首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results are presented from two-dimensional gas-dynamic simulations of plasma acceleration in the channel of a pulsed electrodynamic accelerator. The electrical conductivity of the plasma is assumed to be infinite and its thermal conductivity is neglected. The effect of the initial plasma density distribution on the acceleration efficiency is investigated. It is shown that the acceleration efficiency can be as high as ~40%, the acceleration length being one order of magnitude larger than the width of the initial gas density distribution.  相似文献   

2.
Numerical simulation of a specific technical RF inductively coupled argon plasma with three coils, discharge current in the range of Jcoil = 100–250 A, and generator frequency 3 MHz is presented. The temperature, pressure, and velocity fields are obtained under different discharge currents and different flow rates of central gas. A reversed flow (vortex) is found between the injected cool gas and high-temperature plasma-forming gas. The formation mechanisms of such a vortex and the influence of the discharge current and flow rate of central gas on the vortex structure and intensity are studied. Special attention is paid to investigating two different kinds of vortex flow patterns—Benard and toroidal. A critical flow rate of central gas above which the flow pattern would transform from Benard to toroidal is determined and approximated as a function of the discharge current by theoretical calculations and numerical simulations. The maximum negative velocities along the axis in the vortex zone are also determined under different discharge currents and different flow rates of central gas.  相似文献   

3.
Dependence of the shape of a microwave pulse in a plasma relativistic microwave amplifier (PRMA) on the initial plasma electron density in the system is detected experimentally. Depending on the plasma density, fast disruption of amplification, stable operation of the amplifier during the relativistic electron beam (REB) pulse, and its delayed actuation can take place. A reduction in the output signal frequency relative to the input frequency is observed experimentally. The change in the shape of the microwave signal and the reduction in its frequency are explained by a decrease in the plasma density in the system. The dynamics of the plasma density during the REB pulse is determined qualitatively from the experimental data by using the linear theory of a PRMA with a thin-wall hollow electron beam. The processes in a PRMA are analyzed by means of the KARAT particle-in-cell code. It is shown that REB injection is accompanied by an increase in the mean energy of plasma electrons and a significant decrease in their density.  相似文献   

4.
The formation of a spatially localized plasma with a high brightness has been experimentally observed in a dielectric plasma guide under the electron cyclotron resonance discharge at the excitation of a standing ion-acoustic wave. The results obtained show the possibility of designing compact high-intensity radiation sources with a spectrum determined by the working gas or gas mixture type, high-intensity chemically active particle flow sources, and plasma thrusters for correcting orbits of light spacecraft.  相似文献   

5.
A method is proposed to calculate the characteristics of a plasma antenna analytically. The method allows one to simply take into account the finiteness of the region occupied by the ionized gas and find the distributions of the main plasma parameters along the antenna.  相似文献   

6.
Results are presented from experimental studies of the interaction of a high-enthalpy methane plasma bunch with gaseous methane in a plasmachemical reactor. The interaction of the plasma flow with the rest gas was visualized by using streak imaging and computer tomography. Tomography was applied for the first time to reconstruct the spatial structure and dynamics of the reagent zones in the microsecond range by the maximum entropy method. The reagent zones were identified from the emission of atomic hydrogen (the Hα line) and molecular carbon (the Swan bands). The spatiotemporal behavior of the reagent zones was determined, and their relation to the shock-wave structure of the plasma flow was examined.  相似文献   

7.
The decay of air plasma produced by a high-voltage nanosecond discharge at room temperature and gas pressures in the range of 1–10 Torr was studied experimentally and theoretically. The time dependence of the electron density was measured with a microwave interferometer. The initial electron density was about 1012 cm−3. The discharge homogeneity was monitored using optical methods. The dynamics of the charged particle densities in the discharge afterglow was simulated by numerically solving the balance equations for electron and ions and the equation for the electron temperature. It was shown that, under these experimental conditions, plasma electrons are mainly lost due to dissociative and three-body recombination with ions. Agreement between the measured and calculated electron densities was achieved only when the rate constant of the three-body electron-ion recombination was increased by one order of magnitude and the temperature dependence of this rate constant was modified. This indicates that the mechanism for three-body recombination of molecular ions differs from that of the well-studied mechanism of atomic ion recombination.  相似文献   

8.
Results are presented from experimental studies of a magnetron sputtering system for different configurations of the magnetic field above the cathode surface. The current-voltage characteristics of a magnetron discharge at different working gas pressures (0.08–0.3 Pa) and currents in the unbalancing coil were studied. The production and transport of charge carriers in a magnetron discharge with an unbalanced magnetic field was investigated by means of probe measurements of plasma characteristics and ion energies in the region between the substrate and the magnetic trap at the cathode surface. The radial distributions of the ion current density, plasma potential, and floating potential in the unbalanced operating mode are found to have pronounced extrema at the magnetron axis. It is shown that the plasma density near the substrate can be increased considerably when the axial magnetic field is high enough to efficiently confine plasma electrons and prevent their escape to the chamber wall.  相似文献   

9.
The edge plasma parameters were measured by means of a Mach probe in a lithium experiment on the T-11M tokamak. The angular and radial distributions of the ion saturation current, along with the radial distribution of the electron temperature, were obtained in different modes of tokamak operation. The radial distributions of the electron temperature and ion saturation current in the main operating mode (L-mode) revealed a peak in the scrape-off-layer of the vertical limiter (lithium emitter), which can indicate the formation of a magnetic island in this region. The measured plasma flow velocity along the magnetic field was found to be close to one-half of the ion sound velocity for Li+ ions.  相似文献   

10.
Theoretical and experimental studies of an electrohydrodynamic flow induced by a high-frequency dielectric barrier discharge distributed over a dielectric surface in a gas have been conducted. Dependences of the ion current, the gas flow velocity, and the spatial distributions thereof on the parameters of the power supply of the plasma ion emitter and an external electric field determined by the collector grid voltage have been described.  相似文献   

11.
A device is developed to create cold nonequilibrium electron-beam plasma in a supersonic gas flow. The possibility of conversion of natural and associated petroleum gases into products with different chemical compositions by using this plasma is demonstrated. With the use of laboratory equipment, we find various products of oxidative and nonoxidative conversion. The proposed method is promising for industrial application.  相似文献   

12.
The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Хе) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.  相似文献   

13.
Plasma Physics Reports - The system is described for the formation of the low-temperature starting plasma flow in the GOL-NB trap. The starting plasma is a target for capturing heating neutral...  相似文献   

14.
Absorption of the electromagnetic energy in a semi-infinite electron plasma is calculated for an arbitrary degree of the electron gas degeneracy. Absorption is determined by solving the boundary-value problem on the oscillations of electron plasma in a half-space with mirror boundary conditions for electrons. The Vlasov?Boltzmann kinetic equation with the Bhatnagar–Gross–Krook collision integral for the electron distribution function and Maxwell’s equation for the electric field are employed. The electron distribution function and the electric field inside plasma are searched for in the form of expansions in the eigenfunctions of the initial set of equations. The expansion coefficients are found for the case of mirror boundary conditions. The contribution of the plasma surface to absorption is analyzed. Cases with different degrees of electron gas degeneracy are considered. It is shown that absorption of the electromagnetic energy near the surface depends substantially on the ratio between the electric field frequency and the volumetric electron collision frequency.  相似文献   

15.
Results are presented from investigations of the nonmonotonic spatial distributions of charge-exchange neutral fluxes and optical radiation from plasma in the DAMAVAND tokamak. It is shown that, during ohmic heating of the plasma, the regions with enhanced confinement of both the background plasma particles and heavy impurity ions arise near rational magnetic surfaces with q = 1 and 2. These regions are characterized by enhanced emission of accelerated charge-exchange neutrals and optical radiation from impurity ions.  相似文献   

16.
Data on the dynamics of the plasma current quench in the Globus-M tokamak are presented. The main current quench characteristics at different toroidal magnetic fields are compared. The distribution of the toroidal current induced in the vessel wall is determined from magnetic measurements, and the electromagnetic loads acting on the vessel wall during the current quench are calculated. By extrapolating the experimental data, the additional pressure on the vessel wall during the current quench in the upgraded Globus-M2 tokamak is estimated. It is shown that the current quench results in the appearance of bending stresses in the vessel domes. Using numerical simulations, it is shown that the best agreement between the measured and calculated plasma current dynamics during the current quench corresponds to the linear (in time) influx of the carbon impurity.  相似文献   

17.
目的:研究单采血浆中两种耗材-管路和贮存袋,材料和方法:以压力监测器接头(DPM)、导管流量和贮存袋耐寒性的研究关键。并与国内外同类产品或材料作比较,结果:DPM必须具有适宜的透气性(感应时间≤2s)、阻血性(能耐受40Kpa,40s),滤除率(0.5um粒子,≥90%),导管流量的准确性(与机器设定值误差<5%),稳定性(采集过程中流量误差<5%)可通过控制导管内径(3.08-3.24mm)和选择弹性PVC材料来解决,贮存袋选用耐寒PVC料。扫描电镜证实韧性断裂。结论:研制成的管路和PCS^2机器适配能取代进口同类产品,研制的贮存袋能低温保存血浆,破损率小于2‰。  相似文献   

18.
A jet-propelled particle injection system, the biolistics, has been developed and employed to accelerate micro-particles for transdermal drug delivery. We have examined a prototype biolistic device employing a converging-diverging supersonic nozzle (CDSN), and found that the micro-particles were delivered with a wide velocity range (200-800 m/s) and spatial distribution. To provide a controllable system for transdermal drug delivery, we present a contoured shock-tube (CST) concept and its embodiment device. The CST configuration utilizes a quasi-steady, quasi-one dimensional and shock-free supersonic flow to deliver the micro-particles with an almost uniform velocity (the mean velocity and the standard deviation, 699 +/- 4.7 m/s) and spatial distribution. The transient gas and particle dynamics in both prototype devices are interrogated with the validated computational fluid dynamics (CFD) approach. The predicted results for static pressure and Mach number histories, gas flow structures, particle velocity distributions and gas-particle interactions are presented and interpreted. The implications for clinical uses are discussed.  相似文献   

19.
Charging of two conducting spheres in a weakly ionized collisional plasma flow is considered. The spheres are arranged along the flow, and the plasma is assumed to consist of two ion species with the charges equal in magnitude but opposite in sign. The problem is analyzed with allowance for the external electric field, charging of the spheres due to the sedimentation of plasma ions on them, the fields of the sphere charges, the space charge field, and the processes of recombination and molecular diffusion. The interaction between the spheres and plasma is studied by numerically solving a time-dependent problem in a bispherical coordinate system by the finite difference method. The steady-state values of the sphere charges and the distributions of the space charge and ion densities in the ambient plasma are found as functions of the plasma parameters and the distance between the spheres. The electrostatic forces acting on the spheres are determined, and the effects of the external field, the space charge fields, and the fields of the sphere charges are comparatively analyzed. It is shown that, for the considered plasma parameters, the main electrostatic effect in the interaction between two spheres is their mutual approach in the external field due to the difference in their charges (one sphere catches up with the other). Due to the friction force with the neutral gas, this mutual approach is much slower than all other processes in the system. For widely spaced spheres, the results coincide with the solution obtained previously for a solitary sphere.  相似文献   

20.
Ion currents onto the exit plane of the acceleration channel of a stationary plasma thruster model were measured using electrostatic probes the collecting surfaces of which could be oriented either upstream or downstream with respect to the thruster plume. Using the results of measurements, the so-called “back” flows of charge-exchange ions onto the exit plane are estimated. It is shown that the back ion flows are the most intense in the close vicinity of the thruster, but do not exceed 0.6% of the total ion flow from the thruster. The formation of steady-state ion flows near the exit from the acceleration channel of a stationary plasma thruster is simulated numerically by using a three-dimensional kinetic model that describes the dynamics of ions and neutral atoms exhausting from the acceleration channel and produced in the thruster plume and takes into account resonance charge exchange of ions with neutral atoms. The distribution of the back ion current density in the exit plane is determined. The effect of the flow rate of the working gas through the cathode on the distributions of the neutral atom density and charge-exchange ion flows is demonstrated. The obtained results can be used to analyze the effect of the thruster plume on the charge state of the surfaces located in the vicinity of the thruster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号