axial distributions of the intensities of the bands of the second (N2(C 3Π u B 3Π g )) and first (N2(B 3Π g A 3Σ u + )) positive systems of molecular nitrogen and the first negative system of nitrogen ions (N 2 + (B 2Σ u + X 2Σ g + )), the radial profiles of the electric field E and the electron density N e , and the absolute populations of the vibrational levels v C = 0–4 of the C 3Π u excited state of N2 and the vibrational level v Bi = 0 of the B 2Σ u + excited state of a molecular nitrogen ion are determined. The population temperature of the first vibrational level T V of the ground electronic state X 1Σ g + of N2 and the excitation temperature T C of the C 3Π u state in the electrode region of the discharge are measured. The radius of the spherical region and the spatially integrated plasma emission spectra are studied as functions of the incident microwave power and gas pressure. A method for determining the electron density and the microwave field strength from the plasma emission characteristics is described in detail.  相似文献   

9.
Mechanisms for generating current filaments in a dense plasma under the action of focused laser pulses and in a Z-pinch configuration are discussed. The main properties of current filaments with a zero and nonzero electron vorticity Ω e =B?(c/e)?×p e that originate at magnetic fields in the range 4πn e m e c2?B2?4πn i m i c2 are investigated under the conditions of Coulomb explosion at currents below the ion Alfvén current. A study is made of the equilibrium configurations of nonquasineutral current filaments in a purely longitudinal (Bz) and a purely azimuthal (Bθ) magnetic field and also in a more general case of a helical magnetic field, having two components, under conditions such that the charge separation occurs on a spatial scale on the order of the magnetic Debye radius rB ? |B|/(4πene. It is shown that strong electric fields generated in the current filaments are comparable in magnitude to the atomic field and are capable of accelerating ions to energies of several tens of megaelectronvolts. The ion dynamics in strong electric fields of the filaments is calculated numerically and is shown to lead to the formation of collisionless shock waves on time scales on the order of several inverse ion plasma frequencies ω pi ?1 . The possible formation of current filaments on different spatiotemporal scales is considered.  相似文献   

10.
The ion current to a cylindrical probe is considered with allowance for volume ionization, ion–neutral collisions, and the ion orbital moment. A model based on the molecular dynamics method and applicable in a wide range of plasma parameters (rp/λD= 0.01–100, ri/λD= 0.002–200, νi/ω0i= 0.01–0.05, and Ti/Te = 0?0.01) is proposed A convenient representation of the dependence of the relative ion current density on the Langmuir coefficient β2 and a technique for determining the plasma density from simulation results are offered.  相似文献   

11.
MHD oscillations with m/n = 4/1 and 3/1 that arise at the periphery of the TUMAN-3M tokamak in the initial stage of a discharge are investigated. It is found that these oscillations lead to a significant modulation of the electron density n e , which is attributable to the accumulation of plasma within a magnetic island. Numerical simulations of the modulation structure made it possible to determine the radius of the resonant surface and the radial width of the island and to evaluate the characteristic density gradient in the island. The gradient was found to be ten times larger than that of the unperturbed profile of n e (r) near the resonant surface. This points to reduced plasma transport within the magnetic island.  相似文献   

12.
Nonquasineutral electron current filaments with the azimuthal magnetic field are considered that arise due to the generation of electron vorticity in the initial (dissipative) stage of evolution of a current-carrying plasma, when the Hall number is small (σB/en e c ? 1) because of the low values of the plasma conductivity and magnetic field strength. Equilibrium filamentary structures with both zero and nonzero net currents are considered. Structures with a zero net current type form on time scales of t < t sk = (r 0ω pe /c)2 t st, where t sk is the skin time, t st is the typical time of electron-ion collisions, and r 0 is the radius of the filament. It is shown that, in nonquasineutral filaments in which the current is carried by electrons drifting in the crossed electric (E r ) and magnetic (B θ) fields, ultrarelativistic electron beams on the typical charge-separation scale r B = B/(4πen e ) (the so-called magnetic Debye radius) can be generated. It is found that, for comparable electron currents, the characteristic electron energy in filaments with a nonzero net current is significantly lower than that in zero-net-current filaments that form on typical time scales of t < t sk. This is because, in the latter type of filaments, the oppositely directed electron currents repel one another; as a result, both the density and velocity of electrons increase near the filament axis, where the velocities of relativistic electrons are maximum. Filaments with a zero net current can emit X rays with photon energies ? ω up to 10 MeV. The electron velocity distributions in filaments, the X-ray emission spectra, and the total X-ray yield per unit filament length are calculated as functions of the current and the electron number density in the filament. Analytical estimates of the characteristic lifetime of a radiating filament and the typical size of the radiating region as functions of the plasma density are obtained. The results of calculations are compared with the available experimental data.  相似文献   

13.
The plasma parameter studies of the Nd:YAG (neodymium-doped yttrium aluminum garnet, Nd:Y3Al15O12) crystal by using the fundamental (1064 nm) and second (532 nm) harmonics of Nd:YAG laser are reported. The electron temperature (T e ) and electron number density (N e) were determined using the Boltzmann plot method and the Stark-broadened line profile, respectively. An increase in the plasma parameters have been observed with an increase in the laser irradiance for both laser modes. The electron temperatures were calculated in the range of 0.53–0.66 eV for 1064 nm and 0.47–0.60 eV for 532 nm, and the electron number densities were determined in the range of 7.43 × 1015–3.27 × 1016 cm?3 for 1064 nm and 1.35 × 1016–3.97 × 1016 cm?3 for 532 nm in the studied irradiance range of 1.19–12.5 GW/cm2. However, the spatial evolution of the plasma parameters investigated up to 2.75 mm away from the target surface at a fixed laser irradiance of 6.51 GW/cm2 showed a decreasing trend. In addition, the estimated values of the inverse bremsstrahlung (IB) absorption coefficients at both laser wavelengths showed that the IB process is dominant for the 1064-nm laser.  相似文献   

14.
A study is made of the structure of a relativistic current filament with the azimuthal magnetic field Bθ in the range 4πn e m e c2?B θ 2 n i m i c2, when the plasma quasineutrality near the filament axis is violated and a narrow peak in electron density is formed there. The ion dynamics in a strong radial electric field of the filament on time scales of about several inverse ion plasma frequencies ω pi ?1 is investigated. The initial ion pressure prevents the ion plasma component from compression to infinitely high densities under the action of the electric field and leads to the formation of a dense hot plasma core near the axis of the Z-pinch on time scales of about a dozen ω pi ?1 . The compression of the ion component in the axial region gives rise to a collisionless “unloading” shock wave that propagates away from the axis and is accompanied by the vanishing of the radial ion velocity behind the shock front, the accumulation of positive charge near the axis, and the formation of a steady-state ion density profile. It is shown theoretically that ion-ion dissipation manifests itself as the destruction of the hot core of the formed Z-pinch on picosecond time scales. This may serve to explain the explosions of “hot points” in a current-carrying plasma.  相似文献   

15.
Impurity injection into plasma caused by the sputtering of the wall coating in the L-2M stellarator during auxiliary electron cyclotron resonance heating leads to a change in the level of plasma density fluctuations with frequencies above 0.25 MHz: suppression of long-wavelength (k = 2 cm–1) density fluctuations in the edge plasma, intensification of short-wavelength (k = 30 cm–1) and long-wavelength (k = 1 cm–1) fluctuations at the midradius of the plasma column, and intensification of short-wavelength fluctuations (k = 20 cm–1) in the plasma center (including the gyroresonance region). At the same time, the level of fluctuations with frequencies below 0.25 MHz remains unchanged. In the edge plasma, a decrease in the plasma potential and suppression of its fluctuations is observed during impurity injection, which also causes an increase in MHD activity.  相似文献   

16.
The paper describes the calculation data on the physical parameters of a reactor-stellarator, where the nonuniformities of the helical field are smaller than the toroidal magnetic field nonuniformities: εh < εt. Unlike the previous studies, where the ion-component transport coefficients had the collision frequency dependence proportional to ν1/2, this being equivalent to the εh > εt case, in the present calculations, these coefficients were assumed to be in proportion to the first power of the collision frequency, Di ∝ ν for νeff < 2ωE, and to Di ∝ ν?1 for the inverse inequality. Here, ωE is the rotation frequency of plasma in the radial electric field. As before, the plasma electrons corresponded to the mode of De ∝ ν?1. As initial parameters for numerical calculations, a reactor with R = 8 m, rp = 2 m, and B0 = 5 Т was taken. A numerical code was used to solve the set of equations that describes the plasma space?time behavior in the reactor-stellarator under the conditions of equal diffusion fluxes. The start of reactor operation in the mode of thermonuclear burning was provided by heating sources with a power of several tens of megawatts. Steady-state operating conditions of a self-sustained thermonuclear reaction were attained by maintaining the plasma density through DT fuel pellet injection into the plasma.  相似文献   

17.
The interaction of 1.07-μm laser radiation with plasma of a continuous optical discharge (COD) in xenon and argon at a pressure of p = 3–25 bar and temperature of T = 15 kK has been studied. The threshold power required to sustain COD is found to decrease with increasing gas pressure to P t < 30 W in xenon at p > 20 bar and to P t < 350 W in argon at p > 15 bar. This effect is explained by an increase in the coefficient of laser radiation absorption to 20?25 cm–1 in Xe and 1?2 cm–1 in Ar due to electronic transitions between the broadened excited atomic levels. The COD characteristics also depend on the laser beam refraction in plasma. This effect can be partially compensated by a tighter focusing of the laser beam. COD is applied as a broadband light source with a high spectral brightness.  相似文献   

18.
Turbulent dynamics of the edge plasma in the T-10 tokamak is simulated numerically by solving nonlinear MHD equations in the framework of the four-field {?, n, p e , p i } reduced two-fluid Braginskii hydro-dynamics. It is shown that the transition from ohmic to electron-cyclotron heating is accompanied by a decrease in the amplitudes of turbulent fluctuations in plasma. This is caused by the enhancement of longitudinal dissipation due to the increase in the electron temperature. However, phase relations between potential fluctuations of different modes change in such a way that the Reynolds turbulent force increases, which leads to an increase in the poloidal velocity in the direction of ion diamagnetic drift. Since the poloidal and ion diamagnetic drift velocities enter into the equation of the radial force balance for ions with different signs, the radial electric field decreases. The simulation results agree qualitatively with the results of experiments in the T-10 tokamak. The dependence of the radial electric field on the plasma density, ion pressure, and neutral density is also calculated.  相似文献   

19.
We present a theoretical study on the detailed mechanism and kinetics of the H+HCN →H+HNC process. The potential energy surface was calculated at the complete basis set quantum chemical method, CBS-QB3. The vibrational frequencies and geometries for four isomers (H2CN, cis-HCNH, trans-HCNH, CNH2), and seven saddle points (TSn where n = 1 ? 7) are very important and must be considered during the process of formation of the HNC in the reaction were calculated at the B3LYP/6-311G(2d,d,p) level, within CBS-QB3 method. Three different pathways (PW1, PW2, and PW3) were analyzed and the results from the potential energy surface calculations were used to solve the master equation. The results were employed to calculate the thermal rate constant and pathways branching ratio of the title reaction over the temperature range of 300 up to 3000 K. The rate constants for reaction H + HCN → H + HNC were fitted by the modified Arrhenius expressions. Our calculations indicate that the formation of the HNC preferentially occurs via formation of cis–HCNH, the fitted expression is k P W2(T) = 9.98 × 10?22 T 2.41 exp(?7.62 kcal.mol?1/R T) while the predicted overall rate constant k O v e r a l l (T) = 9.45 × 10?21 T 2.15 exp(?8.56 kcal.mol?1/R T) in cm 3 molecule ?1 s ?1.
Graphical Abstract (a) Potential energy surface, (b) thermal rate constants as a function of temperature and (c) the branching ratios (%) of PW1, PW2, PW3 pathways involved in rm H + HCN → H + HNC process.
  相似文献   

20.
This study reports the effects of RF power and filling gas pressure variation on the plasma parameters, including the electron number density n e , electron temperature T e , plasma potential V p , skin depth δ, and electron energy probability functions (EEPFs) in a low-pressure inductively coupled helium plasma source with magnetic pole enhancement. An RF compensated Langmuir probe is used to measure these plasma parameters. It is observed that the electron number density increases with both the RF power and the filling gas pressure. Conversely, the electron temperature decreases with increasing RF power and gas pressure. It is also noted that, at low RF powers and gas pressures, the EEPFs are non-Maxwellian, while at RF powers of ≥50 W, they evolve into a Maxwellian distribution. The dependences of the skin depth and plasma potential on the RF power are also studied and show a decreasing trend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号