首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of this study was to determine the effect of ingestion of 100 g of carbohydrates on net muscle protein balance (protein synthesis minus protein breakdown) after resistance exercise. Two groups of eight subjects performed a resistance exercise bout (10 sets of 8 repetitions of leg presses at 80% of 1-repetition maximum) before they rested in bed for 4 h. One group (CHO) received a drink consisting of 100 g of carbohydrates 1 h postexercise. The other group (Pla) received a noncaloric placebo drink. Leg amino acid metabolism was determined by infusion of 2H5- or 13C6-labeled phenylalanine, sampling from femoral artery and vein, and muscle biopsies from vastus lateralis. Drink intake did not affect arterial insulin concentration in Pla, whereas insulin increased several times after the drink in CHO (P < 0.05 vs. Pla). Arterial phenylalanine concentration fell slightly after the drink in CHO. Net muscle protein balance between synthesis and breakdown did not change in Pla, whereas it improved in CHO from -17 +/- 3 nmol.ml(-1).100 ml leg(-1) before drink to an average of -4 +/- 4 and 0 +/- 3 nmol.ml(-1).100 ml leg(-1) during the second and third hour after the drink, respectively (P < 0.05 vs. Pla during last hour). The improved net balance in CHO was due primarily to a progressive decrease in muscle protein breakdown. We conclude that ingestion of carbohydrates improved net leg protein balance after resistance exercise. However, the effect was minor and delayed compared with the previously reported effect of ingestion of amino acids.  相似文献   

2.
The effect of exercise on the protein metabolism in skeletal muscles (gastrocnemius and soleus), liver and small intestine was investigated in rats. Treadmill treatment for 7 d resulted in atrophy of the liver and small intestine, which was associated with a reduction in protein content. The rates of protein synthesis in the liver and small intestine were significantly suppressed in rats subjected to exercise. The change in protein synthesis in the visceral organs was mediated by the change in RNA activity (protein synthesis per unit RNA) but not by the change in RNA concentration. The tissue weight and the rate of protein synthesis in the gastrocnemius and soleus muscles were not affected by exercise. The results suggest that these changes in protein synthesis in the liver and small intestine may explain, at least partly, the atrophy of these organs which was observed after 7 d of exercise.  相似文献   

3.
4.
Rates of muscle protein synthesis and degradation measured in the perfused hindquarter were compared with those in incubated epitrochlearis muscles. With fed or starved mature rats, results without insulin treatment were identical. With insulin treatment, protein synthesis in perfused hindquarters was greater, though protein degradation was the same. Thus rates of muscle protein degradation estimated by these two methods in vitro correspond closely.  相似文献   

5.
6.
Effect of testosterone on muscle mass and muscle protein synthesis   总被引:8,自引:0,他引:8  
We have studied the effect of a pharmacological dose of testosterone enanthate (3 mg.kg-1.wk-1 for 12 wk) on muscle mass and total-body potassium and on whole-body and muscle protein synthesis in normal male subjects. Muscle mass estimated by creatinine excretion increased in all nine subjects (20% mean increase, P less than 0.02); total body potassium mass estimated by 40K counting increased in all subjects (12% mean increase, P less than 0.0001). In four subjects, a primed continuous infusion protocol with L-[1-13C]leucine was used to determine whole-body leucine flux and oxidation. Whole-body protein synthesis was estimated from nonoxidative flux. Muscle protein synthesis rate was determined by measuring [13C]leucine incorporation into muscle samples obtained by needle biopsy. Testosterone increased muscle protein synthesis in all subjects (27% mean increase, P less than 0.05). Leucine oxidation decreased slightly (17% mean decrease, P less than 0.01), but whole-body protein synthesis did not change significantly. Muscle morphometry showed no significant increase in muscle fiber diameter. These studies suggest that testosterone increases muscle mass by increasing muscle protein synthesis.  相似文献   

7.
8.
This study investigates the impact of protein coingestion with carbohydrate on muscle protein synthesis during endurance type exercise. Twelve healthy male cyclists were studied during 2 h of fasted rest followed by 2 h of continuous cycling at 55% W(max). During exercise, subjects received either 1.0 g·kg(-1)·h(-1) carbohydrate (CHO) or 0.8 g·kg(-1)·h(-1) carbohydrate with 0.2 g·kg(-1)·h(-1) protein hydrolysate (CHO+PRO). Continuous intravenous infusions with l-[ring-(13)C(6)]phenylalanine and l-[ring-(2)H(2)]tyrosine were applied, and blood and muscle biopsies were collected to assess whole body protein turnover and muscle protein synthesis rates at rest and during exercise conditions. Protein coingestion stimulated whole body protein synthesis and oxidation rates during exercise by 22 ± 3 and 70 ± 17%, respectively (P < 0.01). Whole body protein breakdown rates did not differ between experiments. As a consequence, whole body net protein balance was slightly negative in CHO and positive in the CHO+PRO treatment (-4.9 ± 0.3 vs. 8.0 ± 0.3 μmol Phe·kg(-1)·h(-1), respectively, P < 0.01). Mixed muscle protein fractional synthetic rates (FSR) were higher during exercise compared with resting conditions (0.058 ± 0.006 vs. 0.035 ± 0.006%/h in CHO and 0.070 ± 0.011 vs. 0.038 ± 0.005%/h in the CHO+PRO treatment, respectively, P < 0.05). FSR during exercise did not differ between experiments (P = 0.46). We conclude that muscle protein synthesis is stimulated during continuous endurance type exercise activities when carbohydrate with or without protein is ingested. Protein coingestion does not further increase muscle protein synthesis rates during continuous endurance type exercise.  相似文献   

9.
10.
In contrast to the effect of nutritional intervention on postexercise muscle protein synthesis, little is known about the potential to modulate protein synthesis during exercise. This study investigates the effect of protein coingestion with carbohydrate on muscle protein synthesis during resistance-type exercise. Ten healthy males were studied in the evening after they consumed a standardized diet throughout the day. Subjects participated in two experiments in which they ingested either carbohydrate or carbohydrate with protein during a 2-h resistance exercise session. Subjects received a bolus of test drink before and every 15 min during exercise, providing 0.15 g x kg(-1) x h(-1) carbohydrate with (CHO + PRO) or without (CHO) 0.15 g x kg(-1) x h(-1) protein hydrolysate. Continuous intravenous infusions with l-[ring-(13)C(6)]phenylalanine and l-[ring-(2)H(2)]tyrosine were applied, and blood and muscle biopsies were collected to assess whole body and muscle protein synthesis rates during exercise. Protein coingestion lowered whole body protein breakdown rates by 8.4 +/- 3.6% (P = 0.066), compared with the ingestion of carbohydrate only, and augmented protein oxidation and synthesis rates by 77 +/- 17 and 33 +/- 3%, respectively (P < 0.01). As a consequence, whole body net protein balance was negative in CHO, whereas a positive net balance was achieved after the CHO + PRO treatment (-4.4 +/- 0.3 vs. 16.3 +/- 0.4 micromol phenylalanine x kg(-1) x h(-1), respectively; P < 0.01). In accordance, mixed muscle protein fractional synthetic rate was 49 +/- 22% higher after protein coingestion (0.088 +/- 0.012 and 0.060 +/- 0.004%/h in CHO + PRO vs. CHO treatment, respectively; P < 0.05). We conclude that, even in a fed state, protein coingestion stimulates whole body and muscle protein synthesis rates during resistance-type exercise.  相似文献   

11.
1. Exercise results in large alterations in cellular metabolic homeostasis and protein turnovers. Exhaustive exercise (as well as starvation, dystrophy, motor nerve disease) results in myofibrillar degradation and has been associated with the decreased force generating capabilities of muscle at fatigue. 2. Complete protein degradation is accomplished by the combined actions of non-lysosomal and lysosomal proteases and the initial breakdown of myofibrillar protein appears to be non-lysosomal mediated. 3. Current evidence suggests that covalent modification (mixed-function oxidation, formation of mixed disulfides, oxidation of methionine residues and phosphorylation) of proteins may mark them for degradation by rendering them more susceptible to proteolytic attack. 4. The rate of covalent modification can be controlled by the level of stabilizing and destabilizing ligands and by factors affecting the activity of the marking reaction. 5. The activities of individual proteases may be controlled by activators and inhibitors. 6. It is suggested that the large alterations in metabolism (hormonal profiles, energy status, redox status and Ca2+ levels) which accompany exercise serve to activate specific proteases and/or induce covalent modifications which mark specific myofibrillar proteins for subsequent proteolytic attack.  相似文献   

12.
We examined the effect of two commonly consumed over-the-counter analgesics, ibuprofen and acetaminophen, on muscle protein synthesis and soreness after high-intensity eccentric resistance exercise. Twenty-four males (25 +/- 3 yr, 180 +/- 6 cm, 81 +/- 6 kg, and 17 +/- 8% body fat) were assigned to one of three groups that received either the maximal over-the-counter dose of ibuprofen (IBU; 1,200 mg/day), acetaminophen (ACET; 4,000 mg/day), or a placebo (PLA) after 10-14 sets of 10 eccentric repetitions at 120% of concentric one-repetition maximum with the knee extensors. Postexercise (24 h) skeletal muscle fractional synthesis rate (FSR) was increased 76 +/- 19% (P < 0.05) in PLA (0.058 +/- 0.012%/h) and was unchanged (P > 0.05) in IBU (35 +/- 21%; 0.021 +/- 0.014%/h) and ACET (22 +/- 23%; 0.010 +/- 0.019%/h). Neither drug had any influence on whole body protein breakdown, as measured by rate of phenylalanine appearance, on serum creatine kinase, or on rating of perceived muscle soreness compared with PLA. These results suggest that over-the-counter doses of both ibuprofen and acetaminophen suppress the protein synthesis response in skeletal muscle after eccentric resistance exercise. Thus these two analgesics may work through a common mechanism to influence protein metabolism in skeletal muscle.  相似文献   

13.
Timing of nutrient ingestion has been demonstrated to influence the anabolic response of muscle following exercise. Previously, we demonstrated that net amino acid uptake was greater when free essential amino acids plus carbohydrates were ingested before resistance exercise rather than following exercise. However, it is unclear if ingestion of whole proteins before exercise would stimulate a superior response compared with following exercise. This study was designed to examine the response of muscle protein balance to ingestion of whey proteins both before and following resistance exercise. Healthy volunteers were randomly assigned to one of two groups. A solution of whey proteins was consumed either immediately before exercise (PRE; n = 8) or immediately following exercise (POST; n = 9). Each subject performed 10 sets of 8 repetitions of leg extension exercise. Phenylalanine concentrations were measured in femoral arteriovenous samples to determine balance across the leg. Arterial amino acid concentrations were elevated by approximately 50%, and net amino acid balance switched from negative to positive following ingestion of proteins at either time. Amino acid uptake was not significantly different between PRE and POST when calculated from the beginning of exercise (67 +/- 22 and 27 +/- 10 for PRE and POST, respectively) or from the ingestion of each drink (60 +/- 17 and 63 +/- 15 for PRE and POST, respectively). Thus the response of net muscle protein balance to timing of intact protein ingestion does not respond as does that of the combination of free amino acids and carbohydrate.  相似文献   

14.
Ferrando, Arny A., Kevin D. Tipton, Marcas M. Bamman, andRobert R. Wolfe. Resistance exercise maintains skeletal muscle protein synthesis during bed rest. J. Appl.Physiol. 82(3): 807-810, 1997.Spaceflightresults in a loss of lean body mass and muscular strength. Aground-based model for microgravity, bed rest, results in a loss oflean body mass due to a decrease in muscle protein synthesis (MPS).Resistance training is suggested as a proposed countermeasure forspaceflight-induced atrophy because it is known to increase both MPSand skeletal muscle strength. We therefore hypothesized that scheduledresistance training throughout bed rest would ameliorate the decreasein MPS. Two groups of healthy volunteers were studied during 14 days ofsimulated microgravity. One group adhered to strict bed rest (BR;n = 5), whereas a second group engagedin leg resistance exercise every other day throughout bed rest (BREx;n = 6). MPS was determined directly bythe incorporation of infusedL-[ring-13C6]phenylalanineinto vastus lateralis protein. After 14 days of bed rest, MPS in theBREx group did not change and was significantly greater than in the BRgroup. Thus moderate-resistance exercise can counteract the decrease inMPS during bed rest.

  相似文献   

15.
The effect of hypophysectomy on the protein metabolism of the liver in vivo was studied. Fractional rates of protein synthesis and degradation were determined in the livers of normal and hypophysectomized rats. Synthesis was measured after the injection of massive amounts of radioactive leucine. Degradation was estimated either as the balance between synthesis and accumulation of stable liver proteins or from the disappearance of radioactivity from the proteins previously labelled by the injection of NaH14CO3. The results indicate that: (1) hypophysectomy diminishes the capacity of the liver to synthesize proteins in vivo, mainly of those that are exported as plasma proteins; (2) livers of both normal and hypophysectomized rats show identical protein-degradation rates, whereas plasma proteins are degraded slowly after hypophysectomy.  相似文献   

16.
17.
Protein synthesis and degradation were compared in cultured muscle cells obtained from normal and dystrophic chick embryos under conditions where labeled amino acid reincorporation was not a complicating factor, where fibroblast contamination was minimized, and where the animals compared were as genetically similar as possible. Under these conditions both cell types exhibited a half-time of protein turnover of 34 h. Degradation in both was inhibited 21% by leupeptin (50 μg/ml), and both showed parallel increases in degradation rates under ‘step-down’ conditions.  相似文献   

18.
Heparin suppresses the proliferation of vascular smooth muscle cells both in vivo and in vitro. The mechanism of action of the antiproliferative activity of heparin is not known. We have detected differences in the synthesis of specific proteins when vascular smooth muscle cells are exposed to heparin and report here that many characteristics of these protein alterations parallel the properties of the antiproliferative activity. The induction into the culture medium of a pair of proteins of approximately 35,000 dalton mw in heparin-treated smooth muscle cell cultures and the antiproliferative effect of heparin share the following characteristics: 1) the effect is reversible, 2) the effect is specific for smooth muscle cells, 3) anticoagulant and non-anticoagulant heparin are equally effective, 4) the effect is lost with time in culture and, 5) heparin is the most potent glycosaminoglycan in producing the effect. Furthermore, heparin causes a transient suppression of a 48,000 dalton substrate-attached protein, whereas chondroitin sulfate A and C and dermatan sulfate had much less effect. Dextran sulfate was almost as effective as heparin in suppressing the synthesis of the substrate-attached protein. These proteins appear to be noncollagenous and the induced synthesis of the 35,000 dalton proteins is inhibited by actinomycin D. Although a direct relationship between these specific protein changes and the antiproliferative effect of heparin has not been proven, these protein alterations may play a crucial role in the effect of heparin on smooth muscle cell growth.  相似文献   

19.
20.
A model of leucine metabolism in the hind-limb muscles of the milk-fed lamb was developed which permitted simultaneous estimation of the rates of protein synthesis (Ks, days-1), degradation (Kd) and therefore gain (Kg) of muscle in vivo. The conclusions drawn from the model were: the rate of protein synthesis in muscle was related to uptake of leucine; the rate of degradation of protein was related to leucine output, as leucine, or its corresponding oxo acid, 4-methyl-2-oxopentanoic acid, or CO2. These findings support findings drawn from a wide range of studies in vitro. There was no correlation between rate of protein synthesis and rate of protein degradation, which suggests that the method can allow independent estimates of each. Estimates of protein synthesis obtained from the model (of leucine metabolism in muscle) were compared with those obtained simultaneously by constant infusion of radioisotope and analysis of incorporation into tissue. There were no significant differences between the mean values obtained for synthesis (Ks), gain (Kg) and degradation (Kd) by either method (Ks 0.051 +/- 0.002, 0.046 +/- 0.007; Kg 0.016 +/- 0.002, 0.004 +/- 0.008; Kd 0.035 +/- 0.004, 0.041 +/- 0.008 day-1, respectively, for tissue analysis and the model). However, Ks obtained from the model was significantly and positively correlated with uptake of leucine from plasma, whereas Ks obtained from tissue analysis was not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号