首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat liver L-type pyruvate kinase was phosphorylated in vitro by a Ca2+/calmodulin-dependent protein kinase purified from rabbit liver. The calmodulin (CaM)-dependent kinase catalyzed incorporation of up to 1.7 mol of 32P/mol of pyruvate kinase subunit; maximum phosphorylation was associated with a 3.0-fold increase in the K0.5 for P-enolpyruvate. This compares to incorporation of 0.7 to 1.0 mol of 32P/mol catalyzed by the cAMP-dependent protein kinase with a 2-fold increase in K0.5 for P-enolpyruvate. When [32P]pyruvate kinase, phosphorylated by the CaM-dependent protein kinase, was subsequently incubated with 5 mM ADP and cAMP-dependent protein kinase (kinase reversal conditions), 50-60% of the 32PO4 was removed from pyruvate kinase, but the K0.5 for P-enolpyruvate decreased only 20-30%. Identification of 32P-amino acids after partial acid hydrolysis showed that the CaM-dependent protein kinase phosphorylated both threonyl and seryl residues (ratio of 1:2, respectively) whereas the cAMP-dependent protein kinase phosphorylated only seryl groups. The two phosphorylation sites were present in the same 3-4-kDa CNBr fragment located near the amino terminus of the enzyme subunit. These results indicate that the CaM-dependent protein kinase catalyzed phosphorylation of L-type pyruvate kinase at two discrete sites. One site is apparently the same serine which is phosphorylated by the cAMP-dependent protein kinase. The second site is a unique threonine residue whose phosphorylation also inactivates pyruvate kinase by elevating the K0.5 for P-enolpyruvate. These results may account for the Ca2+-dependent phosphorylation of pyruvate kinase observed in isolated hepatocytes.  相似文献   

2.
Rat brain type II (beta) protein kinase C (PKC) was phosphorylated by rat lung casein kinase II (CK-II). Neither type I (gamma) nor type III (alpha) PKC was significantly phosphorylated by CK-II. CK-II incorporated 0.2-0.3 mol of phosphate into 1 mol of type II PKC. This phosphate was located at the single seryl residue (Ser-11) in the V1-variable region of the regulatory domain of the PKC molecule. A glutamic acid cluster was located at the carboxyl-terminal side of Ser-11, showing the consensus sequence for phosphorylation by CK-II. The velocity of this phosphorylation was enhanced by the addition of Ca2+, diolein, and phosphatidylserine, which are all required for the activation of PKC. Phosphorylation of casein or synthetic oligopeptides by CK-II was not affected by Ca2+, diolein, or phosphatidylserine. Available evidence suggests that CK-II phosphorylates preferentially the activated form of type II PKC. It remains unknown, however, whether this reaction has a physiological significance.  相似文献   

3.
The site in calcineurin, the Ca2+/calmodulin (CaM)-dependent protein phosphatase, which is phosphorylated by Ca2+/CaM-dependent protein kinase II (CaM-kinase II) has been identified. Analyses of 32P release from tryptic and cyanogen bromide peptides derived from [32P]calcineurin plus direct sequence determination established the site as -Arg-Val-Phe-Ser(PO4)-Val-Leu-Arg-, which conformed to the consensus phosphorylation sequence for CaM-kinase II (Arg-X-X-Ser/Thr-). This phosphorylation site is located at the C-terminal boundary of the putative CaM-binding domain in calcinerin (Kincaid, R. L., Nightingale, M. S., and Martin, B. M. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 8983-8987), thereby accounting for the observed inhibition of this phosphorylation when Ca2+/CaM is bound to calcineurin. Since the phosphorylation site sequence also contains elements of the specificity determinants for Ca2+/phospholipid-dependent protein kinase (protein kinase C) (basic residues both N-terminal and C-terminal to Ser/Thr), we tested calcineurin as a substrate for protein kinase C. Protein kinase C catalyzed rapid stoichiometric phosphorylation, and the characteristics of the reaction were the same as with CaM-kinase II: 1) the phosphorylation was blocked by binding of Ca2+/CaM to calcineurin; 2) phosphorylation partially inactivated calcineurin by increasing the Km (from 9.9 +/- 1.1 to 17.5 +/- 1.1 microM 32P-labeled myosin light chain); and 3) [32P]calcineurin exhibited very slow autodephosphorylation but was rapidly dephosphorylated by protein phosphatase IIA. Tryptic and thermolytic 32P-peptide mapping and sequential phosphoamino acid sequence analysis confirmed that protein kinase C and CaM-kinase II phosphorylated the same site.  相似文献   

4.
Dihydropyridine-sensitive Ca2+ channels exist in many different types of cells and are believed to be regulated by various protein phosphorylation and dephosphorylation reactions. The present study concerns the phosphorylation of a putative component of dihydropyridine-sensitive Ca2+ channels by the calcium and phospholipid-dependent protein kinase, protein kinase C. A skeletal muscle peptide of 165 kDa, which is known to contain receptors for dihydropyridines, phenylalkylamines, and other Ca2+ channel effectors, was found to be an efficient substrate for protein kinase C when the peptide was phosphorylated in its membrane-bound state. Protein kinase C incorporated 1.5-2.0 mol of phosphate/mol of peptide within 2 min into the 165-kDa peptide in incubations carried out at 37 degrees C. In contrast to the membrane-bound peptide, the purified 165-kDa peptide in detergent solution was phosphorylated to a markedly less extent than its membrane-bound counterpart; less than 0.1 mol of phosphate/mol of peptide was incorporated. Preincubation of the membranes with several types of drugs known to be Ca2+ channel activators or inhibitors had no specific effects on the rate and/or extent of phosphorylation of the 165-kDa peptide by protein kinase C. The phosphorylation of the membrane-bound 165-kDa peptide by protein kinase C was compared to that catalyzed by cAMP-dependent protein kinase and was found to be not additive. Prior phosphorylation of the 165-kDa peptide by cAMP-dependent protein kinase prevented subsequent phosphorylation of the peptide by protein kinase C. Phosphoamino acid analysis indicated that protein kinase C phosphorylated the 165-kDa peptide at both serine and threonine residues. Phosphopeptide mapping experiments showed that protein kinase C phosphorylated one unique site in the 165-kDa peptide, and, in addition, other sites that were phosphorylated by either cAMP-dependent protein kinase or a multifunctional Ca2+/calmodulin-dependent protein kinase. The results suggest that the 165-kDa dihydropyridine/phenylalkylamine receptor could serve as a physiological substrate of protein kinase C in intact cells. It is therefore possible that the regulation of dihydropyridine-sensitive Ca2+ channels by activators of protein kinase C may occur at the level of this peptide.  相似文献   

5.
Smooth muscle myosin light chain kinase (MLC-kinase) was rapidly phosphorylated in vitro by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) to a molar stoichiometry of 2.77 +/- 0.15 associated with a threefold increase in the concentration of calmodulin (CaM) required for half-maximal activation of MLC-kinase. Binding of CaM to MLC-kinase markedly reduced the phosphorylation stoichiometry to 0.21 +/- 0.05 and almost completely inhibited phosphorylation of sites in two peptides (32P-peptides P1 and P2) with reduced phosphorylation of peptide P3. By analogy, cAMP-dependent protein kinase phosphorylated MLC-kinase to a stoichiometry of 3.0 or greater in the absence of CaM with about a threefold decrease in the apparent affinity of MLC-kinase for CaM. Binding of CaM to MLC-kinase inhibited the phosphorylation to 0.84 +/- 0.13. Complete tryptic digests contained two major 32P-peptides as reported previously. One of the peptides, whose phosphorylation was inhibited in the presence of excess calmodulin, appeared to be the same as P2. Automated Edman sequence analysis suggested that both CaM-kinase II and cAMP-dependent protein kinase phosphorylated this peptide at the second of the two adjacent serine residues located at the C-terminal boundary of the CaM-binding domain. However, the other peptide phosphorylated by cAMP-dependent protein kinase, regardless of whether CaM was bound, was different from P1 and P3. Thus, MLC-kinase has a regulatory phosphorylation site(s) that is phosphorylated by the autophosphorylated form of CaM-kinase II and is blocked by Ca2+/CaM-binding.  相似文献   

6.
Phosphorylation of the cystic fibrosis transmembrane conductance regulator.   总被引:17,自引:0,他引:17  
Regulation of epithelial chloride flux, which is defective in patients with cystic fibrosis, may be mediated by phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR) by cyclic AMP-dependent protein kinase (PKA) or protein kinase C (PKC). Part of the R-domain of CFTR (termed CF-2) was expressed in and purified from Escherichia coli. CF-2 was phosphorylated on seryl residues by PKA, PKC, cyclic GMP-dependent protein kinase (PKG), and calcium/calmodulin-dependent protein kinase I (CaM kinase I). Direct amino acid sequencing and peptide mapping of CF-2 revealed that serines 660, 700, 737, and 813 as well as serine 768, serine 795, or both were phosphorylated by PKA and PKG, and serines 686 and 790 were phosphorylated by PKC. CFTR was phosphorylated in vitro by PKA, PKC, or PKG on the same sites that were phosphorylated in CF-2. Kinetic analysis of phosphorylation of CF-2 and of synthetic peptides confirmed that these sites were excellent substrates for PKA, PKC, or PKG. CFTR was immunoprecipitated from T84 cells labeled with 32Pi. Its phosphorylation was stimulated in response to agents that activated either PKA or PKC. Peptide mapping confirmed that CFTR was phosphorylated at several sites identified in vitro. Thus, regulation of CFTR is likely to occur through direct phosphorylation of the R-domain by protein kinases stimulated by different second messenger pathways.  相似文献   

7.
Keratins, constituent proteins of intermediate filaments of epithelial cells, are phosphoproteins containing phosphoserine and phosphothreonine. We examined the in vitro phosphorylation of keratin filaments by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II. When rat liver keratin filaments reconstituted by type I keratin 18 (molecular mass 47 kDa; acidic type) and type II keratin 8 (molecular mass 55 kDa; basic type) in a 1:1 ratio were used as substrates, all the protein kinases phosphorylated both of the constituent proteins to a significant rate and extent, and disassembly of the keratin filament structure occurred. Kinetic analysis suggested that all these protein kinases preferentially phosphorylate keratin 8, compared to keratin 18. The amino acid residues of keratins 8 and 18 phosphorylated by cAMP-dependent protein kinase or protein kinase C were almost exclusively serine, while those phosphorylated by Ca2+/calmodulin-dependent protein kinase II were serine and threonine. Peptide mapping analysis indicated that these protein kinases phosphorylate keratins 8 and 18 in a different manner. These observations gave the way for in vivo studies of the role of phosphorylation in the reorganization of keratin filaments.  相似文献   

8.
The phosphorylation of the alpha-subunit of Na+/K(+)-transporting ATPase (Na,K-ATPase) by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) was characterized in purified enzyme preparations of Bufo marinus kidney and duck salt gland and in microsomes of Xenopus oocytes. In addition, we have examined cAMP and phorbol esters, which are stimulators of PKA and PKC, respectively, for their ability to provoke the phosphorylation of alpha-subunits of Na,K-ATPase in homogenates of Xenopus oocytes. In the enzyme from the duct salt gland, phosphorylation by PKA and PKC occurs on serine and threonine residues, whereas in the enzyme from B. marinus kidney and Xenopus oocytes, phosphorylation by PKA occurs only on serine residues. Phosphopeptide analysis indicates that a site phosphorylated by PKA resides in a 12-kDa fragment comprising the C terminus of the polypeptide. Studies of phosphorylation performed on homogenates of Xenopus oocytes show that not only endogenous oocyte Na,K-ATPase but also exogenous Xenopus Na,K-ATPase expressed in the oocyte by microinjection of cRNA can be phosphorylated in response to stimulation of oocyte PKA and PKC. In conclusion, these data are consistent with the possibility that the alpha-subunit of Na,K-ATPase can serve as a substrate for PKA and PKC in vivo.  相似文献   

9.
DARPP-32 (dopamine- and cAMP-regulated phosphorprotein, Mr = 32,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) is an inhibitor of protein phosphatase-1 and is enriched in dopaminoceptive neurons possessing the D1 dopamine receptor. Purified bovine DARPP-32 was phosphorylated in vitro by casein kinase II to a stoichiometry greater than 2 mol of phosphate/mol of protein whereas two structurally and functionally related proteins, protein phosphatase inhibitor-1 and G-substrate, were poor substrates for this enzyme. Sequencing of chymotryptic and thermolytic phosphopeptides from bovine DARPP-32 phosphorylated by casein kinase II suggested that the main phosphorylated residues were Ser45 and Ser102. In the case of rat DARPP-32, the identification of these phosphorylation sites was confirmed by manual Edman degradation. The phosphorylated residues are located NH2-terminal to acidic amino acid residues, a characteristic of casein kinase II phosphorylation sites. Casein kinase II phosphorylated DARPP-32 with an apparent Km value of 3.4 microM and a kcat value of 0.32 s-1. The kcat value for phosphorylation of Ser102 was 5-6 times greater than that for Ser45. Studies employing synthetic peptides encompassing each phosphorylation site confirmed this difference between the kcat values for phosphorylation of the two sites. In slices of rat caudate-putamen prelabeled with [32P]phosphate, DARPP-32 was phosphorylated on seryl residues under basal conditions. Comparison of thermolytic phosphopeptide maps and determination of the phosphorylated residue by manual Edman degradation identified the main phosphorylation site in intact cells as Ser102. In vitro, DARPP-32 phosphorylated by casein kinase II was dephosphorylated by protein phosphatases-1 and -2A. Phosphorylation by casein kinase II did not affect the potency of DARPP-32 as an inhibitor of protein phosphatase-1, which depended only on phosphorylation of Thr34 by cAMP-dependent protein kinase. However, phosphorylation of DARPP-32 by casein kinase II facilitated phosphorylation of Thr34 by cAMP-dependent protein kinase with a 2.2-fold increase in the Vmax and a 1.4-fold increase in the apparent Km. Phosphorylation of DARPP-32 by casein kinase II in intact cells may therefore modulate its phosphorylation in response to increased levels of cAMP.  相似文献   

10.
Studies have suggested that the expression, translocation, and function of alpha4beta2 nicotinic receptors may be modulated by alpha4 subunit phosphorylation, but little direct evidence exists to support this idea. The objective of these experiments was to identify specific serine/threonine residues on alpha4 subunits that are phosphorylated in vivo by cAMP-dependent protein kinase and protein kinase C (PKC). To accomplish this, DNAs coding for human alpha4 subunits containing alanines in place of serines/threonines predicted to represent phosphorylation sites were constructed, and transiently transfected with the DNA coding for wild-type beta2 subunits into SH-EP1 cells. Cells were pre-incubated with (32)Pi and incubated in the absence or presence of forskolin or phorbol 12,13-dibutyrate. Immunoprecipitated alpha4 subunits were subjected to immunoblot, autoradiographic and phosphoamino acid analyses, and two-dimensional phosphopeptide mapping. Results confirmed the presence of two alpha4 protein bands, a major band of 71/75 kDa and a minor band of 80/85 kDa. Phosphoamino acid analysis of the major band indicated that only serine residues were phosphorylated. Phosphopeptide maps demonstrated that Ser362 and 467 on the M3/M4 cytoplasmic domain of the alpha4 subunit represent major cAMP-dependent protein kinase phosphorylation sites, while Ser550 also contained within this major intracellular loop is a major site for protein kinase C phosphorylation.  相似文献   

11.
The effect of direct phosphorylation by recombinant p44erk1 mitogen-activated protein kinase on the inhibitory activity of caldesmon and its C-terminal fragment H1 was studied in vitro. Neither inhibition of actin-tropomyosin activated ATPase of heavy meromyosin by caldesmon or H1, nor inhibition of the actin-tropomyosin motility over heavy meromyosin by H1 was significantly affected by the phosphorylation while only a moderate effect on the actin-activated component of heavy meromyosin ATPase inhibition was observed. Phosphopeptide mapping of caldesmon immunoprecipitated from [32P]PO4-labelled intact gizzard strips revealed that it is predominantly phosphorylated at mitogen-activated protein kinase sites in unstimulated tissue and that it is stimulated for 1 h with phorbol 12,13-dibutyrate. We find that phorbol 12,13-dibutyrate also induces a transitory phosphorylation of caldesmon peaking at 15 min after addition and this phosphorylation is not attributed to mitogen-activated protein kinase, protein kinase C, Ca2+/calmodulin-dependent kinase II or casein kinase II. We suggest that a yet unidentified kinase, rather than mitogen-activated protein kinase, may be involved in regulation of the caldesmon function in vivo.  相似文献   

12.
Purified lamb thymus high-mobility-group (HMG) proteins 1, 2, and 17 have been investigated as potential substrates for the Ca2+-phospholipid-dependent protein kinase and the cAMP-dependent protein kinase. HMG proteins 1, 2, and 17 are phosphorylated by the Ca2+-phospholipid-dependent protein kinase; the reactions are totally Ca2+ and lipid dependent and are not inhibited by the inhibitor protein of the cAMP-dependent protein kinase. HMG 17 is phosphorylated predominantly in a single seryl residue, Ser 24 in the sequence Gln-Arg-Arg-Ser 24-Ala-Arg-Leu-Ser 28-Ala-Lys, with the second seryl moiety, Ser 28, modified to a markedly lesser degree. HMGs 1 and 2 are also phosphorylated in only seryl residues but with each there are multiple phosphorylation sites. HMG 17, but not HMG 1 or 2, is also phosphorylated by the cAMP-dependent protein kinase with the site phosphorylated being the minor of the two phosphorylated by the Ca2+-phospholipid-dependent protein kinase; the Km for phosphorylation by the cAMP-dependent enzyme is 50-fold higher than that by the Ca2+-phospholipid-dependent enzyme. HMG 17 is an equally effective substrate for the Ca2+-phospholipid-dependent protein kinase either as the pure protein or bound to nucleosomes. Preliminary evidence has indicated that lamb thymus HMG 14 is also a substrate for the Ca2+-phospholipid-dependent enzyme. It is phosphorylated with a Km similar to that of HMG 17 (4-6 microM), and a comparison of tryptic peptides suggests that it is phosphorylated in a site that is homologous with Ser 24 of HMG 17 and distinct from the sites phosphorylated by the cAMP-dependent protein kinase.  相似文献   

13.
Role of protein kinase C in the regulation of rat liver glycogen synthase   总被引:1,自引:0,他引:1  
Rat liver glycogen synthase was phosphorylated by purified protein kinase C in a Ca2+- and phospholipid-dependent fashion to 1-1.4 mol PO4/subunit. Analysis of the 32P-labeled tryptic peptides derived from the phosphorylated synthase by isoelectric focusing and two-dimensional peptide mapping revealed the presence of a major radioactive peptide. The sites in liver synthase phosphorylated by protein kinase C appears to be different from those phosphorylated by other kinases. Prior phosphorylation of the synthase by protein kinase C has no significant effect on the subsequent phosphorylation by glycogen synthase (casein) kinase-1 or kinase Fa, but prevents the synthase from further phosphorylation by cAMP-dependent protein kinase, Ca2+/calmodulin-dependent protein kinase, phosphorylase kinase, or casein kinase-2. Additive phosphorylation of liver glycogen synthase can be observed by the combination of protein kinase C with the former set of kinases but not with the latter. Phosphorylation of liver synthase by protein kinase C alone did not cause an inactivation nor did the combination of this kinase with glycogen synthase (casein) kinase-1 or kinase Fa produce a synergistic effect on the inactivation of the synthase. Based on these findings we conclude that the phorbol ester-induced inactivation of glycogen synthase previously observed in hepatocytes cannot be accounted for entirely by the activation of protein kinase C.  相似文献   

14.
Casein kinase I (CK-I) from skeletal muscle was stimulated 2-3 fold by 0.25-1 mM spermine. The polyamine also stimulated the phosphorylation of glycogen synthase by another casein kinase purified from aortic smooth muscle [DiSalvo et al. (1986) Biochem. Biophys. Res. Commun. 136, 789-796]. Phosphopeptide maps and phosphoamino acid analysis of [32P]glycogen synthase revealed that smooth muscle casein kinase phosphorylated glycogen synthase in the same sites that undergo phosphorylation by CK-I. The stimulatory effect of spermine on glycogen synthase kinase activity of CK-I was accompanied by increased phosphorylation of all peptide sites of glycogen synthase. Increased phosphorylation was observed in both seryl and threonyl residues. Higher concentrations (4 mM) of spermine inhibited CK-I activity by about 50%. These results indicate that aortic smooth muscle casein kinase is a CK-I enzyme and that skeletal and smooth muscle CK-I can be modulated by spermine.  相似文献   

15.
Acetylcholine receptor (AChR) from Torpedo electric organ in its membrane-bound or solubilized form is phosphorylated by the Ca2+/phospholipid-dependent protein kinase (PKC). The subunit specificity for PKC is different from that observed for cAMP-dependent protein kinase (PKA). Whereas PKC phosphorylates predominantly the delta subunit and the phosphorylation of the gamma subunit by this enzyme is very low, PKA phosphorylates both subunits to a similar high extent. We have extended our phosphorylation studies to a synthetic peptide from the gamma subunit, corresponding to residues 346-359, which contains a consensus PKA phosphorylation site. This synthetic peptide is phosphorylated by both PKA and PKC, suggesting that in the intact receptor both kinases may phosphorylate the gamma subunit at a similar site, as has been previously demonstrated by us for the delta subunit [Safran, A., et al. (1987) J. Biol. Chem. 262, 10506-10510]. The diverse pattern of phosphorylation of AChR by PKA and PKC may play a role in the regulation of its function.  相似文献   

16.
Protein kinase C, purified to near homogeneity from the brain, has been tested toward a variety of synthetic peptide substrates including different phosphorylatable residues. While it proved totally inactive toward the tyrosyl peptide Asp-Ala-Glu-Tyr-Ala-Ala-Arg-Arg-Arg-Gly, as well as toward several more or less acidic seryl peptides, it phosphorylates with a Ca2+/phospholipid-dependent mechanism, at seryl and/or threonyl residues, many basic peptides, some of which are also good substrates for cAMP-dependent protein kinase (A-kinase). Among the peptides tested, however, the best substrate for protein kinase C, with kinetic constants comparable to those of histones, is the nonapeptide Gly-Ser-Arg6-Tyr, which is not a substrate for A-kinase. Moreover, although the peptide Pro-Arg5-Ser-Ser-Arg-Pro-Val-Arg is a good substrate for both kinases, its derivative with ornitines replacing arginines is phosphorylated only by protein kinase C. Some typical substrates of A-kinase on the other hand, like the peptides Phe-Arg2-Leu-Ser-Ile-Ser-Thr-Glu-Ser and Arg2-Ala-Ser-Val-Ala, are phosphorylated by protein kinase C rather slowly and with unfavourable kinetic constants. It is concluded that, while both protein kinase C and A-kinase need basic groups close to the phosphorylatable residues, their primary structure determinants are quite distinct.  相似文献   

17.
The phosphorylation state of six cytoplasmic proteins is increased following treatment of isolated rat hepatocytes with hormones that elevate free intracellular Ca2+ levels (Garrison, J. C. and Wagner, J. D. (1982) J. Biol. Chem. 257, 13135-13143). Tryptic 32P-phosphopeptide maps of two of the substrates, pyruvate kinase and a 49,000-dalton protein, the major 32P-labeled protein in hepatocytes, were prepared following stimulation of cells with vasopressin, a Ca2+-linked hormone. Peptide maps of the 49,000-dalton protein phosphorylated in vitro with the recently identified multifunctional Ca2+/calmodulin-dependent protein kinase contained phosphopeptides identical to those observed in the intact cell, suggesting that this kinase is activated in response to Ca2+-mobilizing hormones. Similar in vitro phosphorylation experiments with pyruvate kinase suggested that the Ca2+/calmodulin-dependent protein kinase can phosphorylate not only the serine residues observed following vasopressin stimulation of the intact cell but also additional threonine residues. Both pyruvate kinase and the 49,000-dalton protein are also phosphorylated in the hepatocyte in response to glucagon and in vitro by the cAMP-dependent protein kinase. Both vasopressin and glucagon appear to stimulate the phosphorylation of identical serine residues in pyruvate kinase but only vasopressin enhances the phosphorylation of certain sites in the 49,000-dalton protein. Comparison of the tryptic phosphopeptide maps of these substrates phosphorylated in vitro with either the Ca2+/calmodulin-dependent protein kinase or the cAMP-dependent protein kinase suggests that the Ca2+-dependent kinase can phosphorylate unique sites in both substrates. It appears to share specificity at other sites with the cAMP-dependent protein kinase. Overall, the results suggest that the multifunctional Ca2+/calmodulin-dependent protein kinase plays an important role in the response of the hepatocyte to a Ca2+ signal.  相似文献   

18.
The rat pituitary cell line GH3 contains a high molecular weight microtubule-associated protein with properties characteristic of microtubule-associated protein-2 (MAP-2). The 280-kDa protein is selectively immunoprecipitated by antibodies to authentic bovine brain MAP-2 and is phosphorylated at appropriate sites by cAMP-dependent protein kinase (cAMP kinase) and multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase). Although MAP-2 is a minor cellular constituent, it can be immunoprecipitated from [32P]Pi-labeled GH3 cells and shown to contain a high level of basal phosphorylation. Vasoactive intestinal peptide, forskolin, 3-isobutyl-1-methylxanthene, or cholera toxin, treatments which increase cellular cAMP levels, or dibutyryl cAMP stimulate phosphorylation of specific sites on MAP-2 without significantly increasing its high state of basal phosphorylation. Phosphopeptide mapping reveals that the sites phosphorylated by cAMP kinase in vitro are the same sites whose phosphorylation in situ increases following stimulation of GH3 with agents that activate cAMP kinase. Increasing intracellular Ca2+ levels in GH3 cells also stimulates phosphorylation of MAP-2 but at sites distinct from those phosphorylated following treatment with cAMP inducing agonists. Phosphopeptide mapping indicates that the sites phosphorylated by CaM kinase in vitro are the same sites whose phosphorylation in situ increases following Ca2(+)-mediated stimulation. We conclude that activation of cAMP- and Ca2(+)-based signaling pathways leads to phosphorylation of MAP-2 in GH3 cells and that cAMP kinase and CaM kinase mediate phosphorylation by these pathways, respectively.  相似文献   

19.
A unique feature of neuronal calcium/calmodulin-stimulated protein kinase II (CaM-PK II) is its autophosphorylation. A number of sites are involved and, depending on the in vitro conditions used, three serine and six threonine residues have been tentatively identified as autophosphorylation sites in the alpha subunit. These sites fall into three categories. Primary sites are phosphorylated in the presence of calcium and calmodulin, but under limiting conditions of temperature, ATP, Mg2+, or time. Secondary sites are phosphorylated in the presence of calcium and calmodulin under nonlimiting conditions. Autonomous sites are phosphorylated in the absence of calcium and calmodulin after initial phosphorylation of Thr-286. Mechanisms that lead to a decrease in CaM-PK II autophosphorylation include the thermolability of the enzyme and the activity of protein phosphatases. A range of in vitro inhibitors of CaM-PK II autophosphorylation have recently been identified. Autophosphorylation of CaM-PK II leads to a number of consequences in vitro, including generation of autonomous activity and subcellular redistribution, as well as alterations in conformation, activity, calmodulin binding, substrate specificity, and susceptibility to proteolysis. It is established that CaM-PK II is autophos-phorylated in neuronal cells under basal conditions. Depolarization and/or activation of receptors that lead to an increase in intracellular calcium induces a marked rise in the autophosphorylation of CaM-PK II in situ. The incorporation of phosphate is mainly found on Thr-286, but other sites are also phosphorylated at a slower rate. One consequence of the increase in CaM-PK II autophosphorylation in situ is an increase in the level of autonomous kinase activity. It is proposed that the formation of an autonomous enzyme is only one of the consequences of CaM-PK II autophosphorylation in situ and that some of the other consequences observed in vitro will also be seen. CaM-PK II is involved in the control of neuronal plasticity, including neurotransmitter release and long-term modulation of postreceptor events. In order to understand the function of CaM-PK II, it will be essential to ascertain more fully the mechanisms of its autophosphorylation in situ, including especially the sites involved, the consequences of this autophosphorylation for the kinase activity, and the relationships between the state of CaM-PK II autophosphorylation and the physiological events within neurons.  相似文献   

20.
Voltage-dependent L-type calcium (Ca) channels are heteromultimeric proteins that are regulated through phosphorylation by cAMP-dependent protein kinase (PKA). We demonstrated that the beta 2 subunit was a substrate for PKA in intact cardiac myocytes through back-phosphorylation experiments. In addition, a heterologously expressed rat beta 2a subunit was phosphorylated at two sites in vitro by purified PKA. This beta 2a subunit contains two potential consensus sites for PKA-mediated phosphorylation at Thr164 and Ser591. However, upon mutation of both of these residues to alanines, the beta 2a subunit remained a good substrate for PKA. The actual sites of phosphorylation on the beta 2a subunit were identified by phosphopeptide mapping and microsequencing. Phosphopeptide maps of a bacterially expressed beta 2a subunit demonstrated that this subunit was phosphorylated similarly to the beta 2 subunit isolated from heart tissue and that the phosphorylation sites were contained in the unique C-terminal region. Microsequencing identified three serine residues, each of which conformed to loose consensus sites for PKA-mediated phosphorylation. Mutation of these residues to alanines resulted in the loss of the PKA-mediated phosphorylation of the beta 2a subunit. The results suggest that phosphorylation of the beta 2a subunit by PKA occurs at three loose consensus sites for PKA in the C-terminus and not at either of the two strong consensus sites for PKA. The results also highlight the danger of assuming that consensus sites represent actual sites of phosphorylation. The actual sites of PKA-mediated phosphorylation are conserved in most beta 2 subunit isoforms and thus represent potential sites for regulation of channel activity. The sites phosphorylated by PKA are not substrates for protein kinase C (PKC), as the mutated beta 2 subunits lacking PKA sites remained good substrates for PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号