首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzymatic glucosylation of luteolin was attempted using two glucansucrases: the dextransucrase from Leuconostoc mesenteroides NRRL B-512F and the alternansucrase from L. mesenteroides NRRL B-23192. Reactions were carried out in aqueous-organic solvents to improve luteolin solubility. A molar conversion of 44% was achieved after 24h of reaction catalysed by dextransucrase from L. mesenteroides NRRL B-512F in a mixture of acetate buffer (70%)/bis(2-methoxyethyl) ether (30%). Two products were characterised by nuclear magnetic resonance (NMR) spectroscopy: luteolin-3'-O-alpha-d-glucopyranoside and luteolin-4'-O-alpha-d-glucopyranoside. In the presence of alternansucrase from L. mesenteroides NRRL B-23192, three additional products were obtained with a luteolin conversion of 8%. Both enzymes were also able to glucosylate quercetin and myricetin with conversion of 4% and 49%, respectively.  相似文献   

2.
Cellobiose was tested as acceptor in the reaction catalyzed by alternansucrase (EC 2.4.1.140) from Leuconostoc mesenteroides NRRL B-23192. The oligosaccharides synthesized were compared to those obtained with dextransucrase from L. mesenteroides NRRL B-512F. With alternansucrase and dextransucrase, overall oligosaccharide synthesis yield reached 30 and 14%, respectively, showing that alternansucrase is more efficient than dextransucrase for cellobiose glucosylation. Interestingly, alternansucrase produced a series of oligosaccharides from cellobiose. Their structure was determined by mass spectrometry and [13C-1H] NMR spectroscopy. Two trisaccharides are first produced: alpha-D-glucopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1-->4)]-D-glucopyranose (compound A) and alpha-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl-(1-->4)-D-glucopyranose (compound B). Then, compound B can in turn be glucosylated leading to the synthesis of a tetrasaccharide with an additional alpha-(1-->6) linkage at the non-reducing end (compound D). The presence of the alpha-(1-->3) linkage occurred only in the pentasaccharides (compounds C1 and C2) formed from tetrasaccharide D. Compounds B, C1, C2 and D were never described before. They were produced efficiently only by alternansucrase. Their presence emphasizes the difference existing in the acceptor reaction selectivity of the various glucansucrases.  相似文献   

3.
Water-insoluble, cell-free dextran biosynthesis from Leuconostoc mesenteroides NRRL B-523 has been examined. Cell-bound dextransucrase is used to produce cell-free dextran in a sucrose-rich acetate buffer medium. A comparison between the soluble and insoluble dextrans is made for various sucrose concentrations, and 15% sucrose gave the highest amount of cell-free dextran for a given time. L. mesenteroides B-523 produces more insoluble dextran than soluble dextran. The near cell-free synthesis was validated in a batch reactor, by monitoring the cell growth which is a small (10(6)-10(7) CFU/mL) and constant value throughout the synthesis.  相似文献   

4.
Alternan is a unique α-D-glucan of potential commercial interest, produced by rare strains of Leuconostoc mesenteroides. Natural isolates that produce alternan, such as NRRL B-1355, also produce dextran as a troublesome contaminant. We previously isolated mutants of strain NRRL B-1355 that are deficient in dextran production, including the highly stable strain NRRL B-21138. In the current work, we mutagenized strain NRRL B-21138 and screened survivors for further alterations in production of alternansucrase, the enzyme that catalyzes the synthesis of alternan from sucrose. Second generation mutants included highly stable strain NRRL B-21297, which produced four-fold elevated levels of alternansucrase without an increase in the proportion of dextransucrase activity. Such alternansucrase overproducing strains will facilitate studies of this enzyme, and may become valuable for the enzymatic production of alternan. Another highly stable mutant strain, NRRL B-21414, grew slowly on sucrose with negligible production of glucan or extracellular glucansucrase activity. This strain may prove useful as an expression host for glucansucrase genes. Received 30 July 1996/ Accepted in revised form 15 December 1996  相似文献   

5.
A gene, dsrT, encoding a dextransucrase-like protein was isolated from the genomic DNA libraries of Leuconostoc mesenteroides NRRL B-512F dextransucrase-like gene. The gene was similar to the intact open reading frames of the dextransucrase gene dsrS of L. mesenteroides NRRL B-512F, dextransucrase genes of strain NRRL B-1299 and streptococcal glucosyltransferase genes, but was truncated after the catalytic domain, apparently by the deletion of five nucleotides. dsrT mRNA was produced in this strain L. mesenteroides when cells were grown in a sucrose medum, but at a level of 20% of that of dsrS mRNA. The molecular weight of the dsrT gene product was 150,000 by SDS-PAGE. The product did not synthesize dextran, but had weak sucrose cleaving activity. The insertion of five nucleotides at the putative deletion point in dsrT resulted in an enzyme with a molecular weight of 210,000 and with dextransucrase activity.  相似文献   

6.
When grown in glucose or fructose medium in the absence of sucrose, Leuconostoc mesenteroides NRRL B-1299 produces two distinct extracellular dextransucrases named glucose glucosyltransferase (GGT) and fructose glucosyltransferase (FGT). The production level of GGT and FGT is 10 to 20 times lower than that of the extracellular dextransucrase sucrose glucosyltransferase (SGT) produced on sucrose medium (traditional culture conditions). GGT and FGT were concentrated by ultrafiltration before sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. Their molecular masses were 183 and 186 kDa, respectively, differing from the 195 kDa of SGT. The structural analysis of the dextran produced from sucrose and of the oligosaccharides synthesized by acceptor reaction in the presence of maltose showed that GGT and FGT are two different enzymes not previously described for this strain. The polymer synthesized by GGT contains 30% alpha(1-->2) linkages, while FGT catalyzes the synthesis of a linear dextran only composed of alpha(1-->6) linkages.  相似文献   

7.
The gene encoding alternansucrase (ASR) from Leuconostoc mesenteroides NRRL B-1355, an original sucrose glucosyltransferase (GTF) specific to alternating alpha-1,3 and alpha-1,6 glucosidic bond synthesis, was cloned, sequenced and expressed into Escherichia coli. Recombinant enzyme catalyzed oligoalternan synthesis from sucrose and maltose acceptor. From sequence comparison, it appears that ASR possesses the same domains as those described for GTFs specific to either contiguous alpha-1,3 osidic bond or contiguous alpha-1,6 osidic bond synthesis. However, the variable region and the glucan binding domain are longer than in other GTFs (by 100 and 200 amino acids respectively). The N-catalytic domain which presents 49% identity with the other GTFs from L. mesenteroides possesses the three determinants potentially involved in the glucosyl enzyme formation.  相似文献   

8.
The optimization of alpha-1,2 glucooligosaccharide (GOS) synthesis from maltose and sucrose by Leuconostoc mesenteroides NRRL B-1299 dextransucrase was achieved using experimental design and consecutive analysis of the key parameters. An increase of the pH of the reaction from 5.4 to 6.7 and of the temperature from 25 to 40 degrees C significantly favored alpha-1,2 GOS synthesis, thanks to a significant decrease of the side reactions, i.e., dextran and leucrose synthesis. These positive effects were not sufficient to compensate for the decrease of enzyme stability caused by the use of high pH and temperature. However, the critical parameters were the sucrose to maltose concentration ratio (S/M) and the total sugar concentration (TSC). Alpha1,2 GOS synthesis was favored at high S/M ratios. But using these conditions also led to an increase of side reactions which could be modulated by choosing the appropriate TSC. Finally, with S/M = 4 and TSC = 45% w/v, dextran and leucrose productions were limited and the final alpha-1,2 GOS yield reached 56.7%, the total GOS yield being 88%.  相似文献   

9.
The industrial Leuconostoc strain B/110-1-2 producing dextran and dextran derivatives was taxonomically identified by 16S rRNA as L. citreum. Its dextransucrase enzymes were characterized according to their cellular location and reaction specificity. In the presence of sucrose, the strain B/110-1-2 produced two cell-associated dextransucrases (31.54% of the total glucosyltransferase activity) with molecular weights of 160 and 240 kDa and a soluble dextransucrase (68.46%) at 160–180 kDa. Two open reading frames (ORF) coding for L. citreum strain B/110-1-2 dextransucrases were identified. One of them shared a 52% identity with the alternansucrase ASR of L. citreum NRRL B-1355 and with a putative annotated alternansucrase sequence found in the genome of L. citreum KM20. The structural analysis (HPAEC-PAD, HPSEC, and 13C-NMR) of the polymer and oligodextrans produced by the B/110-1-2 dextransucrases suggest this novel glucansucrase has specificity similar to a dextransucrase but not to an alternansucrase, producing a soluble linear dextran with glucose molecules linked mainly in α-1,6 and α-1,3 with α-1,4 branches. These results enhance the understanding of this industrially significant strain and will aid in distinguishing between physiologically similar Leuconostoc spp. strains.  相似文献   

10.
Initial rate kinetics of dextran synthesis by dextransucrase (sucrose:1,6-alpha-D-glucan-6-alpha-D-glucosyltransferase, EC 2.4.1.5) from Leuconostoc mesenteroides NRRL B-512F showed that below 1 mM, Ca2+ activated the enzyme by increasing Vmax and decreasing the Km for sucrose. Above 1 mM, Ca2+ was a weak competitive inhibitor (Ki = 59 mM). Although it was an activator at low concentration, Ca2+ was not required for dextran synthesis, either of main chain or branch linkages. Neither was it required for sucrose hydrolysis, acceptor reactions, or enzyme renaturation after SDS-polyacrylamide gel electrophoresis. A model for dextran synthesis is proposed in which dextransucrase has two Ca2+ sites, one activating and one inhibitory. Ca2+ at the inhibitory site prevents the binding of sucrose.  相似文献   

11.
The kinetic behavior of soluble and insoluble forms of dextransucrase from Leuconostoc mesenteroides NRRL B-1299 was investigated with sucrose as substrate and maltose as acceptor. To study the parameters involved, a kinetic model was applied that was previously developed for L. mesenteroides NRRL B-512F dextransucrase. There are significant correlations between the parameters of the soluble form of B-1299 dextransucrase and those calculated for the B-512F enzyme; that is, their properties are comparable and differ from those of the insoluble form of B-1299 dextransucrase. Whereas the calculated parameters for high maltose concentrations describe the kinetic behavior very well, the time curves for low maltose concentrations were not described correctly. Therefore, the parameters were calculated separately for the two ranges. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

12.
Various dextransucrase molecular mass forms found in enzyme preparations may sometimes be products of proteolytic activity. Extracellular protease in Leuconostoc mesenteroides strains NRRL B-512F and B-512FMC dextransucrase preparations was identified. Protease had a molecular mass of 30 kDa and was the predominant form derived from a high molecular mass precursor. The production and activity of protease in culture medium was strongly dependent on pH. When L. mesenteroides dextransucrase (173 kDa) was hydrolyzed by protease, at pH 7 and 37 degrees C, various dextransucrase forms with molecular masses as low as 120 kDa conserving dextransucrase activity were obtained.  相似文献   

13.
Leuconostoc mesenteroides B-1355 produced at least three glucosyltransferases (GTFs). We previously identified GTF-2 as alternansucrase and GTF-3 as fraction L dextransucrase. We here show that GTF-1 is a previously unreported sucrase that synthesized water-insoluble dextran. Our evidence consisted of the following. (i) GTF-1 was a major component and GTF-2 was a minor component of culture supernatant fractions, but supernatant fractions actively synthesized water-insoluble glucan. (ii) GTF-1 and culture supernatants produced an unusual high-pressure liquid chromatography pattern of malto-oligosaccharides that was not reproduced by GTF-2-GTF-3 mixtures. (iii) GTF-2, GTF-3, and GTF-2-GTF-3 mixtures did not synthesize insoluble glucan from sucrose. Nearly all of the alternansucrase in young (less than 17-h) cultures was associated with the cells.  相似文献   

14.
The dsrE gene from Leuconostoc mesenteroides NRRL B-1299 was shown to encode a very large protein with two potentially active catalytic domains (CD1 and CD2) separated by a glucan binding domain (GBD). From sequence analysis, DSR-E was classified in glucoside hydrolase family 70, where it is the only enzyme to have two catalytic domains. The recombinant protein DSR-E synthesizes both alpha-1,6 and alpha-1,2 glucosidic linkages in transglucosylation reactions using sucrose as the donor and maltose as the acceptor. To investigate the specific roles of CD1 and CD2 in the catalytic mechanism, truncated forms of dsrE were cloned and expressed in Escherichia coli. Gene products were then small-scale purified to isolate the various corresponding enzymes. Dextran and oligosaccharide syntheses were performed. Structural characterization by (13)C nuclear magnetic resonance and/or high-performance liquid chromatography showed that enzymes devoid of CD2 synthesized products containing only alpha-1,6 linkages. On the other hand, enzymes devoid of CD1 modified alpha-1,6 linear oligosaccharides and dextran acceptors through the formation of alpha-1,2 linkages. Therefore, each domain is highly regiospecific, CD1 being specific for the synthesis of alpha-1,6 glucosidic bonds and CD2 only catalyzing the formation of alpha-1,2 linkages. This finding permitted us to elucidate the mechanism of alpha-1,2 branching formation and to engineer a novel transglucosidase specific for the formation of alpha-1,2 linkages. This enzyme will be very useful to control the rate of alpha-1,2 linkage synthesis in dextran or oligosaccharide production.  相似文献   

15.
1,5-Anhydro-d-fructose (AF), a metabolite of starch/glycogen degradation, is a good antioxidant. With the prospect of increasing its applications and use as a food ingredient, AF glucosylation catalysed by the dextransucrase from Leuconostoc mesenteroides NRRL B-512F was performed in the presence of sucrose. This led to AF glucosylated derivatives containing alpha-(1-->6) linkages named 1,5-anhydro-d-fructo-glucooligosaccharides (AFGOS). LC-MS analyses showed that AFGOS with a degree of polymerisation (DP) of up to 7 were synthesised. The amount of AFGOS produced and the average DP increased by using a high sucrose/AF molar ratio and high total sugar concentration. AFGOS were proved to present antioxidant properties quite similar to AF.  相似文献   

16.
17.
Summary Immobilized concanavalin A has been used to bind a polysaccharide-glucosyltransferase complex fromLeuconostoc mesenteroides NRRL B-1355, which is capable of synthesizing the unusual D-glucan alternan from sucrose. The dextransucrase present in culture fluid passes through a column of immobilized concanavalin A without binding, while the portion of alternansucrase that does bind is eluted using 1-O-methyl α-D-mannopyranoside. The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

18.
19.
When grown in glucose or fructose medium in the absence of sucrose, Leuconostoc mesenteroides NRRL B-1299 produces two distinct extracellular dextransucrases named glucose glucosyltransferase (GGT) and fructose glucosyltransferase (FGT). The production level of GGT and FGT is 10 to 20 times lower than that of the extracellular dextransucrase sucrose glucosyltransferase (SGT) produced on sucrose medium (traditional culture conditions). GGT and FGT were concentrated by ultrafiltration before sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. Their molecular masses were 183 and 186 kDa, respectively, differing from the 195 kDa of SGT. The structural analysis of the dextran produced from sucrose and of the oligosaccharides synthesized by acceptor reaction in the presence of maltose showed that GGT and FGT are two different enzymes not previously described for this strain. The polymer synthesized by GGT contains 30% α(1→2) linkages, while FGT catalyzes the synthesis of a linear dextran only composed of α(1→6) linkages.  相似文献   

20.
A gene that encodes dextransucrase S (dsrS) from Leuconostoc mesenteroides NRRL B-512F encodes a glucansucrase dextransucrase S (DSRS) which mainly produces water-soluble glucan (dextran), while the dsrT5 gene derived from dsrT of the B-512F strain encodes an enzyme dextransucrase T5 (DSRT5), which mainly produces water-insoluble glucan. Tyr340-Asn510 of DSRS and Tyr307-Asn477 of DSRT5 (Site 1), Lys696-Gly768 of DSRS and Lys668-Gly740 of DSRT5 (Site 2), and Asn917-Lys1131 of DSRS and Asn904-Lys1118 of DSRT5 (Site 3) were exchanged and six different chimeric enzymes were constructed. Water-soluble glucan produced by recombinant DSRS was composed of 64% 6-linked glucopyranoside (Glcp), 9% 3,6-linked Glcp, and 13% 4-linked Glcp. Water-insoluble glucan produced by recombinant DSRT5 was composed of 47% 6-linked Glcp and 43% 3-linked Glcp. All of the chimeric enzymes produced glucans different from the ones produced by their parental enzymes. Some of the glucans produced by chimeric enzymes were extremely changed. The Site 1 chimeric enzyme of DSRS (STS1) produced water-soluble glucan composed mostly of 6-linked Glcp. That of DSRT5 (TST1) produced water-insoluble glucan composed mostly of 4-linked Glcp. The Site 3 chimeric enzyme of DSRS (STS3) produced mainly water-insoluble glucan, DSRT5 (TST3) produced mainly water-soluble glucans, and all of the glucan fractions consisted of 3-Glcp, 4-Glcp, and 6-Glcp. The amounts of the three linkages in the water-soluble glucan produced by TST3 were about 1:1:1. Site 1 was assumed to be important for making or avoiding making alpha-1,4 linkages, while Site 3 was assumed to be important for determining the kinds of glucosyl linkages made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号