首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chitin synthetase activity was analyzed in vitro and in vivo in two morphogenetic stages, namely, dormant spore cells and germlings of the wild type strain and the developmental mutant S356 of Phycomyces blakesleeanus. In vitro experiments showed a much higher specific activity in dormant spores of the mutant strain than in those of the wild-type. This difference was restricted to the dormant spore phase since germlings exhibited comparable levels of activity to those detected in the wild-type strain. Although no correlation was observed between chitin synthesis in vitro and in vivo in mutant spores, germination of these cells was accompanied by an earlier expression of chitin synthetase in vivo. Germination of mutant spores in liquid medium produced morphologically aberrant germlings. Contrary to the extended mycelial growth of the wild-type strain in solid medium, the mutant grew with a typical colonial morphology. Results are discussed in relation to the possible basis of the mutant phenotype.  相似文献   

2.
To help understand the subcellular machinery responsible for cell wall formation in a fungus, we determined the abundance and subcellular distribution of chitin synthetase (chitin synthase, EC 2.4.1.16) and chitosomes in the asexual life cycle of Mucor rouxii. Cell-free extracts of ungerminated sporangiospores, hyphae/mycelium in exponential and stationary phase, and yeast cells were fractionated by isopycnic centrifugation in sucrose density gradients. The total amount of chitin synthetase per cell increased exponentially during aerobic germination of spores. In all developmental stages, the profile of chitin synthetase activity encompassed a broad range of sucrose density (d = 1.12-1.22) with two distinct zones: a low-density chitosome zone (d = approx. 1.12-1.16) and a high-density, mixed-membrane zone (d = approx. 1.16-1.22). Chitosomes were a major reservoir of chitin synthetase in all stages of the life cycle, including ungerminated spores. Two kinds of chitin synthetase profiles were recognized and correlated with the growth state. In nongrowing cells (ungerminated sporangiospores and stationary-phase mycelium), the profile was skewed toward lower densities with a sharp chitosome peak at d = 1.12-1.13. In actively growing cultures (aerobic mycelium or anaerobic yeast cells), the entire profile of chitin synthetase was displaced toward higher densities; the average buoyant density of chitosomes was higher (d = 1.14-1.16), and more chitin synthetase was associated with denser (d = 1.16-1.23) membrane fractions. In all life cycle stages, chitosomal chitin synthetase was almost completely zymogenic. In contrast to the enzyme from spores or from growing cells, samples of chitosomal chitin synthetase from stationary-phase mycelium were unstable and contained a high proportion of larger vesicles in addition to the typical microvesicles. The presence of chitosomes in ungerminated spores indicates that these cells are poised to begin synthesizing somatic (= vegetative) cell walls at the onset of germination. The increased buoyant density of chitosomes in actively growing cultures suggests that the composition of these microvesicles changes significantly as they mobilize chitin synthetase to the cell surface.  相似文献   

3.
The CHS5 locus of Saccharomyces cerevisiae is important for wild-type levels of chitin synthase III activity. chs5 cells have reduced levels of this activity. To further understand the role of CHS5 in yeast, the CHS5 gene was cloned by complementation of the Calcofluor resistance phenotype of a chs5 mutant. Transformation of the mutant with a plasmid carrying CHS5 restored Calcofluor sensitivity, wild-type cell wall chitin levels, and chitin synthase III activity levels. DNA sequence analysis reveals that CHS5 encodes a unique polypeptide of 671 amino acids with a molecular mass of 73,642 Da. The predicted sequence shows a heptapeptide repeated 10 times, a carboxy-terminal lysine-rich tail, and some similarity to neurofilament proteins. The effects of deletion of CHS5 indicate that it is not essential for yeast cell growth; however, it is important for mating. Deletion of CHS3, the presumptive structural gene for chitin synthase III activity, results in a modest decrease in mating efficiency, whereas chs5delta cells exhibit a much stronger mating defect. However, chs5 cells produce more chitin than chs3 mutants, indicating that CHS5 plays a role in other processes besides chitin synthesis. Analysis of mating mixtures of chs5 cells reveals that cells agglutinate and make contact but fail to undergo cell fusion. The chs5 mating defect can be partially rescued by FUS1 and/or FUS2, two genes which have been implicated previously in cell fusion, but not by FUS3. In addition, mating efficiency is much lower in fus1 fus2 x chs5 than in fus1 fus2 x wild type crosses. Our results indicate that Chs5p plays an important role in the cell fusion step of mating.  相似文献   

4.
Chitosomes from the wall-less “slime” mutant of Neurospora crassa   总被引:3,自引:0,他引:3  
Cell-free extracts from the wall-less slime mutant of Neurospora crassa and the mycelium of wild type exhibit similar chitin synthetase properties in specific activity, zymogenicity and a preferential intracellular localization of chitosomes. The yield of chitosomal chitin synthetase from sline cells was essentially the same irrespective of cell breakage procedure (osmotic lysis or ballistic disruption) —an indication that chitosomes are not fragments of larger membranes produced by harsh (ballistic) disruption procedures. The plasma membrane fraction, isolated from slime cells treated with concanavalin A, contained only a minute portion of the total chitin synthetase of the fungus. Most of the activity was in the cytoplasmic fraction; isopycnic sedimentation of this fraction on a sucrose gradient yielded a sharp band of chitosomes with a buoyant density=1.125 g/ cm3. Approximately 76% of the total chitin synthetase activity of the slime mutant was recovered in the chitosome band. Because of their low density, chitosomes could be cleanly separated from the rest of the membranous organelles of the fungus. Apparently, the lack of a cell wall in the slime mutant is not due to the absence of either chitosomes or zymogenic chitin synthetase.Abbreviations Con A concanavalin A - d buoyant density in g/cm3 - GlcNAc N-acetyl-D-glucosamine - MES 2-[N-morpholino]ethanesulfonic acid - UDP-GlcNAc uridine diphosphate N-acetyl-D-glucosamine  相似文献   

5.
Digitonin treatment at 30 degrees C of a Saccharomyces cerevisiae mutant lacking proteinase B permeabilized the cells and caused rapid and extensive activation of chitin synthetase in situ. The same result was obtained with a mutant generally defective in vacuolar proteases. By lowering the temperature and using different permeabilization procedures, we showed that increases in permeability and activation are distinct processes. Activation was inhibited by the protease inhibitors antipain and leupeptin, but by pepstatin or chymostatin. Metal chelators were also inhibitory, and their effect was reversed by the addition of Ca2+ but not by Mg2+. Antipain added together with Ca2+ after incubation of the cells in the presence of a chelating agent prevented reversal of inhibition, a result that was interpreted as indicating that antipain acts either on the same step affected by Ca2+ or on a subsequent step. Efforts to obtain activation in cell-free extracts were unsuccessful, but it was possible to extract the synthetase, once activated, by breaking permeabilized cells with glass beads. Treatment of the cell-free extracts with trypsin led not only to increased activity of chitin synthetase, but also to a change in the pH-activity curve and a diminished requirement by the enzyme for free N-acetylglucosamine. These observations suggest that the modification undergone by the synthetase during endogenous activation is different from that brought about by trypsin treatment.  相似文献   

6.
A tryptophan auxotroph of Neurospora crassa, trp-5, has been characterized as a mutant with a deficient tryptophanyl-transfer ribonucleic acid (tRNA) synthetase (EC 6.1.1.2) activity. When assayed by tryptophanyl-tRNA formation, extracts of the mutant have less than 5% of the wild-type specific activity. The adenosine triphosphate-pyrophosphate exchange activity is at about half the normal level. In the mutant derepressed levels of anthranilate synthetase and tryptophan synthetase were associated with free tryptophan pools equal to or higher than those found in the wild type. We conclude that a product of the normal tryptophanyl-tRNA synthetase, probably tryptophanyl-tRNA, rather than free tryptophan, participates in the repression of the tryptophan biosynthetic enzymes.  相似文献   

7.
《Experimental mycology》1983,7(4):362-369
Chitin synthetase activity, both basal and zymogenic, fromPhycomyces sporangiophores was stimulated by lightin vitro andin vivo. AmadB mutant did not display these activations, whereas in amadE mutant only chitin synthetase zymogen was increased by illuminationin vivo. Light also produced a transient alteration in cell wall structure at the apical region of the sporangiophore revealed by accessibility of chitin to binding by wheat germ agglutinin and by an increased limited breakage of chitin microfibrils. This last response was absent in bothmadB andmadE mutants. Accordingly, it is suggested that the light growth response in the sporangiophore fromPhycomyces is due to a transient softening of the cell wall at the growing region followed by an elongation due to the turgor pressure of the cell and an enhanced chitin biosynthesis by the apically localized chitin synthetase which restores normal strength to the cell wall. A hypothetical scheme to account for these results is presented.  相似文献   

8.
Strains containing a disrupted structural gene for chitin synthetase (chs1::URA3) are defective in chitin synthetase 1 (Chs1) activity but contain normal amounts of chitin (Bulawa, C.E., Slater, M., Cabib, E., Au-Young, J., Sburlati, A., Adair, L., and Robbins, P. W. (1986) Cell 46, 213-225). We have now detected in such strains a new chitin synthetase activity (Chs2), at levels about 5% of those of Chs1 in wild-type cells. Thus, Chs2 is presumably the physiological agent for chitin deposition in strains with a disrupted CHS1 gene and probably also in wild-type strains. Chs1 and Chs2 share certain properties, such as stimulation by N-acetylglucosamine and by partial proteolysis. They differ sharply, however, in divalent cation specificity and in pH optimum. Chs2 also shows less sensitivity than Chs1 to inhibition by polyoxin D or sodium chloride, a property that was used to demonstrate the presence of Chs2 in wild-type extracts. As in the case of Chs1, most of the Chs2 activity was found to be associated with the plasma membranes. This finding, together with the apparent zymogenic nature of Chs2, is consistent with the hypothesis, previously put forward for Chs1, that localized deposition of chitin is attained by activation of the zymogen form at a specific time and place. Function and significance of the two chitin synthetases are discussed in connection with fungal morphogenesis and evolution.  相似文献   

9.
Calcofluor is a fluorochrome that exhibits antifungal activity and a high affinity for yeast cell wall chitin. We isolated Saccharomyces cerevisiae mutants resistant to Calcofluor. The resistance segregated in a Mendelian fashion and behaved as a recessive character in all the mutants analyzed. Five loci were defined by complementation analysis. The abnormally thick septa between mother and daughter cells caused by Calcofluor in wild-type cells were absent in the mutants. The Calcofluor-binding capacity, observed by fluorescence microscopy, in a S. cerevisiae wild-type cells during alpha-factor treatment was also absent in some mutants and reduced in others. Staining of cell walls with wheat germ agglutinin-fluorescein complex indicated that the chitin uniformly distributed over the whole cell wall in vegetative or in alpha-factor-treated cells was almost absent in three of the mutants and reduced in the two others. Cell wall analysis evidenced a five- to ninefold reduction in the amount of chitin in mutants compared with that in the wild-type strain. The total amounts of cell wall mannan and beta-glucan in wild-type and mutant strains were similar; however, the percentage of beta-glucan that remained insoluble after alkali extraction was considerably reduced in mutant cells. The susceptibilities of the mutants and the wild-type strains to a cell wall enzymic lytic complex were rather similar. The in vitro levels of chitin synthase 2 detected in all mutants were similar to that in the wild type. The significance of these results is discussed in connection with the mechanism of chitin synthesis and cell wall morphogenesis in S. cerevisiae.  相似文献   

10.
Temperature-sensitive sporulation mutants of Bacillus cereus were screened for intracellular protease activity that was more heat labile than that of the parental strain. One mutant grew as well as the wild type at 30 and 37 degrees C but sporulated poorly at 37 degrees C in an enriched or minimal medium. These spores germinated very slowly in response to alanine plus adenosine or calcium dipicolinate. During germination, spores produced by the mutant rapidly became heat sensitive, but released dipicolonic acid and mucopeptide fragments more slowly than the wild type and decreased only partially in density while remaining phase white (semirefractile). In freeze-etch electron micrographs, the mature spores were deficient in the outer cross-patched coat layer. During germination, the spore coat changes associated with wild-type germination occurred very slowly in this mutant. Although the original mutant was also a pyrimidine auxotroph, reversion to prototrophy did not alter any of the phenotypic properties discussed. Selection of revertants that germinated rapidly or sporulated well at 37 degrees C, however, resulted in restoratin of all wild-type properties (exclusive of the pyrimidine requirement) including heat-stable protease activity. The reversion frequency was consistent with an initial point mutation, indicating that a protease alteration resulted in production of spores defective in a very early stage of germination.  相似文献   

11.
The chitin synthetase of Phycomyces blakesleeanus mycelium is a particulate enzyme sedimenting mostly at 1000xg. The activity in crude extracts or cellular fractions can be increased more than tenfold by mild trypsin treatment. Plotting the reaction velocity versus UDP-N-acetylglucosamine concentration yields a sigmoidal curve. N-acetylglucosamine, which greatly stimulates the enzyme, changes the kinetics to an almost normal hyperbolic relationship.The enzyme is nearly absent in dormant spores and is synthesized de novo in germinating spores (from 4 h germination on). Trypsin treatment of extracts from germinating spores to assay the synthesis of the proenzyme did not reveal an earlier synthesis of the zymogen, which therefore might have some activity of its own.Abbreviations Used UDP-GlcNAc Uridinediphosphate-N-acetylglucosamine - GlcNAc N-acetylglucosamine - Chitin synthetase UDP-2-acetylamino-deoxyglucosyltransferase (EC 2.4.1.16)  相似文献   

12.
Cyclothiazomycin B1 (CTB1) is an antifungal cyclic thiopeptide isolated from the culture broth of Streptomyces sp. HA 125-40. CTB1 inhibited the growth of several filamentous fungi including plant pathogens along with swelling of hyphae and spores. The antifungal activity of CTB1 was weakened by hyperosmotic conditions, and hyphae treated with CTB1 burst under hypoosmotic conditions, indicating increased cell wall fragility. CTB1-sensitive fungal species contain high levels of cell wall chitin and/or chitosan. Unlike nikkomycin Z, a competitive inhibitor of chitin synthase (CHS), CTB1 did not inhibit CHS activity. Although CTB1 inhibited CHS biosynthesis, the same result was also obtained with a non-specific proteins inhibitor, cycloheximide, which did not reduce cell wall rigidity. These results indicate that the primary target of CTB1 is not CHS, and we concluded that CTB1 antifungal activity was independent of this sole inhibition. We found that CTB1 bound to chitin but did not bind to β-glucan and chitosan. The results of the present study suggest that CTB1 induces cell wall fragility by binding to chitin, which forms the fungal cell wall. The antifungal activity of CTB1 could be explained by this chitin-binding ability.  相似文献   

13.
Blastocladiella emersonii zoospores are not encased by a cell wall and do not detectably synthesize or contain chitin; accompanying de novo cell wall formation during zoospore encystment, chitin rapidly accumulates and is incorporated into the cell wall. Essential for understanding this abrupt change in chitin synthesis is the location of zoospore chitin synthetase. The enzyme has previously been reported to the sequestered with distinctive cytoplasmic organelles (gamma particles) characteristic for the zoospore cell type. Using similar differential and equilibrium density centrifugation procedures to those reported previously, we have observed the vast majority of zoospore homogenate chitin synthetase activity in fractions distinct from the gamma particle-enriched fractions. Over 90% of the homogenate enzyme activity could be recovered in a sucrose buoyant density region (1.14–1.18 g/ml) containing membranous elements and well separated from the region enriched for gamma particles (1.30–1.34 g/ml). When zoospores were surface-labelled with [3H]concanavalin A prior to homogenization, the buoyant density regions of radioactivity and of chitin synthetase activity exhibited nearly complete coincidence. At least the bulk of zoospore chitin synthetase appears to be located at the plasma membrane, rather than in gamma particles.  相似文献   

14.
《Experimental mycology》1992,16(2):146-154
A trifluoperazine-resistant (TFP1) mutant (strain G5) ofMucor rouxii was isolated and some biochemical and physiological parameters were studied. It resisted up to 250 μM TFP compared to 100 μM observed for the wild-type strain. At this drug concentration the mutant strain G5 germinated, grew, exhibited yeast-mycelium transition, and chitin synthesisin vivo. The mutant strain presentedin vitro levels of calmodulin activity similar to those of the wild-type, but with less sensitivity to inhibition by TFP. Also, with regard to spore germination and cell growth, mutant G5 presented cross-resistance to calmidazolium, another potent anticalmodulin drug. Partially purified chitin synthetase preparations of mutant G5 exhibited a diminished enzymatic activity, compared to the wild-type. The results presented in this work suggest the participation of a Ca2+-calmodulin complex in growth and differentiative processes ofMucor and substantiate the role of this complex in chitin synthesis.  相似文献   

15.
Chitin synthetase activity in cell-free preparations from a wild-type strain and a 'slime' variant of Neurospora crassa was monitored over many days in samples stored at 0 degrees C. Total activity in whole-cell-free extracts and low-speed supernatants from both organisms was very unstable, losing more than 90% of the initial activity on storage at 0 degrees C for 96 h. Chitin synthetase detection was not masked by chitinase activity present in the preparations. Gel-filtration chromatography of these preparations increased the stability of the activity from the 'slime' variant, whereas removal of particulate structures by high-speed centrifugation stabilized the chitin synthetase activity in the supernatant, particularly in the wild type. These results suggest that factor(s) involved in the regulation of chitin synthetase may be differentially located or altered in 'slime' cells.  相似文献   

16.
A temperature-sensitive, 5-fluorotryptophan (5FT)-resistant mutant of Bacillus subtilis was isolated which forms an altered tryptophanyl transfer ribonucleic acid synthetase [l-tryptophan: sRNA ligase (AMP), EC 6.1.1.2]. The mutant grows well at 30 C but not at 42 C. At the latter temperature, protein and ribonucleic acid (RNA) synthesis are abolished while deoxyribonucleic acid (DNA) synthesis proceeds for a considerable time. Tryptophanyl-transfer RNA (tRNA) synthetase activity is not detectable in the extracts of the mutant grown at 30 C whether this activity is measured by the attachment of l-tryptophan to tRNA or the l-tryptophan-dependent exchange of (32)P-pyrophosphate with adenosine triphosphate. Mixing experiments with extracts from the wild type and the mutant have ruled out the presence of an inhibitor or the absence of an activator as possible causes. Attempts to retrieve enzyme activity in vitro by various means (different conditions for cell disruption, addition of l-tryptophan, and adenosine triphosphate to the extraction buffer containing glycerol) were unsuccessful. The mutation in the locus of the tryptophanyl tRNA synthetase (trpS) was mapped on the bacterial chromosome by transformation and transduction. It is located between argC and metA. All temperature-resistant transformants recover wild-type levels of tryptophanyl tRNA synthetase activity and sensitivity to 5FT. Spontaneous revertants to temperature resistance are 5FT sensitive, but their levels of tryptophanyl tRNA synthetase activity and the thermolability of this enzyme in cell-free extracts varies. These revertants do not support the growth of a presumed nonsense mutant of phase SPO-1. Transduction experiments with phage PBS-1 indicated that reversion must be the result of an event at the site of the original mutation or at a site extremely close to it.  相似文献   

17.
18.
19.
We have cloned chs1+, a Schizosaccharomyces pombe gene with similarity to class II chitin synthases, and have shown that it is responsible for chitin synthase activity present in cell extracts from this organism. Analysis of this activity reveals that it behaves like chitin synthases from other fungi, although with specific biochemical characteristics. Deletion or overexpression of this gene does not lead to any apparent defect during vegetative growth. In contrast, chs1+ expression increases significantly during sporulation, and this is accompanied by an increase in chitin synthase activity. In addition, spore formation is severely affected when both parental strains carry a chs1 deletion, as a result of a defect in the synthesis of the ascospore cell wall. Finally, we show that wild-type, but not chs1-/chs1-, ascospore cell walls bind wheatgerm agglutinin. Our results clearly suggest the existence of a relationship between chs1+, chitin synthesis and ascospore maturation in S. pombe.  相似文献   

20.
The regulatory properties of three key enzymes in the phenylalanine biosynthetic pathway, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase (DAHP synthetase) [EC 4.1.2.15], chorismate mutase [EC 5.4.99.5], and prephenate dehydratase [prephenate hydro-lyase (decarboxylating), EC 4.2.1.51] were compared in three phenylalanine-excreting mutants and the wild strain of Brevibacterium flavum. Regulation of DAHP synthetase by phenylalanine and tyrosine in these mutants did not change at all, but the specific activities of the mutant cell extracts increased 1.3- to 2.8-fold, as reported previously (1). Chorismate mutase activities in both the wild and the mutant strains were cumulatively inhibited by phenylalanine and tyrosine and recovered with tryptophan, while the specific activities of the mutants increased 1.3- to 2.8-fold, like those of DAHP synthetase. On the other hand, the specific activities of prephenate dehydratase in the mutant and wild strains were similar, when tyrosine was present. While prephenate dehydratase of the wild strain was inhibited by phenylalanine, tryptophan, and several phenylalanine analogues, the mutant enzymes were not inhibited at all but were activated by these effectors. Tyrosine activated the mutant enzymes much more strongly than the wild-type enzyme: in mutant 221-43, 1 mM tyrosine caused 28-fold activation. Km and the activation constant for tyrosine were slightly altered to a half and 6-fold compared with the wild-type enzyme, respectively, while the activation constants for phenylalanine and tryptophan were 500-fold higher than the respective inhibition constants of the wild-type enzyme. The molecular weight of the mutant enzyme was estimated to be 1.2 x 10(5), a half of that of the wild-type enzyme. The molecular weight of the mutant enzyme was estimated to be 1.2 X 10(5) a half of that of the wild type enzyme, while in the presence of tyrosine, phenylalanine, or tryptophan, it increased to that of the wild-type enzyme. Immediately after the mutant enzyme had been activated by tyrosine and then the tyrosine removed, it still showed about 10-fold higher specific activity than before the activation by tyrosine. However, on standing in ice the activity gradually fell to the initial level before the activation by tyrosine. Ammonium sulfate promoted the decrease of the activity. On the basis of these results, regulatory mechanisms for phenylalanine biosynthesis in vivo as well as mechanisms for the phenylalanine overproduction in the mutants are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号