共查询到20条相似文献,搜索用时 0 毫秒
1.
Middendorp S Küntziger T Abraham Y Holmes S Bordes N Paintrand M Paoletti A Bornens M 《The Journal of cell biology》2000,148(3):405-416
Centrosome reproduction by duplication is essential for the bipolarity of cell division, but the molecular basis of this process is still unknown. Mutations in Saccharomyces cerevisiae CDC31 gene prevent the duplication of the spindle pole body (SPB). The product of this gene belongs to the calmodulin super-family and is concentrated at the half bridge of the SPB. We present a functional analysis of HsCEN3, a human centrin gene closely related to the CDC31 gene. Transient overexpression of wild-type or mutant forms of HsCen3p in human cells demonstrates that centriole localization depends on a functional fourth EF-hand, but does not produce mitotic phenotype. However, injection of recombinant HsCen3p or of RNA encoding HsCen3p in one blastomere of two-cell stage Xenopus laevis embryos resulted in undercleavage and inhibition of centrosome duplication. Furthermore, HsCEN3 does not complement mutations or deletion of CDC31 in S. cerevisiae, but specifically blocks SPB duplication, indicating that the human protein acts as a dominant negative mutant of CDC31. Several lines of evidence indicate that HsCen3p acts by titrating Cdc31p-binding protein(s). Our results demonstrate that, in spite of the large differences in centrosome structure among widely divergent species, the centrosome pathway of reproduction is conserved. 相似文献
2.
3.
In preparation for mitosis, the centrosome doubles once and only once to provide the two poles of the mitotic spindle. The presence of more than two centrosomes increases the chances that mitosis will be multipolar, and chromosomes will be distributed unequally. Since the number of mother-daughter centriole pairs determines the number of centrosomes, it is important that only one daughter centriole is assembled at, but slightly separated from, the proximal end of each mother centriole. This numerical and spatial specificity has led to the belief that a 'template' on the mother centriole provides a unique site for procentriole assembly. We review observations that are leading to the demise of this intuitively attractive idea. In its place, we are left with the notion that pericentriolar material at the wall of the mother centriole provides a local environment that promotes the assembly of a macromolecular complex that seeds the daughter centriole. Even though the system normally behaves in a digital fashion to go from zero to just one daughter centriole per mother, this behaviour appears to be based in the precise analogue control of multiple proteins, their activities, and the structure provided by the mother centriole. 相似文献
4.
G Sluder E H Hinchcliffe 《Biology of the cell / under the auspices of the European Cell Biology Organization》1999,91(6):413-427
It is of great importance for the cell to precisely coordinate the doubling of the interphase centrosome with nuclear events during the cell cycle and limit the number of centrosomes it contains at the onset of mitosis to two and only two. The penalties for mistakes are abnormal spindle assembly, inappropriate chromosome distribution, and consequently, genomic instability. We review the functional properties of the mechanisms that control when the centrosome duplicates in the cell cycle and the controls for centrosome copy number. We look to limits that are intrinsic to the centrosome itself and controls imposed by cell cycle linked changes in cytoplasmic conditions. Control of centrosome reproduction is exercised at both levels. 相似文献
5.
6.
The rapid evolution of essential developmental genes and their protein products is both intriguing and problematic. The rapid evolution of gene products with simple protein folds and a lack of well-characterized functional domains typically result in a low discovery rate of orthologous genes. Additionally, in the absence of orthologs it is difficult to study the processes and mechanisms underlying rapid evolution. In this study, we have investigated the rapid evolution of centrosomin (cnn), an essential gene encoding centrosomal protein isoforms required during syncytial development in Drosophila melanogaster. Until recently the rapid divergence of cnn made identification of orthologs difficult and questionable because Cnn violates many of the assumptions underlying models for protein evolution. To overcome these limitations, we have identified a group of insect orthologs and present conserved features likely to be required for the functions attributed to cnn in D. melanogaster. We also show that the rapid divergence of Cnn isoforms is apparently due to frequent coding sequence indels and an accelerated rate of intronic additions and eliminations. These changes appear to be buffered by multi-exon and multi-reading frame maximum potential ORFs, simple protein folds, and the splicing machinery. These buffering features also occur in other genes in Drosophila and may help prevent potentially deleterious mutations due to indels in genes with large coding exons and exon-dense regions separated by small introns. This work promises to be useful for future investigations of cnn and potentially other rapidly evolving genes and proteins. 相似文献
7.
8.
V Pannu P C G Rida A Ogden R Clewley A Cheng P Karna M Lopus R C Mishra J Zhou R Aneja 《Cell death & disease》2012,3(7):e346
Centrosome amplification (CA) and resultant chromosomal instability have long been associated with tumorigenesis. However, exacerbation of CA and relentless centrosome declustering engender robust spindle multipolarity (SM) during mitosis and may induce cell death. Recently, we demonstrated that a noscapinoid member, reduced bromonoscapine, (S)-3-(R)-9-bromo-5-(4,5-dimethoxy-1,3-dihydroisobenzofuran-1-yl)-4-methoxy-6-methyl-5,6,7,8-tetrahydro-[1,3]dioxolo-[4,5-g]isoquinoline (Red-Br-nos), induces reactive oxygen species (ROS)-mediated autophagy and caspase-independent death in prostate cancer PC-3 cells. Herein, we show that Red-Br-nos induces ROS-dependent DNA damage that resulted in high-grade CA and SM in PC-3 cells. Unlike doxorubicin, which causes double-stranded DNA breaks and chronic G2 arrest accompanied by ‘templated'' CA, Red-Br-nos-mediated DNA damage elicits de novo CA during a transient S/G2 stall, followed by checkpoint abrogation and mitotic entry to form aberrant mitotic figures with supernumerary spindle poles. Attenuation of multipolar phenotype in the presence of tiron, a ROS inhibitor, indicated that ROS-mediated DNA damage was partly responsible for driving CA and SM. Although a few cells (∼5%) yielded to aberrant cytokinesis following an ‘anaphase catastrophe'', most mitotically arrested cells (∼70%) succumbed to ‘metaphase catastrophe,'' which was caspase-independent. This report is the first documentation of rapid de novo centrosome formation in the presence of parent centrosome by a noscapinoid family member, which triggers death-inducing SM via a unique mechanism that distinguishes it from other ROS-inducers, conventional DNA-damaging agents, as well as other microtubule-binding drugs. 相似文献
9.
Control of centrosome duplication is tightly linked with the progression of the cell cycle. Recent studies suggest that the fundamental process of centriole duplication is evolutionally conserved. Here, we identified c entrosomal P 4.1‐a ssociated p rotein (CPAP), a human homologue of SAS‐4, as a substrate of PLK2 whose activity oscillates during the cell cycle. PLK2 phosphorylates the S589 and S595 residues of CPAP in vitro and in vivo. This phosphorylation is critical for procentriole formation during the centrosome cycle. PLK4 also phosphorylates S595 of CPAP, but PLK4 phosphorylation is not a critical step in the PLK4 function in procentriole assembly. CPAP is phosphorylated in a cell cycle stage‐specific manner, so that its phosphorylation increases at the G1/S transition phase and decreases during the exit of mitosis. Phosphorylated CPAP is preferentially located at the procentriole. Furthermore, overexpression of a phospho‐resistant CPAP mutant resulted in the failure to form elongated centrioles. On the basis of these results, we propose that phosphorylated CPAP is involved in procentriole assembly, possibly for centriole elongation. This work demonstrates an example of how procentriole formation is linked to the progression of the cell cycle. 相似文献
10.
11.
12.
13.
Green light for the cell cycle 总被引:21,自引:0,他引:21
Inzé D 《The EMBO journal》2005,24(4):657-662
In recent years, considerable progress has been made in unraveling the control mechanisms operating on the plant cell cycle and most of the key regulators have now been identified, including cyclin-dependent kinases (CDKs), cyclins, CDK-inhibitory proteins, the WEE kinase and proteins of the retinoblastoma-related protein (RBR)/E2F/DP pathway. The review discusses recent developments in our understanding of the plant cell cycle machinery and highlights the role of the cell cycle in plant development. 相似文献
14.
In this work we report the genetic polymorphism of a 7-bp insertion in the 3'' untranslated region of the rabbit SRY gene. The polymorphic GAATTAA motif was found exclusively in one of the two divergent rabbit Y-chromosomal lineages, suggesting that its origin is more recent than the separation of the O. c. algirus and O. c. cuniculus Y-chromosomes. In addition, the remarkable observation of haplotypes exhibiting 0, 1 and 2 7-bp inserts in essentially all algirus populations suggests that the rabbit SRY gene is duplicated and evolving under concerted evolution. 相似文献
15.
Hannah M��ller David Schmidt Sandra Steinbrink Ekaterina Mirgorodskaya Verena Lehmann Karin Habermann Felix Dreher Niklas Gustavsson Thomas Kessler Hans Lehrach Ralf Herwig Johan Gobom Aspasia Ploubidou Michael Boutros Bodo M H Lange 《The EMBO journal》2010,29(19):3344-3357
Regulation of centrosome structure, duplication and segregation is integrated into cellular pathways that control cell cycle progression and growth. As part of these pathways, numerous proteins with well‐established non‐centrosomal localization and function associate with the centrosome to fulfill regulatory functions. In turn, classical centrosomal components take up functional and structural roles as part of other cellular organelles and compartments. Thus, although a comprehensive inventory of centrosome components is missing, emerging evidence indicates that its molecular composition reflects the complexity of its functions. We analysed the Drosophila embryonic centrosomal proteome using immunoisolation in combination with mass spectrometry. The 251 identified components were functionally characterized by RNA interference. Among those, a core group of 11 proteins was critical for centrosome structure maintenance. Depletion of any of these proteins in Drosophila SL2 cells resulted in centrosome disintegration, revealing a molecular dependency of centrosome structure on components of the protein translation machinery, actin‐ and RNA‐binding proteins. In total, we assigned novel centrosome‐related functions to 24 proteins and confirmed 13 of these in human cells. 相似文献
16.
Dorothy A. Lerit Karen M. Plevock Nasser M. Rusan 《Journal of visualized experiments : JoVE》2014,(89)
Stem cells divide asymmetrically to generate two progeny cells with unequal fate potential: a self-renewing stem cell and a differentiating cell. Given their relevance to development and disease, understanding the mechanisms that govern asymmetric stem cell division has been a robust area of study. Because they are genetically tractable and undergo successive rounds of cell division about once every hour, the stem cells of the Drosophila central nervous system, or neuroblasts, are indispensable models for the study of stem cell division. About 100 neural stem cells are located near the surface of each of the two larval brain lobes, making this model system particularly useful for live imaging microscopy studies. In this work, we review several approaches widely used to visualize stem cell divisions, and we address the relative advantages and disadvantages of those techniques that employ dissociated versus intact brain tissues. We also detail our simplified protocol used to explant whole brains from third instar larvae for live cell imaging and fixed analysis applications. 相似文献
17.
Miguel Sanchez-Alvarez Qifeng Zhang Fabian Finger Michael J. O. Wakelam Chris Bakal 《Open biology》2015,5(9)
We show that phospholipid anabolism does not occur uniformly during the metazoan cell cycle. Transition to S-phase is required for optimal mobilization of lipid precursors, synthesis of specific phospholipid species and endoplasmic reticulum (ER) homeostasis. Average changes observed in whole-cell phospholipid composition, and total ER lipid content, upon stimulation of cell growth can be explained by the cell cycle distribution of the population. TORC1 promotes phospholipid anabolism by slowing S/G2 progression. The cell cycle stage-specific nature of lipid biogenesis is dependent on p53. We propose that coupling lipid metabolism to cell cycle progression is a means by which cells have evolved to coordinate proliferation with cell and organelle growth. 相似文献
18.
Jeremy T. Smyth Todd A. Schoborg Zane J. Bergman Blake Riggs Nasser M. Rusan 《Open biology》2015,5(8)
Mechanisms that regulate partitioning of the endoplasmic reticulum (ER) during cell division are largely unknown. Previous studies have mostly addressed ER partitioning in cultured cells, which may not recapitulate physiological processes that are critical in developing, intact tissues. We have addressed this by analysing ER partitioning in asymmetrically dividing stem cells, in which precise segregation of cellular components is essential for proper development and tissue architecture. We show that in Drosophila neural stem cells, called neuroblasts, the ER asymmetrically partitioned to centrosomes early in mitosis. This correlated closely with the asymmetric nucleation of astral microtubules (MTs) by centrosomes, suggesting that astral MT association may be required for ER partitioning by centrosomes. Consistent with this, the ER also associated with astral MTs in meiotic Drosophila spermatocytes and during syncytial embryonic divisions. Disruption of centrosomes in each of these cell types led to improper ER partitioning, demonstrating the critical role for centrosomes and associated astral MTs in this process. Importantly, we show that the ER also associated with astral MTs in cultured human cells, suggesting that this centrosome/astral MT-based partitioning mechanism is conserved across animal species. 相似文献
19.
Joung-Sun Park Jung-Hoon Pyo Hyun-Jin Na Ho-Jun Jeon Young-Shin Kim Robert Arking Mi-Ae Yoo 《Biochemical and biophysical research communications》2014
Age-related changes in long-lived tissue-resident stem cells may be tightly linked to aging and age-related diseases such as cancer. Centrosomes play key roles in cell proliferation, differentiation and migration. Supernumerary centrosomes are known to be an early event in tumorigenesis and senescence. However, the age-related changes of centrosome duplication in tissue-resident stem cells in vivo remain unknown. Here, using anti-γ-tubulin and anti-PH3, we analyzed mitotic intestinal stem cells with supernumerary centrosomes in the adult Drosophila midgut, which may be a versatile model system for stem cell biology. The results showed increased centrosome amplification in intestinal stem cells of aged and oxidatively stressed Drosophila midguts. Increased centrosome amplification was detected by overexpression of PVR, EGFR, and AKT in intestinal stem cells/enteroblasts, known to mimic age-related changes including hyperproliferation of intestinal stem cells and hyperplasia in the midgut. Our data show the first direct evidence for the age-related increase of centrosome amplification in intestinal stem cells and suggest that the Drosophila midgut is an excellent model for studying molecular mechanisms underlying centrosome amplification in aging adult stem cells in vivo. 相似文献
20.
Pérez-Mongiovi D Beckhelling C Chang P Ford CC Houliston E 《The Journal of cell biology》2000,150(5):963-974
Although maturation/M phase promoting factor (MPF) can activate autonomously in Xenopus egg cytoplasm, indirect evidence suggests that nuclei and centrosomes may focus activation within the cell. We have dissected the contribution of these structures to MPF activation in fertilized eggs and in egg fragments containing different combinations of nuclei, centrosomes, and microtubules by following the behavior of Cdc2 (the kinase component of MPF), the regulatory subunit cyclin B, and the activating phosphatase Cdc25. The absence of the entire nucleus-centrosome complex resulted in a marked delay in MPF activation, whereas the absence of the centrosome alone caused a lesser delay. Nocodazole treatment to depolymerize microtubules through first interphase had an effect equivalent to removing the centrosome. Furthermore, microinjection of isolated centrosomes into anucleate eggs promoted MPF activation and advanced the onset of surface contraction waves, which are close indicators of MPF activation and could be triggered by ectopic MPF injection. Finally, we were able to demonstrate stimulation of MPF activation by the nucleus-centriole complex in vitro, as low concentrations of isolated sperm nuclei advanced MPF activation in cycling cytoplasmic extracts. Together these results indicate that nuclei and microtubule asters can independently stimulate MPF activation and that they cooperate to enhance activation locally. 相似文献