首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
It was previously suggested that the 25-Vitamin-D3-1-hydroxylase (CYP27B1) is downregulated during human prostate tumor pathogenesis while the catabolic 25-Vitamin-D3-24-hydroxylase (CYP24) expression is increased. The latter could lead to resistance against the antimitotic, prodifferentiating activity of 1,25-dihydroxycholecalciferol. Our hypothesis was that regulation of Vitamin D hydroxylase expression during prostate tumor progression might be under epigenetic control. We demonstrate by real time RT-PCR that PNT-2 human normal prostate cells indeed possess CYP27B1, but are practically devoid of CYP24 mRNA, whereas DU-145 cancer cells have constitutive expression of CYP24, and very low levels of CYP27B1 mRNA. Treatment of PNT-2 cells with the methylation inhibitor 5-aza-2′-deoxycytidine together with the deacetylation inhibitor trichostatin A resulted in elevation of both CYP27B1 and CYP24 mRNA expression demonstrating that even in normal human prostate cells expression of Vitamin D hydroxylases may be under epigenetic control. In the DU-145 malignant cell line trichostatin A together with 5-aza-2′-deoxycytidine increased CYP27B1 mRNA expression to a smaller extent than in normal cells, however this resulted in a highly significant increase in 1-hydroxylation capacity. This demonstrates for the first time that synthesis of 1,25-dihydroxycholecalciferol in human prostate tumors could be reinitiated by epigenetic regulators.  相似文献   

3.
4.
5.
Bone morphogenetic protein-6 (BMP-6) is closely correlated with tumor differentiation and skeletal metastasis. Our previous research found that BMP-6 gene expression can be activated dose-dependently by estrogen in estrogen receptor positive (ER+) breast cancer cell line MCF-7, but not in ER negative (ER) cell line MDA-MB-231. This experiment is designed to investigate the epigenetic regulatory mechanism of the BMP-6 gene expression in breast cancer cell lines MDA-MB-231, MCF-7 and T47D with regard to the methylation status in the 5′ flanking region of the human BMP-6 gene. The endogenous level of BMP-6 mRNA in ER cell line MDA-MB-231 was relatively lower than that in ER+ MCF-7 and T47D cell lines. After the treatment with 5-aza-2′-deoxycytidine (5-aza-dC, especially in the concentration of 10 μM), the BMP-6 mRNA expression in MDA-MB-231 was obviously up-regulated. However, 5-aza-dC treatment failed to regulate the expression of BMP-6 in MCF-7 and T47D cells. Using enzyme restriction PCR (MSRE-PCR), as well as bisulfite sequencing (BSG), methylation of human BMP-6 gene promoter was detected in MDA-MB-231; while in MCF-7 and T47D, BMP-6 gene promoter remained demethylated status. In 33 breast tumor specimens, promoter methylation of BMP-6 was detected by methylation-specific PCR, hypermethylation of BMP-6 was observed in ER negative cases (16 of 16 cases (100%)), while obviously lower methylation frequency were observed in ER positive cases (3 of 17 cases (18%)), indicating that BMP-6 promoter methylation status is correlated with ER status in breast cancer.  相似文献   

6.
To understand epigenetic regulation of neurotrophins in Neuro-2a mouse neuroblastoma cells, we investigated the alteration of CpG methylation of brain-derived neurotrophic factor (BDNF) promoter I and neurotrophin-3 (NT-3) promoter IB and that of histone modification in Neuro-2a cells. Bisulfite genomic sequencing showed that the CpG sites of BDNF promoter I were methylated in non-treated Neuro-2a cells and demethylated following 5-aza-2′-deoxycytidine (5-aza-dC) treatment. In contrast, methylation status of the NT-3 promoter IB did not change by 5-aza-dC treatment in Neuro-2a cells. Furthermore, we demonstrated that BDNF exon I-IX mRNA was induced by trichostatin A (TSA) treatment. However, NT-3 exon IB-II mRNA was not induced by TSA treatment. Chromatin immunoprecipitation assays showed that the levels of acetylated histones H3 and H4 on BDNF promoter I were increased by TSA. These results demonstrate that DNA methylation and/or histone modification regulate BDNF gene expression, but do not regulate NT-3 gene expression in Neuro-2a cells.  相似文献   

7.
To confirm the clinical significance of NF-κB and JNK protein expression from experimentally identified candidates for predicting prognosis for patients with 5-FU treatment, we evaluated the protein expression of surgically removed specimens. A total of 79 specimens were obtained from 30 gastric and 49 colorectal cancer patients who underwent R0 resection followed by postoperative 5-FU based adjuvant chemotherapy. Immunohistochemical examinations of NF-κB and JNK on tissue microarrays (TMAs) revealed that significantly shorter time-to-relapse (TTR) in both NF-κB(+) and JNK(−) subgroups in both gastric (NF-κB(+), p = 0.0002, HR11.7. 95%CI3 3.2–43.4; JNK(−), p = 0.0302, HR4.4, 95%CI 1.2–16.6) and colon (NF-κB(+), p = 0.0038, HR36.9, 95%CI 3.2–426.0; JNK(−), p = 0.0098, HR3.2, 95%CI 1.3–7.7) cancers. These protein expression patterns also show strong discriminately power in gastric cancer patients for overall survival rate, suggesting a potential utility as prognostic or chemosensitivity markers. Baseline expression of these proteins using gastric cancer cell lines demonstrated the reciprocal patterns between NF-κB and JNK, while 5-FU exposure of these cell lines only induced NF-κB, suggesting that NF-κB plays a dominant role in the response to 5-FU. Subsequent siRNA experiments confirmed that gene knockdown of NF-κB increased 5-FU-specific sensitivity, whereas that of JNK did not affect the chemosensitivity. These results suggest that the expression of these proteins may aid in the decisions involved with adjuvant chemotherapy for gastrointestinal tract cancers.  相似文献   

8.
9.
Previously, we reported that cloned embryos derived from an immortalized bovine mammary epithelial cell line (MECL) failed to develop beyond 12- to 16-cell stage. To analyze whether induction of a senescent-like phenotype in MECL can improve their ability to support the development after transfer into enucleated oocytes, we treated MECL with DNA methylation inhibitor 5-aza-2-deoxycytidine (Aza-C), histone deacetylase inhibitors trichostatin A (TSA), sodium butyrate (NaBu), or 5-bromodeoxyuridine and used those cells for nuclear transfer. Primary bovine fetal fibroblasts (BFF) were used as control. All agents were capable to induce features of senescence including reduced cell proliferation, enlarged cell size with a considerable proportion of cells stained positive for acidic senescence-associated beta-galactosidase and G1/S cell cycle boundary arrest in MECL. Aza-C treatment induced genome demethylation. Acetylation of H3 and H4 was increased after TSA treatment in both MECL and BFF, whereas no obvious changes in global H3 or H4 acetylation were detected after NaBu treatment. Nuclear transfer experiments following diverse treatments demonstrated that the induced senescent-like phenotype of MECL did not confer their ability to support embryonic development, although 7.3% of reconstructed embryos derived from NaBu-treated cells developed to morula stage. Intriguingly, a much higher proportion of cloned embryos developed to blastocysts when using NaBu-treated BFF, compared with using untreated BFF (59% versus 26%). Our results suggest that the developmental failure of donor nuclei from bovine immortal cells could not be reversed by induction of senescent-like phenotype. The beneficial effect of NaBu on the developmental potential of cloned embryos reconstructed from BFF merits further studies.  相似文献   

10.
11.
12.
13.
Cytomegalovirus (CMV) immediate early promoter is a powerful promoter frequently used for driving the expression of transgenes in mammalian cells. However, this promoter gradually becomes silenced in stably transfected cells. We employed Chinese Hamster Ovary (CHO) and human pancreatic cancer (Panc 1) cells stably tansfected with three glycogenes driven by a CMV promoter to study the activation of silenced glycogenes. We found that butyrate, tricostatin A (TSA), and 5-aza-2-deoxycytidine (5-Aza-dC) can activate these CMV-driven glycogenes. The increase in mRNA and protein of a glycogene occurred 8–10 h after butyrate treatment, suggesting an indirect effect of butyrate in the activation of the transgene. The enhanced expression of the trangenes by butyrate and TSA, known inhibitors of histone deacetylase, was independent of the transgene or cell type. However, the transgene can be activated by these two agents in only a fraction of the cells derived from a single clone, suggesting that inactivation of histone deacetylase can only partially explain silencing of the transgenes. Combination treatment of one or both agents with 5-Aza-dC, a known inhibitor of DNA methylase, resulted in a synergistic activation of the transgene, suggesting a cross-talk between histone acetylation and DNA demethylation. Understanding the mechanisms of the inactivation and reactivation of CMV promoter-controlled transgenes should help develop an effective strategy to fully activate the CMV promoter-controlled therapeutic genes silenced by the host cells. Published in 2005.  相似文献   

14.
15.
16.
Abnormal patterns of DNA methylation are observed in several types of human cancer. While localized DNA methylation of CpG islands has been associated with gene silencing, the effect that genome-wide loss of methylation has on tumorigenesis is not completely known. To examine its effect on tumorigenesis, we induced DNA demethylation in a rat model of human chondrosarcoma using 5-aza-2-deoxycytidine. Rat specific pyrosequencing assays were utilized to assess the methylation levels in both LINEs and satellite DNA sequences following 5-aza-2-deoxycytidine treatment. Loss of DNA methylation was accompanied by an increase in invasiveness of the rat chondrosarcoma cells, in vitro, as well as by an increase in tumor growth in vivo. Subsequent microarray analysis provided insight into the gene expression changes that result from 5-aza-2-deoxycytidine induced DNA demethylation. In particular, two genes that may function in tumorigenesis, sox-2 and midkine, were expressed at low levels in control cells but upon 5-aza-2-deoxycytidine treatment these genes became overexpressed. Promoter region DNA analysis revealed that these genes were methylated in control cells but became demethylated following 5-aza-2-deoxycytidine treatment. Following withdrawal of 5-aza-2-deoxycytidine, the rat chondrosarcoma cells reestablished global DNA methylation levels that were comparable to that of control cells. Concurrently, invasiveness of the rat chondrosarcoma cells, in vitro, decreased to a level indistinguishable to that of control cells. Taken together these experiments demonstrate that global DNA hypomethylation induced by 5-aza-2-deoxycytidine may promote specific aspects of tumorigenesis in rat chondrosarcoma cells.  相似文献   

17.
The egg-laying abnormal-9 (EGLN) prolyl hydroxylases have been shown to regulate the stability and thereby the activity of the α subunits of hypoxia-inducible factor (HIF) through its ability to catalyze their hydroxylation. We have previously shown that EGLN3 promotes differentiation of C2C12 skeletal myoblasts. However, the mechanism underlying this effect remains to be fully elucidated. Here, we report that exposure of C2C12 cells to dimethyl oxalylglycine (DMOG), desferrioxamine, and hypoxia, all inhibitors of prolyl hydroxylase activity, led to repression of C2C12 myogenic differentiation. Inactivation of HIF by expression of a HIF dominant-negative mutant or deletion of HIF-1α by RNA interference did not affect the inhibitory effect of DMOG, suggesting that the effect of DMOG is HIF-independent. Pharmacologic inactivation of EGLN3 hydroxylase resulted in activation of the canonical NF-κB pathway. The inhibitory effect of DMOG on myogenic differentiation was markedly impaired in C2C12 cells expressing a dominant-negative mutant of IκBα. Exogenous expression of wild-type EGLN3, but not its catalytically inactive mutant, significantly inhibited NF-κB activation induced by overexpressed TRAF2 or IκB kinase 2. In contrast, deletion of EGLN3 by small interfering RNAs led to activation of NF-κB. These data suggest that EGLN3 is a negative regulator of NF-κB, and its prolyl hydroxylase activity is required for this effect. Furthermore, wild-type EGLN3, but not its catalytically inactive mutant, potentiated myogenic differentiation. This study demonstrates a novel role for EGLN3 in the regulation of NF-κB and suggests that it is involved in mediating myogenic differentiation, which is HIF-independent.  相似文献   

18.
Mechanisms underlying histone deacetylase inhibitor (HDACI)-mediated NF-κB activation were investigated in human leukemia cells. Exposure of U937 and other leukemia cells to LBH-589 induced reactive oxygen species (ROS) followed by single strand (XRCC1) and double strand (γ-H2AX) DNA breaks. Notably, LBH-589 lethality was markedly attenuated by small interfering RNA (siRNA) knockdown of the DNA damage-linked histone, H1.2. LBH-589 triggered p65/RelA activation, NF-κB-dependent induction of Mn-SOD2, and ROS elimination. Interference with LBH-589-mediated NF-κB activation (e.g. in IκBα super-repressor transfected cells) diminished HDACI-mediated Mn-SOD2 induction and increased ROS accumulation, DNA damage, and apoptosis. The Mn-SOD2 mimetic TBAP (manganese(III)-tetrakis 4-benzoic acid porphyrin) prevented HDACI-induced ROS and NF-κB activation while dramatically attenuating DNA damage and cell death. In contrast, TRAF2 siRNA knockdown, targeting receptor-mediated NF-κB activation, blocked TNFα- but not HDACI-mediated NF-κB activation and lethality. Consistent with ROS-mediated DNA damage, LBH-589 exposure activated ATM (on serine 1981) and increased its association with NEMO. Significantly, siRNA NEMO or ATM knockdown blocked HDACI-mediated NF-κB activation, resulting in diminished MnSOD2 induction and enhanced oxidative DNA damage and cell death. In accord with the recently described DNA damage/ATM/NEMO pathway, SUMOylation site mutant NEMO (K277A or K309A) cells exposed to LBH-589 displayed diminished ATM/NEMO association, NEMO and p65/RelA nuclear localization/activation, and MnSOD2 up-regulation. These events were accompanied by increased ROS production, γ-H2AX formation, and cell death. Together, these findings indicate that in human leukemia cells, HDACIs activate the cytoprotective NF-κB pathway through an ATM/NEMO/SUMOylation-dependent process involving the induction of ROS and DNA damage and suggest that blocking NF-κB activation via the atypical ATM/NEMO nuclear pathway can enhance HDACI antileukemic activity.  相似文献   

19.
We explored if epigenetic mechanisms could be involved in the down-regulated expression of catalase gene (CAT) in the doxorubicin-resistant acute myelogenous leukemia (AML)-2/DX100 cells. Down-regulated CAT expression in AML-2/DX100 cells was completely recovered after treatment of hydrogen peroxide (H2O2) and histone deacetylase inhibitor, trichostatin A (TSA) but was increased slightly by the treatment of DNA methylation inhibitor, 5-aza-2′-deoxycytidine (5-AdC). Bisulfite-sequencing PCR revealed that a CpG island of CAT was not methylated in AML-2/DX100 cells. Chromatin immunoprecipitation assay confirmed that acetylation of histone H4 in AML-2/DX100 cells significantly decreased as compared with that in AML-2/WT cells, which was significantly increased by TSA more than 5-AdC. Meanwhile, overexpression of other up-regulated peroxidase genes appears to make compensation for decreased H2O2-scavenging activity for the down-regulated CAT expression in AML-2/DX100 cells. These results suggest that histone H4 deacetylation is responsible for the down-regulated CAT expression in AML-2/DX100 cells, which are well adapted to oxidative stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号