首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
S.C. Huber  G.E. Edwards   《BBA》1976,449(3):420-433
1. Cyclic photophosphorylation driven by white light, as followed by 14CO2 fixation by mesophyll chloroplast preparations of the C4 plant Digitaria sanguinalis, was specifically inhibited by disalicylidenepropanediamine (DSPD), antimycin A, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIb), 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide (EDAC), and KCN suggesting that ferredoxin, cytochrome b563, plastoquinone, cytochrome f, and plastocyanin are obligatory intermediates of cyclic electron flow. It was found that 0.2 μM DCMU and 40 μM o-phenanthroline blocked noncyclic electron flow, stimulated cyclic photophosphorylation, and caused a partial reversal (40–100%) of the inhibition by DBMIB and antimycin A, but not DSPD.

2. Cyclic photophosphorylation could also be activated using only far-red illumination. Under this condition, however, cyclic photophosphorylation was much less sensitive to the inhibitors DBMIB, EDAC and antimycin A, but remained completely sensitive to DSPD and KCN. Inhibition in far-red light was not increased by preincubating the chloroplasts with the various inhibitors for several minutes in white light.

3. The striking correspondence between the effects of photosystem II inhibitors, DCMU and o-phenanthroline, on cyclic photophosphorylation under white light and cyclic photophosphorylation under far-red light (in the absence of photosystem II inhibitors) suggests that electrons flowing from photosystem II may regulate the pathway of cyclic electron flow.  相似文献   


2.
The role of light reactions in anthocyanin synthesis was studied in both attached and detached corollas of Petunia hybrida (cv. Hit Parade Rosa), the latter grown in vitro in media containing 150 m M sucrose and 50 μ M gibberellic acid (GA). Light was essential for the synthesis of anthocyanin in detached corollas, whereas in intact corollas its effect was only to enhance anthocyanin synthesis. Continuous white light at a fluence rate of at least 20 μmol m−2 s−1 was needed for anthocyanin synthesis in detached corollas. Blue light was more effective than red or green, and far-red was ineffective. Pigmentation of detached corollas exposed to light was inhibited by the photosynthetic inhibitor 3-(4-dichlorophenyl)-1,1-dimethylurea (DCMU). The chloroplast uncoupler NH4Cl did not affect anthocyanin synthesis, which was, however, inhibited by the blocking of ATP synthesis in both the chloroplast and the mitochondria by dicyclohexylcarbodiimide (DCCD). Sucrose uptake in vitro was inhibited by DCMU and by darkness, and was promoted equally by blue and red light. The activity of phenylalanine ammonialyase (EC 4.3.1.5) was inhibited in detached corollas grown in the dark or in the light in the presence of DCMU. The activity of chalcone isomerase (EC 5.5.1.6) was not affected by light. These findings suggest that at least two different light reactions are involved in the regulation of anthocyanin synthesis in petunia corollas, namely the high irradiance reaction (HIR) and photosynthesis.  相似文献   

3.
G.H. Krause 《BBA》1973,292(3):715-728
Certain long-term fluorescence phenomena observed in intact leaves of higher plants and in isolated chloroplasts show a reverse relationship to light-induced absorbance changes at 535 nm (“chloroplast shrinkage”).

1. 1. In isolated chloroplasts with intact envelopes strong fluorescence quenching upon prolonged illumination with red light is accompanied by an absorbance increase. Both effects are reversed by uncoupling with cyclohexylammonium chloride.

2. 2. The fluorescence quenching is reversed in the dark with kinetics very similar to those of the dark decay of chloroplast shrinkage.

3. 3. In intact leaves under strong illumination with red light in CO2-free air a low level of variable fluorescence and a strong shrinkage response are observed. Carbon dioxide was found to increase fluorescence and to inhibit shrinkage.

4. 4. Under nitrogen, CO2 caused fluorescence quenching and shrinkage increase at low concentrations. At higher CO2 levels fluorescence was increased and shrinkage decreased.

5. 5. In the presence of CO2, the steady-state yield of fluorescence was lower under nitrogen than under air, whereas chloroplast shrinkage was stimulated in nitrogen and suppressed in air.

6. 6. These results demonstrate that the fluorescence yield does not only depend on the redox state of the quencher Q, but to a large degree also on the high-energy state of the thylakoid system associated with photophosphorylation.

Abbreviations: DCMU, 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea  相似文献   


4.
1. Oat chloroplasts, in the presence of 0.02 M methylamine, reduce 2,6 dichlorophenolindophenol (DCIP) at a rate of 350–500 μmoles/mg chl per h, in saturating light. Brief sonication for approx. 1 min lowers the rate to approx. 50 μmoles/mg chl per h; longer sonication does not reduce activity further. During brief sonication, plastocyanin is lost from the chloroplasts. When plastocyanin is added back to sonicated fragments, DCIP reduction is approximately doubled to 100 μmoles/mg chl per h.

2. When oxidized plastocyanin is added, a transient is observed when light is first turned on: this is due to a reduction of the plastocyanin before DCIP reduction begins. When reduced plastocyanin is added, a different transient occurs: this is due to a fast photoreduction of DCIP by the plastocyanin and is followed by the slower steady state reduction of DCIP by water. When light is turned off before complete reduction of DCIP, a transient reduction of oxidized plastocyanin by reduced DCIP is seen. Insensitivity of these transients to 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and the greater effectiveness of 710 nm light, along with the known capacity of plastocyanin to mediate electron transfer to System I, prove that an intrinsically fast reduction of DCIP occurs at a site close to the primary photoreduced product of System I.

3. After brief sonication and washing, no residual plastocyanin was detected in chloroplast fragments, and the rate of the slow DCIP reduction (about 50μmoles/mg chl per h) sustained by such fragments was essentially identical to that maintained by fragments of mutants lacking System I activity. Following et al.9, the simplest explanation for this slow DCIP reduction is that is occurs at a site close to System II and the system I is not involved.

4. A very slow transient reduction of DCIP occurs after extinguishing light; this presumably involves another reduction site close to System II, as suggested by 9.  相似文献   


5.
6.
Dark-grown, DCMU-adapted Euglena gracilis Z (ZR) are able to undergo light-induced chloroplast development in the presence or absence of DCMU. The differentiated chloroplasts are photosynthetically active and are resistant not only to DCMU, but also to an analog, o-phenanthrolene. When DCMU overdoses are added to ZR cells or to chloroplasts isolated from these cells, photosynthesis is partially inhibited. A brief period of darkness removes this inhibition. This recovery phenomenon is related to DCMU resistance, since it is not exhibited by non-resistant control cells. The chloroplast protein synthesis apparatus is not involved in DCMU resistance. Rather, this phenomenon is apparently related to new characteristics of thylakoids. It is shown that photosynthetic recovery by ZR cells depends on the accessibility and fluid properties of membranes. The analysis of fluorescence induction kinetics shows that changes in the environmental conformation of photosystem II units occur during recovery.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - ZR DCMU-adapted Euglena gracilis Z I and II=Calvayrac et al., in press (a, b)  相似文献   

7.
D.L. Vandermeulen  Govindjee 《BBA》1976,449(3):340-356
1. A reversible light-induced enhancement of the fluorescence of a “hydrophobic fluorophore”, 12-(9-anthroyl)-stearic acid (anthroyl stearate), is observed with chloroplasts supporting phenazine methosulfate, cyclic or 1,1′-ethylene-2,2′-dipyridylium dibromide (Diquat) pseudo-cyclic electron flow; no fluorescence change is observed when methyl viologen or ferricyanide are used as electron acceptors. The stearic acid moiety of anthroyl stearate is important for its localization and fluorescence response in the thylakoid membrane, since structural analogs of anthroyl stearate lacking this group do not show the same response.

2. This effect is decreased under phosphorylating conditions (presence of ADP, Pi, Mg2+), and completely inhibited by the uncoupler of phosphorylation NH4Cl (5–10 mM), as well as the ionophores nigericin and gramicidin-D (both at 5 · 10−8 M). The MgCl2 concentration dependence of the anthroyl stearate enhancement effect is identical to that previously observed for cyclic photophosphorylation, as well as for the formation of a “high energy intermediate”. The anthroyl stearate fluorescence enhancement is inhibited by increasing concentrations of ionophores in parallel with the decrease in ATP synthesis, but is essentially unaffected by specific inhibitors (Dio-9 and phlorizin) of photophosphorylation; thus, it appears that anthroyl stearate monitors a component of the “high energy state” of the thylakoid membrane rather than a terminal phosphorylation step.

3. The light-induced anthroyl stearate fluorescence enhancement is suggested to monitor a proton gradient in the energized chloroplast because (a) similar enhancement can be produced by sudden injection of hydrogen ions in a solution of anthroyl stearate; (b) when the proton gradient is dissipated by gramicidin or nigericin light-induced anthroyl stearate fluorescence is eliminated; (c) when the proton gradient is dissipated by tetraphenylboron, light-induced anthroyl stearate fluorescence decreases, and (d) light-induced anthroyl stearate fluorescence change as a function of pH is qualitatively similar to that observed with other probes for a proton gradient (e.g. 9-aminoacridine). Furthermore, anthroyl stearate does not monitor H+ uptake per se because (a) the pH dependence of H+ transport is different from that of the anthroyl stearate fluorescence change, and (b) tetraphenylboron, which does not inhibit H+ uptake, reduces anthroyl stearate fluorescence.

Thus, anthroyl stearate appears to be a useful probe of a proton gradient supported by phenazine methosulfate or Diquat catalyzed electron flow and is the first “non-amine” fluorescence probe utilized for this purpose in chloroplasts.  相似文献   


8.
The soluble β-glucan contents in the cell wall of yeasts were estimated by treating cells with Glucanex® 200G that contained mainly β1,3-glucanase and some β1,6-glucanase. The sensitivity of cell walls of 11 yeasts to various concentrations of β-glucanase was compared. The yeasts that are resistant to β-glucanase treatment are expected to contain higher β-glucan content and those that are sensitive to the β-glucanase treatment are expected to contain lower β-glucan content. Two yeast strains were selected for further study by comparing the sensitivity of cell wall to β-glucanase; Candida bombicola and Candida albicans. Candida bombicola was more resistant and C. albicans was more sensitive to the Glucanex® 200G treatment. The results of enzyme sensitivity tests were verified by quantification of soluble β-glucan content purified from the yeasts. Much larger amount of soluble β-glucan was obtained from the cell walls of C. bombicola (0.08 g g−1 dried cell) than C. albicans (0.025 g g−1 dried cell).  相似文献   

9.
A (1 → 3)-β-glucan 3-glucanohydrolase (EC 3.2.1.39) has been purified approx. 190-fold from extracts of germinating barley. The enzyme has an apparent Mr 32 000, a pI of 8.6, and a pH optimum of 5.6. Analysis of hydrolysis products released from the (1 → 3)-β-glucan, laminarin, shows that the enzyme is an endohydrolase. Sequence analysis of the 46 NH2-terminal amino acids of the (1 → 3)-β-glucanase reveals 54% positional identity with barley (1 → 3,1 → 4)-β-glucanases (EC 3.2.1.73) and suggests a common evolutionary origin for these two classes of β-glucan endohydrolases. The barley (1 → 3)-β-glucanase also exhibits significant similarity with a (1 → 3)-β-glucanase from tobacco.  相似文献   

10.
Schiff JA  Zeldin MH  Rubman J 《Plant physiology》1967,42(12):1716-1725
The possibility that photosynthetic competence is gratuitous for light-induced chloroplast development in Euglena gracilis var. bacillaris was examined by incubating dark-grown resting cells in the light with DCMU, an inhibitor of photosynthesis. Under these conditions photosynthetic carbon dioxide fixation was inhibited essentially completely at all times during chloroplast development, but about 70% of the chlorophyll was formed with essentially the same pattern of accumulation found for cells incubated in the absence of the inhibitor. Electron microscopy of cells incubated with DCMU in the light revealed the formation of morphologically recognizable chloroplasts having comparable overall dimensions and structural elements to those found in normally developed chloroplasts, but frequently lacking a readily detectable pyrenoid with paramylum sheaths, and often containing increased numbers of discs per lamella. Such abnormalities are considered minor since upon removal of DCMU by centrifugation, the cells usually regained almost full photosynthetic competence on a chlorophyll basis.

It is concluded that photosynthetic competence is not necessary for chloroplast development in Euglena and supports the hypothesis, already suggested from other evidence, that light induction results in activation of synthetic machinery external to the developing chloroplast.

  相似文献   

11.
Plants evoke innate immunity against microbial challenges upon recognition of pathogen-associated molecular patterns (PAMPs), such as fungal cell wall chitin. Nevertheless, pathogens may circumvent the host PAMP-triggered immunity. We previously reported that the ascomycete Magnaporthe oryzae, a famine-causing rice pathogen, masks cell wall surfaces with α-1,3-glucan during invasion. Here, we show that the surface α-1,3-glucan is indispensable for the successful infection of the fungus by interfering with the plant''s defense mechanisms. The α-1,3-glucan synthase gene MgAGS1 was not essential for infectious structure development but was required for infection in M. oryzae. Lack or degradation of surface α-1,3-glucan increased fungal susceptibility towards chitinase, suggesting the protective role of α-1,3-glucan against plants'' antifungal enzymes during infection. Furthermore, rice plants secreting bacterial α-1,3-glucanase (AGL-rice) showed strong resistance not only to M. oryzae but also to the phylogenetically distant ascomycete Cochlioborus miyabeanus and the polyphagous basidiomycete Rhizoctonia solani; the histocytochemical analysis of the latter two revealed that α-1,3-glucan also concealed cell wall chitin in an infection-specific manner. Treatment with α-1,3-glucanase in vitro caused fragmentation of infectious hyphae in R. solani but not in M. oryzae or C. miyabeanus, indicating that α-1,3-glucan is also involved in maintaining infectious structures in some fungi. Importantly, rapid defense responses were evoked (a few hours after inoculation) in the AGL-rice inoculated with M. oryzae, C. miyabeanus and R. solani as well as in non-transgenic rice inoculated with the ags1 mutant. Taken together, our results suggest that α-1,3-glucan protected the fungal cell wall from degradative enzymes secreted by plants even from the pre-penetration stage and interfered with the release of PAMPs to delay innate immune defense responses. Because α-1,3-glucan is nondegradable in plants, it is reasonable that many fungal plant pathogens utilize α-1,3-glucan in the innate immune evasion mechanism and some in maintaining the structures.  相似文献   

12.

1. 1. A simple kinetic analysis of light-induced proton uptake into chloroplasts is presented. It is derived from a model of the reaction in which the incoming proton is obligatorily bound by an intra-chloroplast component, and allows quantitative analysis of the effect into parameters of light and dark rate constants and the availability of the chloroplast component.

2. 2. The effect of the following agents on the derived parameters has been measured: electron and energy transfer inhibitors, uncouplers, NaCl concentration, light intensity and pH.

3. 3. A maximal ratio of 4 protons taken up per electron transported has been observed, using ferricyanide as an electron acceptor.

4. 4. A stimulation of light-induced proton uptake by phosphate or arsenate, ADP and Mg has been observed. It was not sensitive to concentrations of Dio-9, which eliminated ATP synthesis.

5. 5. The results are seen as inconsistent with the chemiosmotic theory of energy coupling as presently presented. It is suggested that they may be interpreted in terms of a model in which the function of the proton pump is to enable co-transport into the chloroplasts of the negatively charged complex of phosphate, ADP and Mg.

Abbreviations: BDHB, n-butyl-3,5-diiodo-4-hydroxybenzoate; DCMU, (3,4-dichlorophenyl)-1,1-dimethylurea; diquat, 1,1′-ethylene-2,2′-dipyridylium dibromide; FCCP, carbonyl cyanide p-trifluoro-methoxy-phenylhydrazone; HQNO, 2-n-heptyl-4-hydroxyquinoline-N-oxide; PMS, phenazine methosulfate  相似文献   


13.

1. 1. The kinetics of light-induced absorbance changes due to oxidation and reduction of cytochromes were measured in a suspension of intact cells of the unicellular red alga Porphyridium aerugineum. Absorbance changes in the region 540–570 nm upon alternating far-red light and darkness indicated the oxidation of cytochrome ƒ and reduction of cytochrome b563 upon illumination. The relative efficiencies of far-red and orange light indicated that both reactions were driven by Photosystem I.

2. 2. Experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), with anaerobic cells and in alternating far-red and orange light indicated that cytochrome b563 reacts in a cyclic chain around Photosystem I, and that the reduced cytochrome does not react with oxygen or with another oxidized product of Photosystem II. The quantum requirement for the photoreduction was about 6 quanta/equiv at 700 nm. A low concentration of N-methylphenazonium methosulphate (PMS) enhanced the rate of reoxidation of cytochrome b563 in the dark. In the presence of higher concentrations of PMS a photooxidation, driven by Photosystem I, instead of reduction was observed. These observations suggest that PMS enhances the rate of reactions between reduced cytochrome b563 and oxidized products of Photosystem I.

3. 3. In the presence of carbonylcyanide m-chlorophenylhydrazone (CCCP) a light-induced decrease of absorption at 560 nm occurred. Spectral evidence suggested the photooxidation of cytochrome b559 under these conditions. Inhibition by DCMU and a relatively efficient action of orange light suggested that this photooxidation is driven by Photosystem II.

Abbreviations: DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone; DCMU, 3-(3,4-dichlorophenyl)-1,1-dimethylurea; CCCP, carbonylcyanide m-chlorophenylhydrazone; FCCP, carbonylcyanide p-trifluoromethoxyphenylhydrazone; P700, chlorophyllous pigment absorbing at 700 nm, primary electron donor of Photosystem I; PMS, N-methylphenazonium methosulphate  相似文献   


14.
1. Spinach chloroplasts subjected to sonication show light-induced absorption changes at 700 mμ characteristic of the photooxidation of the chlorophyll component P700. The appearance of P700 absorption changes probably resulted from the release of plastocyanin thus interrupting the electron flow between pigment systems 1 and 2. The general features of the absorption-change transients are similar to those observed previously with digitonin-treated chloroplasts. The addition of 2 mM ascorbate or 10 μM 3-(3,4-dichlorophenyl)-1, 1-dimethylurea had practically no effect on either the magnitude or the dark decay of the transient absorption change.

2. Phenazine methosulfate (PMS) (in the presence or in the absence of ascorbate) reduction appeared to be coupled to P700 photooxidation, as shown by the corresponding transients at 430 and 388 mμ. The absorbance changes at these two wavelengths indicate that the amount of PMS photoreduced was equivalent to that of P700 photooxidized. Higher PMS concentrations accelerate the dark decay of the P700 signal. When PMS alone is present, anaerobiosis caused the dark decay to become more rapid than in the presence of ascorbate.

3. Unlike PMS, other redox agents such as 2,6-dichlorophenolindophenol, N,N,N′,N′-tetramethyl-p-phenylenediamine or diaminodurol in the presence of excess ascorbate, did not noticeably affect the kinetics of the dark decay at 430 or 703 mμ, suggesting that these reduced species are not efficiently coupled to photooxidized P700.

4. The onset and decay rates of the P700 transient in the presence of PMS and excess ascorbate was insensitive to temperature between 25° and o°. However, when the chloroplast sample was frozen at temperatures ranging from −5° to −196°, all reactions ceased. When the frozen (−196°) sample was brought back to the room temperature, the reaction was restored completely. Fresh broken chloroplasts behave similarly. Digitonin-treated chloroplasts persisted down to about −25° but with diminishing magnitude and slower decay.  相似文献   


15.
Norio Murata 《BBA》1971,226(2):422-432
The effects of monovalent cations on the light energy distribution between two pigment systems of photosynthesis were studied in isolated spinach chloroplasts by measuring chlorophyll a fluorescence and photochemical reactions.

The addition of NaCl to the chloroplast suspension produced a 40–80% increase in fluorescence yield measured at 684 nm at room temperature. The fluorescence increase was completed about 5 min after the addition. The effect saturated at 100 mM NaCl. Low-temperature fluorescence spectra showed that NaCl increased the yields of two fluorescence bands of pigment system II at 684 and 695 nm but decreased that of pigment system I at 735 nm. Similar effects on chlorophyll a fluorescence at room and at low temperatures were obtained with NaBr, NaNO3, Na2SO4, LiCl, KCl, RbCl, CsCl, NH4Cl and CH3NH3Cl.

NaCl suppressed the quantum efficiency of NADP+ reduction supported by the ascorbate-2,6-dichlorophenolindophenol (DCIP) couple as an electron donor system in the presence of 3-(3′,4′-chlorophenyl)-1,1-dimethylurea (DCMU). On the other hand, NaCl only slightly enhanced the quantum yield of photoreaction II measured by the Hill reaction with DCIP.

It is concluded that the monovalent cations tested suppressed the excitation transfer from pigment system II to pigment system I; the effects were the same as those of alkaline earth metals and Mn2+ (refs. 1, 2).  相似文献   


16.
A dependence of the plasmalemma redox activity, determined by the reduction of external electron acceptors (ferricyanide, nitro-blue tetrazolium), on the energy state of the cell, which was modified by light conditions or introduction of glucose into the media, was shown on leaves of Elodea canadensis Rich. Glucose (10 m M ) and light (40 W m-2) caused hyperpolarization of the membrane potential and stimulated the redox activity of the plasmalemma. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea (DCMU) completely inhibited the light activation of electrogenic and redox functions of the plasmalemma. The light saturation intensity for membrane potential and ferricyanide reductase activity was 10–30% of the light saturation of photosynthesis. Membrane potential, K+ transport and plasmalemma redox activity changed in parallel in response to light and darkness and when DCMU was added. Ferricyanide reductase activity is suggested to be a simple parameter for characterizing the energy state of the cell. The functional significance of the light-induced hyperpolarization of the membrane potential is discussed.  相似文献   

17.
David B. Knaff  Daniel I. Arnon 《BBA》1971,226(2):400-408
Light-induced absorbance changes of cytochrome b559 and C550 in chloroplasts indicate that noncyclic electron transport from water to ferredoxin (Fd)-NADP+ is carried out solely by System II and includes not one but two photoreactions (IIa and IIb) that proceed effectively only in short-wavelength light. (C550 is a new chloroplast component identified by spectral evidence and distinct from cytochromes.) The evidence suggests that the two short-wavelength light reactions operate in series, being joined by a System II chain of electron carriers that includes (but is not limited to) C550, cytochrome b559, and plastocyanin (PC).

H2O → IIbhv → C550 → cyt. b559 → PC → IIahv → Fd → NADP+

Photoreaction IIb involves an electron transfer from water to C550 that does not require plastocyanin and is the first known System II photoreaction resistant to inhibition by 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and o-phenanthroline. Cytochrome b559 is reduced by C550 in a reaction that is readily inhibited by DCMU or o-phenanthroline. Thus, the site of DCMU (and o-phenanthroline) inhibition of System II appears to lie between C550 and cytochrome b559. Photoreaction IIa involves an electron transfer from cytochrome b559 and plastocyanin to ferredoxin-NADP+.  相似文献   


18.
Oat β-glucan, present in oat bran in greater concentrations than in the whole oat groat, is mainly composed of β-(1 → 3)-linked cellotriosyl and cellotetraosyl units, present at 52 and 34% by weight of the molecule, respectively. The remaining structure consits of β-(1 → 3)-linked blocks composed of four or more consecutive β-(1 → 4)-linked -glucopyranosyl units. Size-exclusion chromatography indicated a molecular weight for oat β-glucan of 2–3 × 106. This was significantly reduced during digestion in the small intestine of rats and chicks. In healthy human volunteers, oat β-glucan reduced the postprandial glucose response to an oral glucose load similarly to guar gum. The effectiveness of oat β-glucan was proportional to the logarithm of the viscosity of the solution fed.  相似文献   

19.
The effects of β-glucan (BG) prepared from spent brewer’s yeast on gelatinization and retrogradation of rice starch (RS) were investigated as functions of mixing ratio and of storage time. Results of rapid visco-analysis (RVA) indicated that addition of BG increased the peak, breakdown, setback, and final viscosities, but decreased the pasting temperatures of the rice starch/β-glucan (RS/BG) mixtures. Differential scanning calorimetry (DSC) data demonstrated an increase in onset (To), peak (Tp), and conclusion (Tc) temperatures and a decrease in gelatinization enthalpy (ΔH1) with increasing BG concentration. Storage of the mixed gels at 4 °C resulted in a decrease in To, Tp, Tc, and melting enthalpy (ΔH2). The retrogradation ratio (ΔH2H1) and the phase transition temperature range (Tc − To) of the mixed gels increased with storage time, but this effect was reduced by the addition of BG. BG addition also slowed the syneresis of the mixed gels. Results of dynamic viscoelasticity measurement indicated that the addition of BG promoted RS retrogradation at the beginning and then retarded it during longer storage times. The added BG also retarded the development of gel hardness during refrigerated storage of the RS/BG mixed gels.  相似文献   

20.
Two-dimensional gel electrophoresis resolves total cellular protein from Euglena gracilis klebs var bacillaris Cori into 640 polypeptides, 79 of which are induced by light exposure. The inhibition of chloroplast translation by streptomycin, the direct inhibition of photosynthesis as well as the indirect inhibition of chlorophyll synthesis by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and the specific inhibition of photosynthesis but not chlorophyll synthesis by DCMU in the presence of 17 millimolar ethanol failed to inhibit the accumulation of 40 polypeptides. These polypeptides appear to be synthesized on cytoplasmic ribosomes and their accumulation is independent of the developmental status of the chloroplast. Streptomycin but not DCMU completely inhibited the accumulation of six polypeptides which are undetectable in mutants lacking chloroplast DNA suggesting that these polypeptides are translated on chloroplast ribosomes. The accumulation of seven polypeptides which are detectable in mutants lacking chloroplast DNA was also inhibited by streptomycin but not by DCMU suggesting that the accumulation of these polypeptides is dependent upon stabilization by a chloroplast translation product. The accumulation of 12 polypeptides was inhibited by streptomycin and by DCMU under conditions in which chlorophyll synthesis was inhibited, but not under conditions in which chlorophyll synthesis was unaffected by DCMU. The inhibition by DCMU of the accumulation of these polypeptides appears to be due to the inhibition of chlorophyll synthesis suggesting that they are components of pigment protein complexes. The accumulation of six polypeptides was inhibited under all conditions in which photosynthesis was inhibited suggesting that the accumulation of these polypeptides is dependent upon a product of photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号