首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Japan Trench land slope at a depth of 6,400 m is the deepest cold-seep environment with Calyptogena communities. Sediment samples from inside and beside the Calyptogena communities were collected, and the microbial diversity in the sediment samples was studied by molecular phylogenetic techniques. From DNA extracted directly from the sediment samples, 16S rDNAs were amplified by the polymerase chain reaction method. The sequences of the amplified 16S rDNAs selected by restriction fragment length polymorphism analysis were determined and compared with sequences in DNA databases. The results showed that 33 different bacterial 16S rDNA sequences from the two samples analyzed fell into similar phylogenetic categories, the α-, γ-, δ-, and ɛ-subdivisions of Proteobacteria, Cytophaga, and gram-positive bacteria; some of the 16S rDNA sequences were common to both samples. δ- and ɛ-Proteobacteria-related sequences were abundant in both sediments. These sequences are mostly related to sulfate-reducing or sulfur-reducing bacteria and epibionts, respectively. Eight different archaeal 16S rDNA sequences were cloned from the sediments. The majority of the archaeal 16S rDNA sequences clustered in Crenarchaeota and showed high similarities to marine group I archaeal rDNA. A Methanococcoides burtonii–related sequence obtained from the sediment clustered in the Euryarchaeota indicating that M. burtonii–related strains in the area of Calyptogena communities may contribute to production of methane in this environment. From these results, we propose a possible model of sulfur circulation within the microbial community and that of Calyptogena clams in the cold-seep environment. Received June 15, 1998; accepted November 10, 1998.  相似文献   

2.
The purpose of this study was to detect three fibrolytic bacteria, Fibrobacter succinogenes, Ruminococcus flavefaciens, and Ruminococcus albus, in the cecal digesta of the ostrich (Struthio camelus) by PCR using a species-specific primer set for each 16S ribosomal RNA gene (16S rDNA). Although amplified DNA fragments obtained from each primer set had the expected size, the clone library derived from the amplimer contained non-specific sequences. The F. succinogenes-specific primer set recovered a partial 16S rDNA sequence of an uncultivated Fibrobacter with low similarity (<95%) and distantly related phylogenetic positioning to Fibrobacter sequences deposited in the databases, indicating a novel species of Fibrobacter. The sequence was considered to be identical to a clone detected in our previous experiment. Thus, we confirm that the gastrointestinal tract of the ostrich is one of the habitats of Fibrobacter species. The clone library derived from the R. flavefaciens-specific primer set contained a 16S rDNA sequence with 97% similarity to R. flavefaciens, indicating it could be one of a major fibrolytic bacterium in the ostrich ceca. No R. albus 16S rDNA sequence was found in the clone library of the R. albus-specific primer set.  相似文献   

3.
Molecular organization and nucleotide sequences of the 5S rRNA gene and NTS were investigated in freshwater fish, bitterlings (Acheilognathinae), including 10 species/subspecies of four genera, Acheilognathus, Pseudoperilampus, Rhodeus, and Tanakia, to understand the evolutionary trait of 5S rDNA arrays. Southern hybridization analysis revealed a general trend with tandem repeats of 5S rDNA in all the examined bitterlings. Sequence analysis demonstrated a conserved 120 bp sequence of the 5S rRNA gene and a short NTS of 56–67 bp with two distinct portions, a conserved (5′-flanking portion; at positions −1 to −38) and a variable part (3′-flanking portion), in 6 of 10 species/subspecies examined. The conserved NTS region was most likely an external promoter so far observed in various vertebrates, whereas the variable NTS region could be divided into two types due to its nucleotide polymorphisms. Molecular phylogeny using the 5S rRNA gene and NTS sequences suggested the occurrence of 5S rDNA duplication before speciation and a concerted evolution for the gene and conserved NTS regions, but a birth-and-death process to maintain the variable NTS region. Thus, the 5S rDNA in the examined bitterlings might have evolved under a mixed process of evolution.  相似文献   

4.
Pierce's disease (PD, Xylella fastidiosa) of grapevine is the primary pathogen limiting vinifera grape production in Florida and other regions of the southeastern United States. Quick and accurate detection of PD strains is essential for PD studies and control. A unique random amplified polymorphic DNA (PD1-1-2) was isolated from a PD strain from Florida. Fragment PD1-1-2 was cloned, sequenced, and found to be 1005 bp in length. PCR primers were designed to utilize these sequence data for PD strain detection. One primer set (XF176f–XF954r) amplified a 779-bp DNA fragment from 34 PD strains including seven pathotypes of X. fastidiosa, but not from strains of Xanthomonas campestris pv. campestris, Xan. vesicatoria or Escherichia coli. A second primer set (XF176f and XF686r) amplified a 511-bp fragment specific to 98 PD strains, but not from strains of citrus variegated chlorosis, mulberry leaf scorch, oak leaf scorch, periwinkle wilt, phony peach, or plum leaf scald. Sequence analysis indicated that RAPD fragment PD1-1-2 contains a Ser-tRNA gene. The PD-specific region includes a TaqI restriction site (TCGA) and is 150 bp downstream of the Ser-tRNA gene. Received: 1 March 1999 / Accepted: 5 April 1999  相似文献   

5.
We have previously reported the design of a new PCR primer pair that allows amplification of a broad range of eubacterial 16S rDNA sequences from ectomycorrhizae (ECM) without co-amplification of plastid or mitochondrial sequences. Here, we report using a similar primer combination to generate three small 16S rDNA libraries from tuberculate ECM of Rhizopogon spp., two from R. vinicolor ECM (libraries Rvi18 and Rvi24) and one from R. vesiculosus ECM (library Rve13). At the class level, libraries were dominated by sequences from the Alphaproteobacteria, Gammaproteobacteria, and Acidobacteria, with some Sphingobacteria, Actinobacteria, Planctomycetacia, and Verrucomicrobiae present as well. Based on the parsimony test implemented in TreeClimber, libraries Rvi18 and Rvi24 were significantly different from Rve13 at the α = 0.05 level, while they were only borderline significantly different from each other (p = 0.07). Differences between Rvi and Rve libraries were primarily due to differences in the number of Alphaproteobacteria sequences and specifically sequences from the Rhizobiales, which were more common in the Rve13 library. It is currently unknown what drives these differences between eubacterial communities. Amplification success for eubacterial 16S rDNA sequences was generally low in this study indicating low abundance of bacteria on tuberculate ECM. Attempts to amplify nitrogenase reductase (nifH) sequences were unsuccessful. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Xylella fastidiosa causes diseases on a growing list of economically important plants. An understanding of how xylellae diseases originated and evolved is important for disease prevention and management. In this study, we evaluated the phylogenetic relationships of X. fastidiosa strains from citrus, grapevine, and mulberry through the analyses of random amplified polymorphic DNAs (RAPDs) and conserved 16S rDNA genes. RAPD analysis emphasized the vigorous genome-wide divergence of X. fastidiosa and detected three clonal groups of strains that cause Pierce's disease (PD) of grapevine, citrus variegated chlorosis (CVC), and mulberry leaf scorch (MLS). Analysis of 16S rDNA sequences also identified the PD and CVC groups, but with a less stable evolutionary tree. MLS strains were included in the PD group by the 16S rDNA analysis. The Asiatic origins of the major commercial grape and citrus cultivars suggest the recent evolution of both PD and CVC disease in North and South America, respectively, since X. fastidiosa is a New World organism. In order to prevent the development of new diseases caused by X. fastidiosa, it is important to understand the diversity of X. fastidiosa strains, how strains of X. fastidiosa select their hosts, and their ecological roles in the native vegetation. Received: 7 February 2002 / Accepted: 7 March 2002  相似文献   

7.
The chromosomes of Japanese flounder, Paralichthys olivaceus, were examined by conventional differential staining methods including G-, Q-, C-, silver (Ag)-, fluorochrome, and replication R-bandings and by fluorescence in situ hybridization (FISH) with 5S and 18S rDNAs and telomeric DNA as probes. Replication R-banding substantially made it possible to identify 24 homologous pairs by their RBG-banding pattern and relative length. Both rDNA loci were mapped to chromosome 1, where 5S and 18S rDNA loci were located at the centromeric region and secondary constriction, respectively. C-banding revealed that both rDNA loci were heterochromatic, and 18S rDNA loci were positive for chromomycin A3 but negative for 4′,6-diamidino-2-phenylindole (DAPI) staining. Telomeric FISH signals were observed at all chromosome ends and at the interstitial region of some chromosomes. The observed results were discussed in relation to the karyotype evolution in the order Pleuronectiformes.  相似文献   

8.
An undescribed, maternally heritable, rod-shaped bacterium (or “tertiary symbiont”) was detected by microscopy in hemolymph of about half (59/122) of pea aphid [Acyrthosiphon pisum (Harris)] clones collected from widely separated locations in California. On the basis of molecular phylogenetic analysis of 16S rDNA sequences, the bacterium was clearly placed among other Rickettsia in the α-subgroup of Proteobacteria, close to Rickettsia bellii—a rickettsia found in ticks. A PCR assay was developed to detect this bacterium in pea aphid clones with specific 16S rDNA PCR primers. Results of PCR-based assays completely correlated with detection by microscopy. This is the first confirmed detection of a Rickettsia in a herbivorous insect. Received: 26 January 1996  相似文献   

9.
The nearly complete nuclear large subunit ribosomal RNA (LSU rRNA) gene in corals was amplified by primers designed from polymerase chain reaction (PCR) strategies. The motif of the putative 3′-terminus of the LSU rRNA gene was sequenced and identified from intergenic spacer (IGS) clones obtained by PCR using universal primers designed for corals. The 3′-end primer was constructed in tandem with the universal 5′-end primer for the LSU rRNA gene. PCR fragments of 3500 bp were amplified for octocorals and non-Acropora scleractinian corals. More than 80% of the Acropora LSU rRNA gene (3000 bp) was successfully amplified by modification of the 5′-end of the IGS primer. Analysis of the 5′-end of LSU rDNA sequences, including the D1 and D2 divergent domains, indicates that the evolutionary rate of the LSU rDNA differs among these taxonomic groups of corals. The genus Acropora showed the highest divergence pattern in the LSU rRNA gene, and the presence of a long branch of the Acropora clade from the other scleractinian corals in the phylogenetic tree indicates that the evolutionary rate of Acropora LSU rDNA might have accelerated after divergence from the common ancestor of scleractinian corals. Received February 17, 2000; accepted June 12, 2000.  相似文献   

10.
The 5S ribosomal RNA genes (5S rDNA) are located independently from the 45S rDNA repeats containing 18S, 5.8S and 26S ribosomal RNA genes in higher eukaryotes. Southern blot and fluorescence in situ hybridization analyses demonstrated that the 5S rDNAs are encoded in the 45S rDNA repeat unit of a liverwort, Marchantia polymorpha, in contrast to higher plants. Sequencing analyses revealed that a single-repeat unit of the M. polymorpha nuclear rDNA, which is 16103 bp in length, contained a 5S rDNA downstream of 18S, 5.8S and 26S rDNA. To our knowledge, this is the first report on co-localization of the 5S and 45S rDNAs in the rDNA repeat of land plants. Furthermore, we detected a 5S rDNA in the rDNA repeat of a moss, Funaria hygrometrica, by a homology search in a database. These findings suggest that there has been structural re-organization of the rDNAs after divergence of the bryophytes from the other plant species in the course of evolution.  相似文献   

11.
Cyanobacterial 16S ribosomal RNA gene diversity was examined in a benthic mat on Fildes Peninsula of King George Island (62o09′54.4′′S, 58o57′20.9′′W), maritime Antarctica. Environmental DNA was isolated from the mat, a clone library of PCR-amplified 16S rRNA gene fragments was prepared, and amplified ribosomal DNA restriction analysis (ARDRA) was done to assign clones to seven groups. Low cyanobacterial diversity in the mat was suggested in that 83% of the clones were represented by one ARDRA group. DNA sequences from this group had high similarity with 16S rRNA genes of Tychonema bourrellyi and T. bornetii isolates, whose geographic origins were southern Norway and Northern Ireland. Cyanobacterial morphotypes corresponding to Tychonema have not been reported in Antarctica, however, this morphotype was previously found at Ward Hunt Lake (83oN), and in western Europe (52oN). DNA sequences of three of the ARDRA groups had highest similarity with 16S rDNA sequences of the Tychonema group accounting for 9.4% of the clones. Sequences of the remaining three groups (7.6%) had highest similarity with 16S rRNA genes of uncultured cyanobacteria clones from benthic mats of Lake Fryxell and fresh meltwater on the McMurdo Ice Shelf.  相似文献   

12.
Summary The nucleotide sequence of a spacer region between rice 17S and 25S rRNA genes (rDNAs) has been determined. The coding regions for the mature 17S, 5.8S and 25S rRNAs were identified by sequencing terminal regions of these rRNAs. The first internal transcribed spacer (ITS1), between 17S and 5.8S rDNAs, is 194–195 bp long. The second internal transcribed spacer (ITS2), between 5.8S and 25S rDNAs, is 233 bp long. Both spacers are very rich in G+C, 72.7% for ITS1 and 77.3% for ITS2. The 5.8S rDNA is 163–164 bp long and similar in primary and secondary structures to other eukaryotic 5.8S rDNAs. The 5.8S rDNA is capable of interacting with the 5′ terminal region of 25S rDNA.  相似文献   

13.
Five fresh soil Streptomyces spp. strains were isolated, phylogenetically characterized on the basis of 16S rDNA sequences and analyzed for the presence of restriction modification systems. Three type II site-specific endonucleases were detected and partially purified. Two isolated enzymes were isoschizomers of SacI restriction endonuclease recognizing 5′-GAGCTC-3′ sequence; the third one recognised 5′-CCGCGG-3′ sequence and it was an isoschizomer of SacII. SacII like modification was observed in other two isolates having no detectable restriction activity. The lack of correlation between restriction and modification phenotypes and phylogenetic classification of the isolates indicates efficient gene transfer mechanism in the Streptomyces genus.  相似文献   

14.
The chromosomal loci of 5S and 45S ribosomal DNAs (rDNAs) and the activity of nucleolar‐organizing regions (NORs) were analysed in perennial oats of the genera Ammophila, Amphibromus, Arrhenatherum, Avena, Deschampsia, and Helictotrichon s.l. (Poaceae: Aveneae) using fluorescence in situ hybridization, staining with chromomycin/4′,6‐diamidino‐2‐phenylindole (DAPI), and silver impregnation. All chromosomes with a secondary constriction were nucleolar active. In chromosomes without a secondary constriction, NORs corresponded exclusively to broad bands of 45S rDNA with chromomycin‐positive, DAPI‐negative, and silver‐positive stainability. Additional minor bands of 45S rDNA showed no nucleolar activity. 5S rDNA was localized mostly in loci different from the nucleolar‐active 45S rDNA. If both rDNAs occurred within the same chromosome, they were at largely corresponding distances from the centromere, irrespective of their particular localization in either the same chromosome arm or in opposite arms. In the latter case, 5S rDNA was never more distal to the centromere than 45S rDNA. A new model was devised to explain this non‐random distribution of both rDNAs in nucleolar‐organizing chromosomes, which identified the Rabl orientation of chromosomes as ensuring a spatial proximity of 5S to 45S rDNA in interphase nuclei, even if they were localized in opposite arms. The possible role of the Rabl orientation in determining the spread and accumulation of 5S rDNA sequences in further chromosomes of the genome was discussed. B chromosomes were devoid of 5S rDNA, but most contained 45S rDNA and were nucleolar active. In some large groups of species, the number and arrangement of 5S and 45S rDNA sites in the chromosomes were remarkably uniform, especially in Helictotrichon subgenus Helictotrichon and Helictotrichon subgenus Pratavenastrum. Such distribution patterns have survived many speciation processes and have also remained widely unchanged in polyploids. © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society, 2007, 155 , 193–210.  相似文献   

15.
To clarify the evolutionary dynamics of ribosomal RNA genes (rDNAs) in the Byblis liniflora complex (Byblidaceae), we investigated the 5S and 45S rDNA genes through (1) chromosomal physical mapping by fluorescence in situ hybridization (FISH) and (2) phylogenetic analyses using the nontranscribed spacer of 5S rDNA (5S-NTS) and the internal transcribed spacer of 45S rDNA (ITS). In addition, we performed phylogenetic analyses based on rbcL and trnK intron. The complex was divided into 2 clades: B. aquaticaB. filifolia and B. guehoiB. linifloraB. rorida. Although members of the complex had conservative symmetric karyotypes, they were clearly differentiated on chromosomal rDNA distribution patterns. The sequence data indicated that ITS was almost homogeneous in all taxa in which two or four 45S rDNA arrays were frequently found at distal regions of chromosomes in the somatic karyotype. ITS homogenization could have been prompted by relatively distal 45S rDNA positions. In contrast, 2–12 5S rDNA arrays were mapped onto proximal/interstitial regions of chromosomes, and some paralogous 5S-NTS were found in the genomes harboring 4 or more arrays. 5S-NTS sequence type-specific FISH analysis showed sequence heterogeneity within and between some 5S rDNA arrays. Interlocus homogenization may have been hampered by their proximal location on chromosomes. Chromosomal location may have affected the contrasting evolutionary dynamics of rDNAs in the B. liniflora complex.  相似文献   

16.
We characterized the intracellular symbiotic bacteria of the mulberry psyllid Anomoneura mori by performing a molecular phylogenetic analysis combined with in situ hybridization. In its abdomen, the psyllid has a large, yellow, bilobed mycetome (or bacteriome) which consists of many round uninucleated mycetocytes (or bacteriocytes) enclosing syncytial tissue. The mycetocytes and syncytium harbor specific intracellular bacteria, the X-symbionts and Y-symbionts, respectively. Almost the entire length of the bacterial 16S ribosomal DNA (rDNA) was amplified and cloned from the whole DNA of A. mori, and two clones, the A-type and B-type clones, were identified by restriction fragment length polymorphism analysis. In situ hybridization with specific oligonucleotide probes demonstrated that the A-type and B-type 16S rDNAs were derived from the X-symbionts and Y-symbionts, respectively. Molecular phylogenetic analyses of the 16S rDNA sequences showed that these symbionts belong to distinct lineages in the γ subdivision of the Proteobacteria. No 16S rDNA sequences in the databases were closely related to the 16S rDNA sequences of the X- and Y-symbionts. However, the sequences that were relatively closely related to them were the sequences of endosymbionts of other insects. The nucleotide compositions of the 16S rDNAs of the X- and Y-symbionts were highly AT biased, and the sequence of the X-symbiont was the most AT-rich bacterial 16S rDNA sequence reported so far.  相似文献   

17.
IS1389, a new insertion sequence belonging to the IS3 family, has been identified in Xanthomonas campestris pv. amaranthicola. The genome of this bacterium contains at least 11 copies of the element, whereas no hybridizing sequences were detected in other Xanthomonas species [X. axonopodis, X. fragaridae, X. phaseoli, and X. (Stenotrophomonas) maltophila]. Two nearly identical copies of the element (IS1389-A and IS1389-B) were characterized. According to analysis of sequence alignments and similar structural features, IS1389 belongs to the IS407 subgroup of the IS3 family, which duplicates 4 bp of target DNA upon insertion. IS1389-A was found in the proximity of the modification gene of the XamI restriction-modification system. Received: 17 November 1998 / Accepted: 22 April 1999  相似文献   

18.
 Appearance and location of 45S rDNA and 5S rDNA signals were compared in chromosomes of nine species of the aneuploid Zamia and their taxonomically and phylogenetically closely related Ceratozamia mexicana. The 45S rDNA signal was detected in the proximal region of six chromosomes in Zamia angustifolia, Z. integrifolia, Z. pumila and Z. pygmaea (all 2n=16); in the proximal region of 6–14 chromosomes in Z. furfuracea, Z. loddigesii, Z. skinneri and Z. vazquezii (all 2n=18); and on the proximal region of 20 chromosomes in Z. muricata (2n=23). The 5S rDNA signals were commonly seen near the terminal region of the short arm of two metacentric chromosomes in the four species with 2n=16 and Z. furfuracea, Z. loddigesii and Z. vazquezii with 2n=18. Other 5S rDNA signals were seen near the terminal region of two terminal-centromeric chromosomes in Z. skinneri and near the terminal region of a metacentric and a telocentric chromosomes in Z. muricata. In contrast, those with 45S and 5S rDNA signals were exhibited in chromosomes of Ceratozamia mexicana in a different manner from those in the nine species of Zamia; the 45S rDNA signal in the terminal region of four metacentric and two submetacentric chromosomes and the 5S rDNA signal near the proximal region of two metacentric chromosomes. Received November 1, 1999 Accepted January 10, 2001  相似文献   

19.
We have cloned and sequenced rRNA operons of Clostridium perfringens strain 13 and analyzed the sequence structure in view of the phylogenesis. The organism had ten copies of rRNA operons all of that comprised of 16S, 23S and 5S rDNAs except for one operon. The operons clustered around the origin of replication, ranging within one-third of the whole genome sequence as it is arranged in a circle. Seven operons were transcribed in clockwise direction, and the remaining three were transcribed in counter clockwise direction assuming that the gyrA was transcribed in clockwise direction. Two of the counter clockwise operons contained tRNAIle genes between the 16S and 23S rDNAs, and the other had a tRNAIle genes between the 16S and 23S rDNAs and a tRNAAsn gene in the place of the 5S rDNA. Microheterogeneity was found within the rRNA structural genes and spacer regions. The length of each 16S, 23S and 5S rDNA were almost identical among the ten operons, however, the intergenic spacer region of 16S-23S and 23S-5S were variable in the length depending on loci of the rRNA operons on the chromosome. Nucleotide sequences of the helix 19, helix 19a, helix 20 and helix 21 of 23S rDNA were divergent and the diversity appeared to be correlated with the loci of the rRNA operons on the chromosome.  相似文献   

20.
Xylella fastidiosa, like related Xanthomonas species, employs an Rpf cell-cell communication system consisting of a diffusible signal factor (DSF) synthase, RpfF, and a DSF sensor, RpfC, to coordinate expression of virulence genes. While phenotypes of a ΔrpfF strain in Xanthomonas campestris could be complemented by its own DSF, the DSF produced by X. fastidiosa (XfDSF) did not restore expression of the XfDSF-dependent genes hxfA and hxfB to a ΔrpfF strain of X. fastidiosa, suggesting that RpfF is involved in XfDSF sensing or XfDSF-dependent signaling. To test this conjecture, rpfC and rpfF of X. campestris were replaced by those of X. fastidiosa, and the contribution of each gene to the induction of a X. campestris DSF-dependent gene was assessed. As in X. fastidiosa, XfDSF-dependent signaling required both X. fastidiosa proteins RpfF and RpfC. RpfF repressed RpfC signaling activity, which in turn was derepressed by XfDSF. A mutated X. fastidiosa RpfF protein with two substitutions of glutamate to alanine in its active site was incapable of XfDSF production yet enabled a response to XfDSF, indicating that XfDSF production and the response to XfDSF are two separate functions in which RpfF is involved. This mutant was also hypervirulent to grape, demonstrating the antivirulence effects of XfDSF itself in X. fastidiosa. The Rpf system of X. fastidiosa is thus a novel example of a quorum-sensing signal synthase that is also involved in the response to the signal molecule that it synthesizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号