首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Moshkov  D. A.  Pavlik  L. L.  Tiras  N. R.  Dzeban  D. A.  Mikheeva  I. B. 《Neurophysiology》2003,35(5):361-370
We examined changes in the ultrastructure of afferent mixed synapses on the membrane of Mauthner neurons (M cells) of the goldfish, which were related to two functional states, long-term potentiation (LTP) of the electrotonic response (a model form of the memory trace) and adaptation (resistivity to fatigue resulting from long-lasting motor training and considered a natural form of the memory trace manifested on the neuronal level). LTP was induced in medullary slices using high-frequency electrical stimulation of the afferent input. Adaptation was produced using natural vestibular stimulation (everyday motor training, which modified motor behavior of the fish and function of the M cell). It was supposed that if the LTP phenomenon is involved in the formation of natural memory, both the adaptation and the LTP states should be accompanied by similar specific structural modifications. Indeed, it was found that in both cases the number of fibrillar bridges in the gaps of desmosome-like contacts (DLC) in the mixed synapses on the M cell surface demonstrated an about twofold increase. These bridges are known to include actin filaments, which function as conductors of cationic signals; thus, the LTP-related increase in the density of bridges corresponds to increased efficacy of electrotonic coupling via mixed synapses. Such a structural correlate of LTP, which probably has the same functional significance in mixed synapses of the adapted M cells, allows us to suppose that LTP is a natural property of the nervous system. The LTP-type intensification of the relay function of mixed synapses, which corresponds to adaptation, is probably a compensatory rearrangement allowing M cells to maintain some balance of the synaptic influences and, at the same time, to remain in a stable and plastic state; this is necessary for stable functioning under changing environmental conditions.  相似文献   

2.
A review. The data concerning the structural changes that accompany long-term potentiation (LTP) of synaptic transmission are analyzed. A bulk of morphological studies is aimed at searching for quantitative and qualitative structural LTP signs and elucidating the involvement of cytoskeleton in their formation. The role of cytoskeletal protein actin in synaptic structural and functional modification is discussed. On the basis of experimental evidence obtained by the authors a proposal is made that actin is involved into the LTP not only as a contractile protein but as a cable which strengthen the electrotonic properties of the synapses.  相似文献   

3.
Electron microscopic investigation of synaptogenesis in the sensomotor cortex and in the caudate nucleus has been performed in the prenatal ontogenesis (16-22 days) and in newborn rats. The first immature synapses are demonstrated to appear beginning on the 16th day of embryogenesis. At the end of the prenatal development and especially in newborn animals desmosome-like, asymmetric and symmetric, mixed and complex forms of the synaptic contacts are revealed. As a result of the analysis performed on the ultrastructural organization of the contacts, a hypothesis explaining mechanisms of development of various elements of the synapses has been suggested. A part of the synaptic contacts of the asymmetric and symmetric types is supposed to be genetically programmed and membrane specialization of these contacts is formed earlier than synaptic vesicles appear. Other part of the synapses undergoes certain stages of differentiation before the functionally mature contact is formed. The initial stage in the synapses formation in formation of the desmosome-like junction. The second stage is appearance of synaptic vesicles in the area of this contact. The third stage includes development of pre- and postsynaptic membranous specialization and owing to this the contact acquires either asymmetric or symmetric appearance. For the ontogenetic periods investigated establishment of complex forms of the intercellular junctions (tangent, reciprocal, etc.) is specific; this evidently demonstrates certain plastic rearrangements in the synapses during the process of development.  相似文献   

4.
In goldfishes, we studied (i) manifestations of functional activity of Mauthner neurons (MNs) reflected in motor behavior and (ii) changes in 3-D morphometry (ratio of volumes) and ultrastructure of MNs after applications of an actin-polymerizing peptide obtained from scorpion venom and after vestibular rotational stimulations (trainings) inducing natural modification of functions of the MNs (adaptation). In MNs subjected to application of the peptide, the increase in the functional resistance and morphological stability caused by long-lasting stimulation directly depended on the dose of the applied peptide or on the effectiveness of trainings, whereas in intact and control MNs such stimulation resulted in significant decreases in the activity and volumes of these cells. At the ultrastructure level, both applications of the peptide and trainings caused the formation of extensive bundles of actin filaments (“stress-fibers”) in the cytoplasm of MNs and led to an increase in the dimension of desmosome-like contacts (DLCs) in afferent synapses. At chemical synapses, the effect looked like a reciprocal decrease in the length of the active zones (a structural sign of long-term depression, LTD), while at mixed synapses this was manifested in an increase in the number of fibrillar bridges in the gaps of DLCs (a structural sign of long-term potentiation, LTP). The data obtained allow us to hypothesize that LTD of the efficacy of transmission through chemical synapses is involved in the formation of the adaptation state of the MNs and that polymerization of actin in the cytoplasm and DLCs underlies the mechanism of LTD and adaptation. The development of ultrastructural manifestations of LTP at mixed synapses after polymerization of actin by the peptide, which is related to a reciprocal increase in the efficacy of “mixed” afferent inputs, explains the maintenance of a high integral level of activity of the MNs, despite a drop in the functional activity of “ chemical” afferent inputs. Therefore, the actin cytoskeleton plays a clearly significant role in the maintenance of the balance of excitation at the neuronal level. Neirofiziologiya/Neurophysiology, Vol. 38, Nos. 5/6, pp. 389–401, September–December, 2006.  相似文献   

5.
In the goldfish, we studied the effects of intramedullar applications of glutamate (Glu), dopamine (DA), and of long-lasting rotational stimulation on the functional activity, dimensional characteristics, and ultrastructure of Mauthner neurons (MNs). Applications of Glu, especially when combined with rotational stimulation, were found to result in suppression of the function of MNs, in a decrease in their dimensions and lengths of desmosome-like contacts (DLCs, whose structure is determined by filamentous actin) in afferent mixed and chemical synapses, and in destruction of actin microfilaments in the cytoskeleton of MNs. Applications of DA, vice versa, induced an increase in the resistance to the effects of long-lasting stimulation and stabilized the dimensions of MNs; the length of DLCs increased in afferent synapses of both the above types, and the number of fibrillar actin bridges in the DLC cleft of mixed synapses also increased. Bundles of the actin filaments, which were preserved after stimulation, appeared in the cytoskeleton of MNs. Testing of the action of neurotransmitters on actin preparations in vitro showed that Glu entirely depolymerizes filamentous actin, while DA, vice versa, polymerizes monomeric actin. Thus, the Glu-and DA-induced reactions are similar in their types and are of a reciprocal nature both in the actin cytoskeleton of MNs in situ and in purified actin in vitro; these effects correlate with suppression of the functional state of MNs under the influence of Glu and with stabilization of this state under the influence of DA. These results agree with the concept on the roles of depolymerization and polymerization of actin in changes of the morphofunctional state of MNs and show that actin of the cytoskeleton of MNs is a cellular target for the actions of Glu and DA. The similarity between the effects of tested neurotransmitters on actin in MNs in situ and in cell-free preparations in vitro allows us to hypothesize that these transmitters can penetrate into the neuron. Neirofiziologiya/Neurophysiology, Vol. 38, No. 4, pp. 320–330, July–August, 2006.  相似文献   

6.
The ultrastructure of cerebellar axosomatic (inhibitory) and axo-dendritic (excitatory) synapses were studied on the Purkinje cells and in the lower molecular layer of guinea-pigs and rats, respectively. It was shown that synaptic contacts of excitatory and inhibitory synapses differed in the existence of desmosome-like structures near the active zones. The classification of synaptic functions according to the ultrastructure of specialized contacts, earlier developed to identify neurons of lower vertebrates, is supposed to be applicable to the nervous system of higher vertebrates.  相似文献   

7.
Desmosome-like contacts (DLC) in afferent chemical synapses of the Mauthner cells (MC) were investigated after application of low and high molecular mass peptide fractions 6 and 9, correspondingly, from the Central Asiatic black scorpion Orthochirus scrobiculosus. Besides, the DLC were examined in condition of a training induced morpho-functional stability of the MC (adaptation) mediated by transformation of actin monomers into polymers. In addition, the structure of DLC was studied after cytochalasin application which disrupts F-actin. Fraction 6 was shown to increase the length of DLC and osmiophily of fibrous material. Similar changes in DLC were caused by adaptation. Fraction 9 decreased the osmiophily of the fibrous material, made DLC asymmetric, but did not influence their length. Similar changes in DLC were seen also after cytochalasin D application. Taking into account our previous data on the role of F-actin in the MC functioning, which were obtained following specific pharmacological treatments, the similarity of ultrastructural changes in DLC after both adaptation and fraction 6 application, on the one hand, and after both cytochalasin D and fraction 9 application, on the other one, enabled us to suggest that these fractions may contain peptides able to exert influence of the actin cytoskeleton.  相似文献   

8.
In experiments on preparations of isolated spinal cord of the tadpoles, intracellular studies have been made on the synaptic potentials evoked in the lumbar motoneurones during total activation of the fibers within the 9th dorsal root. It was shown that primary afferents form monosynaptic contacts with motoneurones at stages XIV-XXV. During larval development, the number of motor cells in which monosynaptic EPSPs are recorded increases, whereas the number of motoneurones with only polysynaptic reactions decreases. From the moment of formation of monosynaptic contacts, transmission in direct sensory-motor synapses is realised by a dual (electrical-chemical) mode. The data obtained are discussed in relation to the problem of evolution of synaptic transmission between heterotypic neurones in vertebrates.  相似文献   

9.
Synapses of the central nervous system (CNS) are specialized cell-cell junctions that mediate intercellular signal transmission from one neuron to another. The directional nature of signal relay requires synaptic contacts to be morphologically asymmetric with distinct protein components, while changes in synaptic communication during neural network formation require synapses to be plastic. Synapse morphology and plasticity require a dynamic actin cytoskeleton. Classical cadherins, which are junctional proteins associated with the actin cytoskeleton, localize to synapses and regulate synaptic adhesion, stability and remodeling. The major intracellular components of cadherin junctions are the catenin proteins, and increasing evidence suggests that cadherin-catenin complexes modulate an array of synaptic processes. Here we review the role of catenins in regulating the development of pre- and postsynaptic compartments and function in synaptic plasticity, with particular focus on their role in regulating the actin cytoskeleton.  相似文献   

10.
Long-term potentiation and depression of synaptic transmission have been considered as cellular mechanisms of memory in studies conducted in recent decades. These studies were predominantly focused on mechanisms underlying plasticity at excitatory synapses. Nevertheless, normal central nervous system functioning requires maintenance of a balance between inhibition and excitation, suggesting existence of similar modulation of glutamatergic and GABAergic synapses. Here we review the involvement of G-protein-coupled receptors in the generation of long-term changes in synaptic transmission of inhibitory synapses. We considered the role of endocannabinoid and glutamate systems, GABAB and opioid receptors in the induction of long-term potentiation and long-term depression in inhibitory synapses. The preand postsynaptic effects of activation of these receptors are also discussed.  相似文献   

11.
Zhuravleva ZH 《Ontogenez》2002,33(3):230-235
We carried out an electron microscopy study of possible synaptic contacts of the neurons of intracortical transplants of the rat brain fascia dentata with targets in the recipient somatosensory cortex. The axons of fascia dentata granular cell and their synaptic terminals could be easily identified in the neocortex due to their distinct morphological features (mossy fibers), although the fascia dentate cells normally do not interact with the neocortex. Thin nonmyelenized mossy fibers were found in both an intermediate zone between the transplant and brain and in the adjacent brain. Their presynaptic buds, like in situ, had large size and formed characteristic terminal, intraterminal, and en passant multiple synaptic contacts and desmosome-like junctions. The aberrant nerve fibers used perykaryons, dendrites of varying diameter, and dendrite spikes of the somatosensory cortex pyramidal neurons as postsynaptic targets in the neocortex. In addition to vacant spaces that appeared in the brain as a result of transplantation, the ingrowing axons induced the formation of additional contact sites: deep invaginations of the plasmalemma of perykaryons, somatic spikes, terminal branchings of dendrites, and dendritic outgrowths of complex branched shape. These aberrant contacts were characterized by the presence of polyribosomes, endoplasmic reticulum cisternae, and mitochondria in the postsynaptic loci. Osmiophility and extension of desmosome-like junctions were also enhanced in such synapses. Thus, it was shown that mossy fibers ingrowing in the recipient neocortex were capable of forming cell-to-cell contacts with signs of functional synapses to atypical cell targets.  相似文献   

12.
We carried out an electron microscopy study of possible synaptic contacts of the neurons of intracortical transplants of the rat brain fascia dentata with targets in the recipient somatosensory cortex. The axons of fascia dentata granular cell and their synaptic terminals could be easily identified in the neocortex due to their distinct morphological features (mossy fibers), although the fascia dentate cells normally do not interact with the neocortex. Thin nonmyelenized mossy fibers were found in both an intermediate zone between the transplant and brain and in the adjacent brain. Their presynaptic buds, like in situ, had large size and formed characteristic terminal, intraterminal, and en passant multiple synaptic contacts and desmosome-like junctions. The aberrant nerve fibers used perykaryons, dendrites of varying diameter, and dendrite spikes of the somatosensory cortex pyramidal neurons as postsynaptic targets in the neocortex. In addition to vacant spaces that appeared in the brain as a result of transplantation, the ingrowing axons induced the formation of additional contact sites: deep invaginations of the plasmalemma of perykaryons, somatic spikes, terminal branchings of dendrites, and dendritic outgrowths of complex branched shape. These aberrant contacts were characterized by the presence of polyribosomes, endoplasmic reticulum cisternae, and mitochondria in the postsynaptic loci. Osmiophility and extension of desmosome-like junctions were also enhanced in such synapses. Thus, it was shown that mossy fibers ingrowing in the recipient neocortex were capable of forming cell-to-cell contacts with signs of functional synapses to atypical cell targets.  相似文献   

13.
D A Moshkov  N R Tiras 《Tsitologiia》1987,29(2):156-160
The cytoskeleton of afferent chemical synapses, with various ultrastructure of contact zones, was examined in the Mauthner cells of the goldfish. The synapses with combined active zones and desmosome-like specialized contacts possessed a well developed cytoskeleton consisting of filaments and microtubules oriented towards the synaptic apposition. Regular arrays of synaptic vesicles oriented in the same direction were observed beyond and near the active zones. The cytoskeleton of the synapses lacking desmosome-like formations was diffusely organized throughout the boutons. The distribution of vesicles in the vicinity of active zones was also not ordered. The role of cytoskeleton in organization of the two morphologically distinct synapses is discussed. A special function of cytoskeleton as an intermediary between synaptoplasm and membrane is regarded as a necessary basis for plasticity of excitatory rather than inhibitory synapses.  相似文献   

14.
Final motor neurons in sympathetic and parasympathetic ganglia receive synaptic inputs from preganglionic neurons. Quantitative ultrastructural analyses have shown that the spatial distribution of these synapses is mostly sparse and random. Typically, only about 1%-2% of the neuronal surface is covered with synapses, with the rest of the neuronal surface being closely enclosed by Schwann cell processes. The number of synaptic inputs is correlated with the dendritic complexity of the target neuron, and the total number of synaptic contacts is related to the surface area of the post-synaptic neuron. Overall, most neurons receive fewer than 150 synaptic contacts, with individual preganglionic inputs providing between 10 and 50 synaptic contacts. This variation is probably one determinant of synaptic strength in autonomic ganglia. Many neurons in prevertebral sympathetic ganglia receive additional convergent synaptic inputs from intestinofugal neurons located in the enteric plexuses. The neurons support these additional inputs via larger dendritic arborisations together with a higher overall synaptic density. There is considerable neurochemical heterogeneity in presynaptic boutons. Some synapses apparently lack most of the proteins normally required for fast transmitter release and probably do not take part in conventional ganglionic transmission. Furthermore, most preganglionic boutons in the ganglionic neuropil do not form direct synaptic contacts with any neurons. Nevertheless, these boutons may well contribute to slow transmission processes that need not require conventional synaptic structures.  相似文献   

15.
In frog ganglia, efficacy of synaptic transmission was analyzed in parallel with the number of synapses at different times after axotomy of sympathetic neurons: the number of synapses was at their minimum at two weeks whereas depression of synaptic transmission was strongest at one month. The relationship between the presence of synaptic dense specializations and the existence of efficacious transmission is discussed.  相似文献   

16.
S Schacher  P G Montarolo 《Neuron》1991,6(5):679-690
FMRFamide evokes both short-term and long-term inhibition of synapses between mechanosensory and motor neurons in Aplysia. We report here, using dissociated cell culture and low-light epifluorescence video microscopy, that depression lasting 24 hr of sensorimotor synapses evoked by four brief applications of FMRFamide is accompanied by a significant loss of sensory cell varicosities and neurites. These structural changes in the sensory cells require the presence of the target motor cell L7. Because the loss of structures known to contain transmitter release sites correlates significantly with the changes in the amplitude of the excitatory postsynaptic potential in L7, our results suggest that the structural changes evoked by FMRFamide reflect a loss of synaptic contacts. Thus, long-term depression parallels long-term facilitation of the sensorimotor synapse produced by serotonin in that both forms of heterosynaptic plasticity involve target-dependent modulation of the number of presynaptic varicosities.  相似文献   

17.
Electron microscopic studies on the spinal motor nuclei in amphibians indicate significant diversity in chemical synapses formed on motoneurones by axonal endings of supra- and intraspinal systems. High ultrastructural specialization was observed among axosomatic, axodendritic and axoaxonal synapses. Several types of axo-spine synapses and axodentritic synaptic complexes of the "glomerular" type were revealed. New data on ultrastructural peculiarities of chemical synapses presented in this paper, together with earlier detailed data on morphologically mixed and electrotonic synapses, increase our knowledge of evolutionary trends in synaptic organization of motoneurones in the spinal cord and suggest the existence of a complex mechanism of integration of synaptic influences in the spinal cord of lower vertebrates.  相似文献   

18.
Action of cytochalasin D on cytoskeletal networks   总被引:53,自引:32,他引:21       下载免费PDF全文
Extraction of SC-1 cells (African green monkey kidney) with the detergent Triton X-100 in combination with stereo high-voltage electron microscopy of whole mount preparations has been used as an approach to determine the mode of action of cytochalasin D on cells. The cytoskeleton of extracted BSC-1 cells consists of substrate-associated filament bundles (stress fibers) and a highly cross-linked network of four major filament types extending throughout the cell body; 10-nm filaments, actin microfilaments, microtubules, and 2- to 3-nm filaments. Actin filaments and 2- to 3-nm filaments form numerous end- to-side contacts with other cytoskeletal filaments. Cytochalasin D treatment severely disrupts network organization, increases the number of actin filament ends, and leads to the formation of filamentous aggregates or foci composed mainly of actin filaments. Metabolic inhibitors prevent filament redistribution, foci formation, and cell arborization, but not disorganization of the three-dimensional filament network. In cells first extracted and then treated with cytochalasin D, network organization is disrupted, and the number of free filament ends is increased. Supernates of preparations treated in this way contain both short actin filaments and network fragments (i.e., actin filaments in end-to-side contact with other actin filaments). It is proposed that the dramatic effects of cytochalasin D on cells result from both a direct interaction of the drug with the actin filament component of cytoskeletal networks and a secondary cellular response. The former leads to an immediate disruption of the ordered cytoskeletal network that appears to involve breaking of actin filaments, rather than inhibition of actin filament-filament interactions (i.e., disruption of end-to-side contacts). The latter engages network fragments in an energy-dependent (contractile) event that leads to the formation of filament foci.  相似文献   

19.
Long-term memory and its putative synaptic correlates the late phases of both long-term potentiation and long-term depression require enhanced protein synthesis. On the basis of recent data on translation-dependent synaptic plasticity and on the supralinear effect of activation of nearby synapses on action potential generation, we propose a model for the formation of long-term memory engrams at the single neuron level. In this model, which we call clustered plasticity, local translational enhancement, along with synaptic tagging and capture, facilitates the formation of long-term memory engrams through bidirectional synaptic weight changes among synapses within a dendritic branch.  相似文献   

20.
By means of light and electron microscopy methods structural peculiarities of motor nuclei have been studied in the rat spinal cord (17 animals) on the 1st-3d and on the 10th-18th days of postnatal ontogenesis. Synaptic junctions of the gap type are revealed; they are considered as electrotonic synapses. Dendro-somatic and dendrodendritic synaptic junctions of the gap type are found. Together with the electrotonic synapses, morphologically mixed synapses of axo-somatic and axo-axonal types are disclosed; they contain, besides organells, specific for chemical synapses, close opposition areas of pre- and postsynaptic membranes of the gap junction type. Morphologically mixed synapses occur in neuropil of the motor nuclei of the spinal cord in young rats of all age groups studied. Homologous synapses are detected in the motor nuclei of the white mouse spinal cord. Synaptic junctions of the gap type in the mammalian spinal cord could be a substrate of electrical interaction between its motor neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号