首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (1), 1-O-octadecyl-2-acetyl-sn-glycero-3-phosphocholine (2) 1-O-hexadecyl-sn-glycero-3-phosphocholine (3), 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine (4) and its enantiomer 3-O-octadecyl-2-O-methyl-sn-glycero-1-phosphocholine (5) on the secretion of amylase from guinea pig isolated parotid gland and exocrine pancreatic lobules was examined. Compounds 1, 2 and 4 led to a significant stimulation of amylase release in both systems, effects being already visible between 10-100 pM. Maximal stimulation with compounds 1 and 2 occurred at 5 nM, with compound 4 at 1 nM. Higher concentrations were less effective and at 0.1 microM stimulation was very low. In contrast, compound 5 showed a continuous increase in activity up to 0.01-0.1 microM without a decrease at at higher concentrations. Compound 3 had no effect. For compound 1, its effects on calcium and lipid metabolism have been analyzed and compared with those of the acetylcholine analogue carbamoylcholine. Compound 1 mimicked in every respect the effects of carbamoylcholine. It stimulated the uptake of 45Ca by isolated parotid gland lobules in a non-ionophoretic way. In isolated pancreatic lobules it enhanced the incorporation of [32P]phosphate into phosphatidic acid, phosphatidylinositol and poly(phosphoinositide), increased the formation of diacylglycerols and triacylglycerol, led to the same two-phasic responses of myo-[3H]inositol-labeled polyphosphoinositides, and initiated a rapid short-lasting formation of free inositol triphosphate. Accordingly, 'platelet activating factor(s)' can affect the function of exocrine glands at low concentrations. The effects observed resemble those produced by acetylcholine and result most likely from the interaction of platelet-activating factor with plasma membrane receptors.  相似文献   

2.
The early effects (0-120 s) of the beta-adrenergic secretagogue isoproterenol (2.10(-5) M) and the muscarinic secretagogue carbamoylcholine (2.10(-6) M) on various parameters of lipid and phospholipid metabolism were studied in isolated guinea pig parotid acinar cells. Both agonists enhanced within 10-20 s the incorporation of radioactive palmitate into the diacylglycerol, the triglyceride, and the phosphatidylinositol fractions but significantly diminished radioactive palmitate recovered in the acyl-CoA fraction. Carbamoylcholine decreased and isoproterenol increased the recovery of radioactive palmitate in the free fatty acid fraction. All changes had returned almost to control levels after 120 s. In cells prelabeled with [3H]arachidonate, carbamoylcholine exerted similar effects, whereas isoproterenol was almost ineffective. Both agonists stimulated the incorporation of radioactive glycerol into diacylglycerols 2-3-fold, while only carbamoylcholine stimulated the incorporation of [32P]phosphate into phosphatidylinositol and phosphatidate. Both agonists induced an increase in total diacylglycerols, carbamoylcholine being about twice as effective as isoproterenol. A lower concentration of carbamoylcholine (6.5.10(-7) M) had the same quantitative effect as 2.10(-5) M isoproterenol on the increase of total diacylglycerols. Even under these conditions carbamoylcholine, but not isoproterenol led to a significant translocation of protein kinase C from the soluble to the particulate fraction. Isoproterenol remained ineffective in this respect also when intracellular free calcium was increased with a calcium ionophore. This is explained by the finding that isoproterenol stimulates preferentially the formation of 2,3-sn-diacylglycerol, and carbamoylcholine preferentially stimulates the formation of 1,2-sn-diacylglycerol. The results indicate that in the guinea pig parotid acinar cell the two agonists do not only lead to activation of a triglyceride lipase (isoproterenol) or phosphoinositide-specific phospholipase(s) (carbamoylcholine), but also to a rapid change of flux through a number of other enzyme-catalyzed reactions involved in diacylglycerol turnover.  相似文献   

3.
The present study was undertaken to investigate a possible involvement of phospholipid methyltransferases in the coupling of receptor-mediated stimulation to secretion. Phospholipid methyltransferases were assayed in isolated parotid acini in the presence of carbamoylcholine or isoprenaline. Carbamoylcholine reduced the incorporation of methyl groups into phospholipids, whereas isoprenaline showed no effect. Amylase secretion stimulated either by carbamoylcholine or by isoprenaline could not be affected by inhibitors of methyltransferases (3-deaza-adenosine alone or plus homocysteine thiolactone) under conditions where phospholipid methylation was strongly inhibited. The activity of adenylate cyclase in isolated parotid microsomal membranes was not inhibited or stimulated by S-adenosyl-homocysteine or -methionine respectively. These results indicate that phospholipid methylation does not play an essential role in stimulus-secretion coupling in the parotid gland.  相似文献   

4.
Guinea pig pancreatic acini prepared with purified collagenase   总被引:8,自引:0,他引:8  
Dispersed guinea pig pancreatic acinar cells have been used to investigate several aspects of stimulus-secretion coupling but possess the disadvantage that they are less sensitive and less responsive to secretagogues than in vitro preparations of intact pancreatic tissue (lobules). To overcome the poor responsiveness of isolated acinar cells, we have developed a new procedure for preparing dispersed, intact pancreatic acini whose sensitivity to secretagogues and morphological characteristics are similar to those of pancreatic lobules. Dispersed acini can be manipulated as suspensions of cells and full access of macromolecular probes to apical and basolateral plasmalemmal domains is obtained. Acini were prepared in good yields (~70% on a DNA basis) using only purified collagenase and mild mechanical shear in medium containing 2.0 mM Ca2+. Morphologically, acinar cells in the preparations retained intact junctional complexes, asymmetrical distribution of intramembranous particles between apical and basolateral plasmalemmal domains, and polarized distribution of intracellular organelles as found in intact pancreas. Dose-response curves of acini and mechanically prepared lobules to caerulein, carbachol, and bombesin were similar though acini were more sensitive to the C-terminal octapeptide of cholecystokinin. Net stimulated secretory protein discharge was ~36% over 2 h. Crude collagenase was purified for use in preparation of acini by Sephadex G-75 column chromatography which resolved collagenase from clostripain and a non-sulfhydryl-requiring protease. The purified collagenase contained at least four proteins with molecular weights between 85 000 and 110 000. Collagenase with <0.14 units of protease per unit of collagenase produced highly responsive acini; collagenase with >0.9 units of protease per unit of collagenase yielded unresponsive acini. Acini incubated with crude collagenase, chymotrypsin, or the non-sulfhydryl-requiring protease showed depressed secretory response to caerulein. Freeze-fracture electron microscopy of protease-treated acini indicated that the intramembranous particles aggregated and that many of the tight junctions had undergone a proliferation of non-cross-linked sealing strands which extended far down the basolateral plasma membrane and encircled gap junctions. Acini incubated with purified collagenase or with a clostripain-containing fraction from the Sephadex G-75 column appeared unaltered. This procedure produces acini which are morphologically and biochemically similar to the in situ pancreas and overcomes the poor response to secretagogues by isolated pancreatic acinar cells.  相似文献   

5.
Stimulation of secretion in guinea pig exocrine cells is associated with an enhanced synthesis in these cells of 1-O-alkyl-2-sn-acetyl-glycero-3-phosphocholines (PAF) from 1-O-alkyl-sn-glycero-3-phosphocholine (lyso-PAF) (S?ling, H-D., and Fest, W. (1986) J. Biol. Chem. 261, 13916-13922). This results from a stimulation of the activity of lyso-1-alkylglycerophosphocholine acetyltransferase (EC 2.3.1.67). Here we have analyzed the effects of various agonists on the activity of this enzyme in guinea pig parotid gland microsomes. Carbamoylcholine leads within less than 30 s to a 2- to 4-fold activation of lyso-PAF-acetyltransferase, which persists after solubilization of the microsomal enzyme with octyl glucoside. The calcium ionophore A23187 has a similar though smaller effect. Neither isoproterenol (2 X 10(-5) M), which stimulates exocytosis more than carbachol, nor phorbol ester significantly affected lyso-PAF-acetyltransferase activity. Incubation of microsomes from unstimulated parotid gland acini with cAMP-dependent and calcium/calmodulin-dependent protein kinase resulted in a 4-fold and 2.9-fold activation of lyso-PAF-acetyltransferase activity, respectively. Protein kinase C had no significant effect. Activation with calcium/calmodulin-dependent protein kinase was inhibited by 40 microM trifluoperazine. When microsomes from carbachol-stimulated glands were used, in vitro activation of the enzyme by calcium/calmodulin-dependent protein kinase was almost abolished. Protein phosphatase 2A in vitro strongly reduced lyso-PAF-acetyltransferase activity in microsomes from both stimulated and unstimulated glands, whereas alkaline phosphatase and protein phosphatase 1 had only small effects. Following treatment with protein phosphatase 2A, enzyme activity in microsomes from stimulated glands could be enhanced more than 8-fold by subsequent incubation with calcium/calmodulin-dependent protein kinase. Although unsuccessful attempts have made it impossible so far to demonstrate directly the incorporation of phosphate into lyso-PAF-acetyltransferase, the results reported here strongly suggest that the enzyme in exocrine cells is regulated by phosphorylation-dephosphorylation and that a calcium/calmodulin-dependent protein kinase is responsible for the activation of the enzyme and type-2 protein phosphatases for its inactivation.  相似文献   

6.
The ribosomal protein S6 in exocrine cells is phosphorylated during stimulation of exocytosis by cAMP-dependent or calcium-dependent agonists. Under both conditions the same tryptic S6 phosphopeptides (termed A, B, and C) were found [Padel, Kruppa, Jahn & S?ling (1983) FEBS Lett. 159, 112-118]. Studies have now been made of the phosphorylation pattern of protein S6 from purified guinea pig parotid ribosomes following in vitro phosphorylation with calmodulin-dependent, phospholipid-dependent, and cAMP-dependent protein kinases. Only the phospholipid-dependent enzyme led to the phosphorylation of peptides A, B, and C, while the cAMP-dependent enzyme phosphorylated only peptides A and C, and the calmodulin-dependent enzyme did not phosphorylate any of the phosphopeptides found in S6 from unstimulated or stimulated intact cells. Guinea pig parotid microsomes contain substantial phospholipid-dependent protein kinase activity. Stimulation of intact parotid glands with tetradecanoylphorbol acetate led to a significant phosphorylation of S6 and a similar tryptic S6 phosphopeptide pattern as seen with carbamoylcholine. It is concluded that activation of phospholipid-dependent protein kinase is responsible for the phosphorylation of protein S6 during stimulation with calcium-dependent and cAMP-dependent secretagogues.  相似文献   

7.
The direct in vitro effect of caerulein on pancreatic protein synthesis and amino acid transport has been investigated. In contrast to in vivo conditions we were unable to demonstrate any effect on alpha-aminoisobutyric acid and leucine uptake and on leucine incorporation usin rat pancreatic lobules. Insulin and glucagon were therefore examined as possible mediators for the in vivo effect of caerulein. Insulin (1--5 microM) slightly enhanced AIB uptake (16% but did not change uptake and incorporation of leucine. Glucagon (0.01--1 microM) was ineffective. Both islet hormones had no influence on the formation of cyclic GMP induced by secretagogue either in rat (40% increase) or in guinea pig lobules (500% increase). It seems unlikely that the two islet hormones exert any direct effect on the exocrine pancreas and thus could serve as mediators for the in vivo synthetic effect of caerulein.  相似文献   

8.
Summary Incubation of rat pancreatic lobules for 90 min with optimal concentrations of caerulein, carbachol or secretin caused the release of about 30% of the amylase content. Combination of secretin with carbachol or caerulein increased the amylase output to about 40%. With secretin, as with carbachol or caerulein, heterogeneity of cellular responsiveness was observed, some acini being partially or completely depleted of their zymogen granules, whereas others appeared to be resting. When secretin was combined with carbachol or caerulein, granule depletion, originally confined to small groups of neighbouring acini, spread to form large areas of degranulated cells, sometimes comprising a whole section of a lobule.In dispersed acini, under the same conditions, carbachol caused the release of about 60% of the amylase content, and secretin 40%. When both secretagogues were combined, a significant increase to 78% was observed. Under these conditions, there was some important cellular damage, as indicated by the release of 20% of the amylase content and between 6 and 12% of lactate dehydrogenase into the media, in the absence of stimulus. These results were corroborated by cytological observations. On the basis of their secretory response two groups of acini can be distinguished, those that respond to carbachol, caerulein or secretin and those that respond to the combination of secretin with carbachol or caerulein. Electrophoretic patterns of secretory proteins released by lobules stimulated by these different types of secretagogues were essentially similar. The pattern was quite different, however, in the absence of a stimulus. The most striking feature was the presence of a band at 63 Kd whereas a 73.5 Kd band was found only under conditions of stimulation. The latter results support the view that under resting and stimulated conditions secretory proteins are released from distinct compartments in the acinar cell.Abbreviations used PMSF phenylmethylsulfonyl fluoride - Carbachol carbamylcholine chloride - SBTI soybean trypsin inhibitor  相似文献   

9.
More information is needed on the physiological role of the tachykinins (TKs), especially neurokinin3-receptor (NK3) agonists, in the pancreas. In this paper we investigated and compared the effect of PG-KII (10(-9) to 10(-6) M), a natural NK3-receptor agonist, with that of the known secretagogues substance P (10(-9) to 10(-6)M), caerulein (10(-11) to 10(-8) M) and carbachol (10(-8) to 10(-5) M), on amylase secretion from dispersed pancreatic acini of the guinea pig and rat. PG-KII (10(-7) M) significantly increased basal amylase release from guinea pig pancreatic acini (from 5.4+/-0.9% to 11.3+/-0.5%, P < 0.05) but left basal release in the rat unchanged (6.5+/-0.5%). The stimulant effect of PG-KII on guinea pig acini was significantly reduced by the NK3-receptor antagonist, SR 142801 (5 x 10(-7) M), and left unchanged by the NK1-receptor antagonist, SR 140333 (5 x 10(-7) M). Conversely, substance P (10(-7) M) significantly stimulated amylase secretion from rat and guinea pig acini (12.6+/-0.6% and 12.1+/-0.7%, P < 0.05). This stimulated effect of substance P was antagonized by the NK1--receptor antagonist (5 x 10(-7) M), but not by the NK3-receptor antagonist (5 x 10(-7) M). The PG-KII- and substance P-evoked maximal responses were lower than those evoked by caerulein (10(-9) M) (guinea pig, 19.1+/-1.3%; rat, 1802+/-0.9%, P < 0.01) and carbachol (10(-5) M) (guinea pig, 23.3+/-1.2%; rat, 24.0+/-1.1%, P < 0.01). The inhibitors of phospholipase C U-73122 (10(-5) M), phospholipase A2 quinacrine (10(-5)M), and protein tyrosine kinase genistein (10(-4) M), partly but significantly inhibited PG-KII, as well as carbachol-stimulated amylase release. Coincubation of PG-KII 10(-7) M with submaximal doses of caerulein (10(-11) to 10(-10) M) and carbachol (10(-7) to 10(-6) M) had an additive effect on amylase release. Pre-incubation with PG-KII (10(-7) M) for 30 min significantly reduced the subsequent amylase response to PG-KII, whereas pre-incubation with caerulein 10(-10) M or carbachol 10(-6) M did not. These findings suggest that PG-KII directly contributes to pancreatic exocrine secretion by interacting with acinar NK3 receptors of the guinea pig but not of the rat. PG-KII signal transduction involves the intracellular phospholipase C, phospholipase A2 and protein tyrosine kinase pathways. The NK3 receptor system cooperates with the other known secretagogues in regulating guinea pig exocrine pancreatic secretion and undergoes rapid homologous desensitization.  相似文献   

10.
The histology and histochemistry of the parotid, submandibular and sublingual glands were studied. The submandibular gland contained only serous acini as in the guinea pig, but unlike in many other mammals. The parotid gland contained only serous acini while the sublingual gland was mixed, mucous acini being the predominant secretory tissue interspersed by a few serous acini. Serous demilunes also commonly formed caps on the mucous acini. The ducts of the gland contributed over 30% of the volume of the submandibular gland, while those of the parotid and sublingual glands formed about 12 and 10% of the gland, respectively. The secretions of the parotid gland, as judged by histochemical methods, contained neutral mucins and some sialomucins. Neutral mucins, sulphomucins and sialomucins were detected in both the submandibular gland and sublingual gland.  相似文献   

11.
Stimulation of secretion in guinea pig parotid gland lobules by either isoproterenol or carbachol is associated with a removal of acyl groups from the acyl-CoA pool and their incorporation into diacylglycerols and triglycerides (S?ling, H. D., Machado-De Domenech, E., Kleineke, J., and Fest, W. (1987) J. Biol. Chem. 262, 16786-16792). This is associated with an increased incorporation of glycerol into diacylglycerol. These changes occur during the first 20-30 s of stimulation. We can show now that these changes are associated with a significant increase in the activities of lysophosphatidate acyltransferase, diacylglycerol kinase, and diacylglycerol acyltransferase which reaches a maximum during the first 60 s after stimulation. In vitro experiments with isolated parotid microsomes, the catalytic subunit of cAMP-dependent or Ca2+/calmodulin-dependent protein kinase, and with purified protein phosphatases indicate that the activation of enzyme activities in intact parotid gland cells results from protein phosphorylation. The two protein kinases seem to activate the three enzymes by phosphorylating the same site(s). Protein kinase C was almost ineffective. Glycerol kinase, glycerolphosphate acyltransferase, phosphatidate phosphohydrolase, CTP:phosphatidate cytidylyltransferase, and phosphatidylinositol synthase remained unchanged in the intact cell as well as during incubation with protein kinases in vitro. Lysophosphatidate acyltransferase, diacylglycerol kinase, and diacylglycerol acyltransferase can be activated by the two protein kinases also in microsomes from guinea pig cerebellum. It seems, therefore, that the regulation leading to rapid changes of enzyme activities during signal transmission in parotid acinar cells could be operative also in other cell types.  相似文献   

12.
The importance of glycosylation in cell surface expression of muscarinic receptors in cultured guinea pig pancreatic acini was investigated. Recovery of the muscarinic receptor population after carbachol-induced down regulation was blocked by cycloheximide but not by tunicamycin, although tunicamycin reduced [3H]mannose incorporation into acinar macromolecules by up to 90%. Tunicamycin treatment also failed to alter carbachol stimulation of amylase secretion from cultured acini. These results indicate that glycosylation of the glandular subtype of muscarinic receptor in the pancreatic acinar cell is not necessary for its insertion in the plasma membrane or for its functional activity.  相似文献   

13.
Intercellular secretory capillaries in parotid glands, eccrine sweat glands and intracellular secretory capillaries in parietal cells of gastric glands were demonstrated histo-chemically by the use of the Wachstein-Meisel adenosinetriphosphatase (ATPase) technique in the rabbit, rat and guinea pig. However, with the Wachstein-Meisel 5-nucleotidase technique, secretory capillaries were not stained. For parotid glands, optimal incubation in ATPase substrate mixture was: in rabbit, 15 min; in rat, 2.5 hr; and in guinea pig, 2 hr. For eccrine sweat glands, optimal incubation was 15 min in rabbit, 30 min in rat and 15 min in guinea pig. For parietal cells of gastric glands, optimal incubation was 3 hr for all three species. Secretory capillaries were best demonstrated in the parotid by using rabbit tissue; in eccrine sweat glands, with rat tissue, and in parietal cells, guinea pig tissue. Since ATPase activity in cell membranes of secretory cells may play a part in the mechanism of transport of secretory products from their place of formation in the acini to the excretory ducts, the Wachstein-Meisel ATPase technique can therefore be used successfully for staining secretory capillaries in many of the exocrine glands of laboratory mammals.  相似文献   

14.
Intercellular secretory capillaries in parotid glands, eccrine sweat glands and intracellular secretory capillaries in parietal cells of gastric glands were demonstrated histo-chemically by the use of the Wachstein-Meisel adenosinetriphosphatase (ATPase) technique in the rabbit, rat and guinea pig. However, with the Wachstein-Meisel 5-nucleotidase technique, secretory capillaries were not stained. For parotid glands, optimal incubation in ATPase substrate mixture was: in rabbit, 15 min; in rat, 2.5 hr; and in guinea pig, 2 hr. For eccrine sweat glands, optimal incubation was 15 min in rabbit, 30 min in rat and 15 min in guinea pig. For parietal cells of gastric glands, optimal incubation was 3 hr for all three species. Secretory capillaries were best demonstrated in the parotid by using rabbit tissue; in eccrine sweat glands, with rat tissue, and in parietal cells, guinea pig tissue. Since ATPase activity in cell membranes of secretory cells may play a part in the mechanism of transport of secretory products from their place of formation in the acini to the excretory ducts, the Wachstein-Meisel ATPase technique can therefore be used successfully for staining secretory capillaries in many of the exocrine glands of laboratory mammals.  相似文献   

15.
So far, there are no known peptidic effective receptor antagonists of both peripheral and central effects of cholecystokinin (CCK). Here, we describe a synthetic peptide derivative of CCK, t-butyloxycarbonyl-Tyr(SO3-)-Met-Gly-D-Trp-Nle-Asp 2-phenylethyl ester 1 (where Nle is norleucine), which is a potent CCK receptor antagonist. In rat and guinea pig dispersed pancreatic acini, this peptide derivative did not alter amylase secretion, but was able to antagonize the stimulation caused by cholecystokinin-related agonists. It caused a parallel rightward shift in the dose-response curve for the stimulation of amylase secretion with half-maximal inhibition of CCK-8-stimulated amylase release at a concentration of about 0.1 microM. Compound 1 was able to inhibit the binding of labeled CCK-9 (the C-terminal nonapeptide of CCK) to rat and guinea pig pancreatic acini (IC50 = 5 X 10(-8) M) as well as to guinea pig cerebral cortical membranes (IC50 = 5 X 10(-7) M). These results indicate that Compound 1 is a potent competitive CCK receptor antagonist.  相似文献   

16.
Interleukin 1 promotes the conversion of the biologically inactive lyso-platelet activating factor (lyso-PAF) to the bioactive platelet activating factor (PAF) by an acetylation reaction in cultured human endothelial cells. After 2 h stimulation with interleukin 1, 1-O-alkyl-2-lysoglycero-3-phosphocholine (GPC): acetyl CoA acetyltransferase is activated, reaching a plateau after 6 h and then declining to the basal value within 24 h. This time course is comparable to that of PAF production. These cells are able to incorporate [3H]acetate and [3H]lyso-PAF into PAF. Synthetized [3H]PAF is then catabolized in [3H]alkylacyl phosphoglycerides. 1-O-alkyl-2-acetylglycerol: CDP-choline cholinephosphotransferase and 1-O-alkyl-2-acetyl-GPC: acetylhydrolase activities are both present in endothelial cells, but are not activated under our conditions of stimuli. These findings indicate that interleukin 1 induces the PAF synthesis by a deacylation/reacetylation mechanism into human endothelial cells.  相似文献   

17.
U Padel  J Kruppa  R Jahn  H D S?ling 《FEBS letters》1983,159(1-2):112-118
Stimulation of secretion in exocrine cells is associated with the incorporation of up to 3 to 4 phosphates into the ribosomal protein S6. This occurs with secretagogues involving either cAMP or free calcium as second messenger. An analysis of the phosphorylation pattern of S6 from stimulated guinea pig parotid glands reveals 3 phosphopeptides (termed A,B,C). The phosphopeptide pattern was identical for cAMP- or calcium-mediated stimulation, whereas phosphorylation of the S6 protein in vitro with catalytic subunit of cAMP-dependent protein kinase resulted only in the formation of phosphopeptides A and C. Therefore, secretagogue-mediated phosphorylation is not or not exclusively catalyzed by cAMP-dependent protein kinase even when cAMP is the second messenger.  相似文献   

18.
Platelet-activating factor (PAF), a phospholipid mediator with broad and potent biologic activities, is synthesized by several inflammatory cells including endothelial cells (EC). PAF is also an effective stimulating agent for EC leading to increased cell permeability and adhesivity. We examined the synthesis of PAF in human umbilical cord vein EC after stimulation of EC with PAF or with its nonmetabolizable analog 1-O-alkyl-2-N-methyl-carbamyl-sn-glycero-3-phosphocholine (C-PAF). PAF (1 to 100 nM) induced a dose- and time-dependent increase of PAF synthesis as detected by [3H]acetate incorporation into PAF fraction. Stimulation of PAF synthesis occurred via activation of the "remodeling pathway" as the 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PAF):acetyl-CoA acetyltransferase was dose-dependently increased after PAF treatment. The de novo pathway of PAF synthesis was not activated under these conditions. C-PAF was able to mimic the effect of authentic PAF on [3H] acetate incorporation. The inactive metabolite lyso-PAF (100 nM) had no influence on PAF synthesis in EC. CV-3988, BN 52021, and WEB 2086, potent and specific antagonists of PAF suppressed PAF effects on the remodeling pathway completely. The PAF- and C-PAF-induced [3H]PAF remained 93% cell-associated and was not degraded up to 10 min after stimulation. Characterization of the [3H]acetate-labeled material co-migrating with authentic PAF revealed that a significant proportion (approximately 57%) was actually 1-acyl-2-acetyl-sn-glycero-3-phosphocholine. PAF-induced PAF synthesis might be an important mechanism for amplifying original PAF signals and potentiating adhesive interactions of circulating cells with the endothelium.  相似文献   

19.
The effects of ammonia on pancreatic enzyme secretion in vivo and in vitro.   总被引:2,自引:0,他引:2  
BACKGROUND: Recent studies clearly demonstrate that Helicobacter pylori (H. pylori) infection of the stomach causes persistent elevation of ammonia (NH3) in gastric juice leading to hypergastrinemia and enhanced pancreatic enzyme secretion. METHODS: The aim of this study is to evaluate the influence of NH4OH on plasma gastrin level and exocrine pancreatic secretion in vivo in conscious dogs equipped with chronic pancreatic fistulas and on secretory activity of in vitro isolated acini obtained from the rat pancreas by collagenase digestion. The effects of NH4OH on amylase release from pancreatic acini were compared with those produced by simple alkalization of these acini with NaOH. RESULTS: NH4OH given intraduodenally (i.d.) in increasing concentrations (0.5, 1.0, 2.0, 4.0, or 8.0 mM/L) resulted in an increase of pancreatic protein output, reaching respectively 9%, 10%, 19%, 16% and 17% of caerulein maximum in these animals and in a marked increase in plasma gastrin level. NH4OH (8 x 0 mM/L, i.d.) given during intravenous (i.v.) infusion of secretin (50 pmol/kg-h) and cholecystokinin (50 pmol/kg-h) reduced the HCO3 and protein outputs by 35% and 37% respectively, as compared to control obtained with infusion of secretin plus cholecystokinin alone. When pancreatic secretion was stimulated by ordinary feeding the same amount of NH4OH administered i.d. decreased the HCO3- and protein responses by 78% and 47% respectively, and had no significant effect on postprandial plasma gastrin. In isolated pancreatic acini, increasing concentrations of NH4OH (10(-7)-10(-4) M) produced a concentration-dependent stimulation of amylase release, reaching about 43% of caerulein-induced maximum. When various concentrations of NH4OH were added to submaximal concentration of caerulein (10(-12) M) or urecholine (10(-5) M), the enzyme secretion was reduced at a dose 10(-5) M of NH4OH by 38% or 40%, respectively. Simple alkalization with NaOH of the incubation medium up to pH 8.5 markedly stimulated basal amylase secretion from isolated pancreatic acini, whereas the secretory response of these acini to pancreatic secretagogues was significantly diminished by about 30%. LDH release into the incubation medium was not significantly changed in all tests indicating that NH4OH did not produce any apparent damage of pancreatic acini and this was confirmed by histological examination of these acini. CONCLUSIONS: 1. NH4OH affects basal and stimulated pancreatic secretion. 2. The excessive release of gastrin may be responsible for the stimulation of basal pancreatic enzyme secretion in conscious animals, and 3. The inhibitory effects of NH4OH on stimulated secretion might be mediated, at least in part, by its direct action on the isolated pancreatic acini possibly due to the alkalization of these acini.  相似文献   

20.
Cytosolic free calcium concentrations ([Ca2+]i) and amylase secretion were measured in isolated rat pancreatic acini loaded with the intracellularly trapped fluorescent indicator quin2. Both caerulein and carbamoylcholine caused a rapid increase in [Ca2+]i, with a maximal 3-fold increase at 10(-9) M-caerulein and 10(-4) M-carbamoylcholine. However, caerulein (10(-12) M and 10(-11) M) as well as carbamoylcholine (10(-7) M) caused a significant stimulation of amylase release, while not inducing any detectable rise in [Ca2+]i. Changes in [Ca2+]i after addition of either secretagogue were transient and did not last more than 2-3 min. By contrast, when amylase secretion was monitored as a function of time, two distinct secretory phases could be observed upon addition of either carbamoylcholine (10(-5) M) or caerulein (10(-10) M). An initial, rapid phase (0-5 min) which caused a 6-7-fold increase above basal, followed by a sustained (5-30 min), but less marked, secretory rate (2-3-fold above basal). Addition of atropine (10(-4) M) 5 min after carbamoylcholine (10(-5) M) (i.e. after termination of the rise in [Ca2+]i and of the first secretory phase) did not cause any significant change in [Ca2+]i, while significantly inhibiting amylase secretion from 5 to 30 min to the same rate observed in the absence of the secretagogue. These results show that caerulein and carbamoylcholine, two agents thought to activate secretion mainly through mobilization of Ca2+ from intracellular stores, are capable of eliciting amylase secretion independently of a concomitant rise in [Ca2+]i. Furthermore, with both secretagogues the rise in [Ca2+]i, when observed, was only transient, while the stimulation of amylase release was sustained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号