首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effects of aging on Sertoli cell-germ cell interactions from Brown Norway rats using the induction of four specific mRNAs as markers. The testes from aging (24 mo old) Brown Norway rats can be normal size or regressed. One marker, a von Ebner's-like protein, is expressed in coculture and "in vivo" in germ cells from normal testes of 6- and 24-mo-old rats but not in germ cells from regressed testes of 24-mo-old rats. A second germ cell marker, the Huntington disease protein, is expressed in all germ cells. Two Sertoli cell markers, a serotonin receptor and a novel gene, are induced in Sertoli cells by meiotic germ cells. The serotonin receptor mRNA is expressed in Sertoli cells from 20-day, 6-mo, and 24-mo normal testes but not in those from 24-mo regressed testes. The novel gene is induced in Sertoli cells from all testes. We conclude that Sertoli cells from aged regressed testes are unable to respond to selective signals from germ cells from young rats, and germ cells from regressed testes show a similar selective loss. Such disruptions in communication between Sertoli cells and germ cells likely contribute to germ cell loss during aging.  相似文献   

2.
A technique is described for obtaining a Sertoli cell-enriched and a germ cell-enriched fraction from immature rat testes. Sertoli cell-germ cell associations were obtained by incubating washed seminiferous tubule fragments with Collagenase and Pancreatin. They were then manually dissociated into a suspension comprising Sertoli cells as well as the various germ cell types characteristic for a given day of ontogeny. Fractionation into a Sertoli cell-enriched fraction and a germ cell-enriched fraction was effected by centrifugation following layering over a stepwise gradient of Ficoll-400. While the time-span compares favourably with other procedures reported in the literature, it is believed this is the first time a method is described that enables the simultaneous recovery of both the Sertoli cells and the germ cells.  相似文献   

3.
4.
Previous studies from this laboratory have shown that Sertoli cell-enriched culture medium contained two immunologically and structurally related proteins designated CMB-22 and CMB-23 with Mr of 37,000 and 40,000, respectively. We have now demonstrated that both CMB-22 and CMB-23 are monomeric proteins with the following NH2-terminal amino acid sequences: CMB-22, NH2-TPDPSLDVEWNEWRTKHGKTYNMNEERLKR; CMB-23, NH2-XAPXPDPSLDVEXNEXRTK. These sequences are virtually identical except that CMB-23 has three extra NH2 terminus amino acids of X-A-P. Comparison of these sequences with those in the Protein Identification Resource revealed that they are unique proteins. CMB-22 and CMB-23 are highly concentrated in testes and their levels in this tissue increase with age. Studies using [35S]methionine incorporation and immunoprecipitation demonstrated that Sertoli cells synthesize and secrete these proteins in vitro. Because they seem not to have been isolated previously, are concentrated in and synthesized by the testes, and are structurally related, we propose that CMB-22 and CMB-23 be designated testin I and testin II, respectively. The distribution of these proteins in biological fluids were compared with those of testibumin and rat androgen binding protein (rABP), two other Sertoli cell proteins. The results suggest that testins, unlike testibumin and rABP, are not transported to the epididymis. Although the amount of testins secreted by Sertoli cells in vitro is similar to that of testibumin and rABP, the concentrations in testis and rete testis fluid are several orders of magnitude less than that of testibumin and rABP. These observations suggest that the secretion of these proteins in vivo might be suppressed by germ cells. The fact that 10 times more testins are secreted by tubules from immature rats than by those from adult rats and that there is an increase in the testicular content of testins following a single dose of busulfan, which depleted the germ cells from the seminiferous epithelium, supports this hypothesis. Thus, the secretion of testins by Sertoli cells appears to be tightly coupled to the presence of germ cells; there is an inverse relationship between the amount of testins in the testis and the number of germ cells. These results suggest that testins are unique testicular proteins that can be used to study Sertoli cell-germ cell interactions in the seminiferous epithelium.  相似文献   

5.
Much of what is known about the molecular regulation and function of adult Sertoli cells has been inferred from in vitro studies of immature Sertoli cells. However, adult and immature cells differ in significant ways and, moreover, many Sertoli cell functions are regulated by conditions that are difficult to replicate in vitro. Our objective was to develop a procedure to isolate Sertoli cells rapidly and in sufficient number and purity to make it possible to assess Sertoli cell function immediately after the isolation of the cells. The isolation procedure described herein takes less than 4 h and does not require culturing the cells. From a single 4-mo-old adult rat, we routinely obtain 7.0 +/- 0.4 x 10(6) Sertoli cells per testis, and from a 21-mo-old rat, 7.2 +/- 0.4 x 10(6) Sertoli cells per testis. The purity, determined by morphologic analyses of plastic-embedded cells or after staining for tyrosine-tubulin or vimentin, averaged 80%. The contaminants typically included germ cells (10%) and myoid cells (10%). The germ cell-expressed genes protamine-2 and hemiferrin were not detected in the Sertoli cell preparations by Northern blot analyses, but the Sertoli cell-expressed genes clusterin, cathepsin L, and transferrin were highly expressed. Transferrin mRNA levels were greater in Sertoli cells isolated from aged than from young adult rats, consistent with previous analyses of whole testes; and cathepsin L mRNA levels were far more highly expressed in Sertoli cells isolated from stages VI-VII than from other stages of the cycle of the seminiferous epithelium, also consistent with previous analyses of whole testes and isolated tubules. These studies indicate that the freshly isolated cells retain differentiated function, and thus it should be possible to assess the in vivo function of adult Sertoli cells by isolating the Sertoli cells and immediately assessing their function.  相似文献   

6.
7.
The success of spermatogenesis is dependent upon closely coordinated interactions between Sertoli cells and germ cells. To identify specific molecules that mediate interactions between somatic cells and germ cells in the rat testis, Sertoli cell-germ cell co-cultures and mRNA differential display were used. Two cDNAs, clone 1 (660 nucleotides) and clone 2 (390 nucleotides) were up-regulated when Sertoli cells were co-cultured with pachytene spermatocytes or round spermatids. Northern blot analyses confirmed the differential display expression patterns. Sequence analyses indicated that clone 1 was similar to a von Ebner's gland protein (87% at the nucleotide level and 80% at the amino acid level) and clone 2 was identical to a region of the Huntington disease protein. The von Ebner's-like protein mRNA was induced after 4 h of co-culture, while the Huntington disease protein required 18 h of co-culture for expression. The von Ebner's-like protein was induced in germ cells by a secreted Sertoli cell factor(s) smaller than 10 kDa that is sensitive to freezing and thawing or boiling. The Huntington disease protein was induced in germ cells by a Sertoli cell secreted factor(s) larger than 10 kDa which survives freezing and thawing, but is inactivated by boiling.  相似文献   

8.
The aim of this study was to compare the in vitro effects of glial cell line-derived neurotrophic factor, stem cell factor, granulocyte macrophage-colony stimulating factor, and co-culture with Sertoli cells on the efficiency of adult mouse spermatogonial stem cells colony formation. For these purpose, both Sertoli and spermatogonial cells were isolated from adult mouse testes. The identity of the cells was confirmed through analysis of alkaline phosphatase activity, immunocytochemistry against OCT-4, c-kit, and vimentin, and also by transplantation of these cells in the recipient testes. The isolated spermatogonial cells were treated either with various concentrations of the above mentioned factors or co-cultured with Sertoli cells for 3 wk. The spermatogonial cells of the resulting colonies were transplanted via rete testis into the mouse testes, which were irradiated with 14 Gy. The results indicated that glial cell line-derived neurotrophic factor is the most appropriate factor for in vitro colonization of adult mice spermatogonial cells compared with other cytokines and growth factors. A short-term co-culture with Sertoli cells showed a significant increase in the number and diameter of the colonies compared with the treated growth factors and the control group. We have also demonstrated that mouse spermatogonial stem cells in the colonies after co-culturing with Sertoli cells could induce spermatogenesis in the recipient testes after transplantation.  相似文献   

9.
Sertoli cells play a major role in the regulation of spermatogenic cell energy metabolism and differentiation. This study demonstrates that Sertoli cells are essential for the maintenance of spermatogenic cell glutathione (GSH), an important intracellular reductant and detoxicant. Primary spermatocytes and round spermatids isolated from Xenopus laevis contained 1.5 +/- 0.1 mM GSH, but sperm lacked detectable GSH. During a 5-day culture period, isolated spermatocytes and spermatids lost 80% of the initial GSH (t 1/2 = 55 h). The levels of GSH were unaffected by L-buthionine-SR-sulfoximine (BSO), a selective inhibitor of GSH synthesis. Cultures of testicular lobules and spermatocysts (composed of germ cells and Sertoli cells) depleted of interstitial tissue lost only 30% of their initial GSH in 4.5 days; the GSH levels decreased during treatment with BSO. Spermatogenic cells in cultured testes maintained their GSH levels for 7 days by a BSO-sensitive mechanism. These results demonstrate that the intracellular GSH levels of spermatogenic cells are dependent upon germ cell-somatic cell interactions. Spermatogenic cells were shown to possess gamma-glutamyl transpeptidase, glutathione synthetase, 5-oxoprolinase, and gamma-glutamylcysteine synthetase activities. [35S] Cysteine incorporation and distribution as analyzed by high performance liquid chromatography (HPLC) showed that isolated spermatogenic cells are capable of GSH synthesis. The rate of GSH synthesis, however, was insufficient to compensate for GSH turnover. These results demonstrate that production of spermatogenic cell GSH is dependent upon Sertoli cells. To our knowledge, this is the first evidence that interactions between different cell types may be of significance in GSH metabolism.  相似文献   

10.
The Sertoli cell in vivo and in vitro   总被引:2,自引:0,他引:2  
The Sertoli cell extends from the basement membrane of the seminiferous tubule towards its lumen; it sends cytoplasmic processes which envelop different generations of germ cells. The use of Sertoli cell culture began to develop in 1975. To reduce germ cell contamination immature animals are generally used as Sertoli cell donors. Sertoli cell mitosis essentially occurs in sexually immature testes in mammals; mitosis of these cells is observed in vitro during a limited period of time. Sertoli cells in vivo perform an impressive range of functions: structural support of the seminiferous epithelium, displacement of germ cells and release of sperm; formation of the Sertoli cell blood-testis barrier; secretion of factors and nutrition of germ cells; phagocytosis of degenerating germ cells and of germ cell materials. Some of the Sertoli cell functions can be studied in vitro. The recent development of Sertoli cell culture on permeable supports (with or without extracellular matrix) has resulted in progress in understanding the vectorial secretion of several Sertoli cell markers. In addition to FSH and testosterone, several other humoral factors are known to influence Sertoli cell function. Furthermore, myoid cells bordering the tubules as well as germ cells are capable of regulating Sertoli cell activity. Sertoli cells are the most widely used testicular cells for in vitro toxicology. The testis is highly vulnerable to xenobiotics and radiations, yet the number of studies undertaken in this field is insufficient and should be drastically increased.  相似文献   

11.
Pregnancy exposure to di(n-butyl) phthalate (DBP) in rats induces a testicular dysgenesislike syndrome (TDS) in male offspring. Earlier studies suggested altered Sertoli cell development/maturation may result, especially in testes that become cryptorchid. This study quantitatively assessed Sertoli cell numerical and functional development in DBP-exposed rats and compared (unilaterally) cryptorchid and scrotal testes. Pregnant rats were gavaged with 500 mg/kg/day DBP or corn oil from embryonic (E) Days 13.5 to 21.5. Male offspring were sampled on E21.5 or Postnatal Day 6, 10, 15, 25, or 90. Sertoli cell number in DBP-exposed males was reduced by approximately 50% at E21.5 but recovered to normal by Days 25-90, accompanied by significant changes in plasma inhibin B and testosterone levels. Sertoli cell maturational development in DBP-exposed males, assessed using five protein markers (anti-müllerian hormone, cytokeratin, androgen receptor, CDKN1B, and Nestin), was largely normal, with some evidence of delayed maturation. However, in adulthood, Sertoli cells (SC) in areas lacking germ cells (Sertoli cell-only [SCO] tubules) often exhibited immature features, especially in cryptorchid testes. Sertoli cells in DBP-exposed animals supported fewer germ cells during puberty, but this normalized in scrotal testes by adulthood. Scrotal and especially cryptorchid testes from DBP-exposed animals exhibited abnormalities (SCO tubules, focal dysgenetic areas) at all postnatal ages. Cryptorchid testes from DBP-exposed animals exhibited more Sertoli cell abnormalities at Day 25 compared with scrotal testes, perhaps indicating more severe underlying Sertoli cell malfunction in these testes. Our findings support the concept of altered Sertoli cell development in TDS, especially in cryptorchid testes, but show that maturational defects in Sertoli cells in adulthood most commonly reflect secondary dedifferentiation in absence of germ cells.  相似文献   

12.
The premise that one manifestation of the nexus between Sertoli cells and germ cells may be an orderly and sequential change in their protein profiles has been examined in relation to the ontogeny of spermatogenesis in the colony-bred albino rat. Viable "Sertoli cell-germ cell associations" isolated from the testes of animals of defined postnatal age and incubated in an appropriate medium were separated into a Sertoli cell and a germ cell fraction and processed for analysis by sodium dodecyl sulfate gradient gel electrophoresis. The resulting stained bands were "mapped" and assigned relative mobility values by comparison with standard marker proteins. This enabled identification by serial number of individual bands from an overall total of 163. For purposes of detailed analysis, they were classified into high, medium-high, medium, and low molecular weight bands. Two major categories were delineated: 1) those associated uniquely with a specified day of ontogeny and 2) those appearing intermittently. Significantly enough, not one of the bands was encountered on all days examined. The relevance of the patterns observed to the possible exchange of "information" between Sertoli cells and germ cells during spermatogenesis is mooted.  相似文献   

13.
The ectoplasmic specialization (ES) is essential for Sertoli-germ cell communication to support all phases of germ cell development and maturity. Its formation and remodeling requires rapid reorganization of the cytoskeleton. However, the molecular mechanism underlying the regulation of ES assembly is still largely unknown. Here, we show that Sertoli cell-specific disruption of autophagy influenced male mouse fertility due to the resulting disorganized seminiferous tubules and spermatozoa with malformed heads. In autophagy-deficient mouse testes, cytoskeleton structures were disordered and ES assembly was disrupted. The disorganization of the cytoskeleton structures might be caused by the accumulation of a negative cytoskeleton organization regulator, PDLIM1, and these defects could be partially rescued by Pdlim1 knockdown in autophagy-deficient Sertoli cells. Altogether, our works reveal that the degradation of PDLIM1 by autophagy in Sertoli cells is important for the proper assembly of the ES, and these findings define a novel role for autophagy in Sertoli cell-germ cell communication.  相似文献   

14.
The direct effect of LH and FSH on cyclic AMP levels in specific cell types, isolated from the rat testes, was investigated in vitro. LH significantly stimulated cyclic AMP production in isolated interstitial cells and had only a slight effect on the isolated germ cells. FSH significantly stimulated cyclic AMP production in isolated seminiferous tubules, organ cultures of testes explants, and isolated Sertoli cells, with only a small response elicited in the germ cells. FSH had no effect on the cyclic AMP levels in interstitial cells and either freshly isolated or cultured peritubular cells. These data indicate that the Sertoli cells and interstitial cells are the main cell types in the testes which respond to FSH and LH respectively with increased cyclic AMP production. A possible slight effect of either hormone on the cyclic AMP level in the germ cells has not be ruled out.  相似文献   

15.
Though roles of β-catenin signaling during testis development have been well established, relatively little is known about its role in postnatal testicular physiology. Even less is known about its role in post-meiotic germ cell development and differentiation. Here, we report that β-catenin is highly expressed in post-meiotic germ cells and plays an important role during spermiogenesis in mice. Spermatid-specific deletion of β-catenin resulted in significantly reduced sperm count, increased germ cell apoptosis and impaired fertility. In addition, ultrastructural studies show that the loss of β-catenin in post-meiotic germ cells led to acrosomal defects, anomalous release of immature spermatids and disruption of adherens junctions between Sertoli cells and elongating spermatids (apical ectoplasmic specialization; ES). These defects are likely due to altered expression of several genes reportedly involved in Sertoli cell-germ cell adhesion and germ cell differentiation, as revealed by gene expression analysis. Taken together, our results suggest that β-catenin is an important molecular link that integrates Sertoli cell-germ cell adhesion with the signaling events essential for post-meiotic germ cell development and maturation. Since β-catenin is also highly expressed in the Sertoli cells, we propose that binding of germ cell β-catenin complex to β-catenin complex on Sertoli cell at the apical ES surface triggers a signaling cascade that regulates post-meiotic germ cell differentiation.  相似文献   

16.
To evaluate the effect of age and season on Sertoli cell number per paired testes, ratio of germ cells per Sertoli cell, and daily sperm production, testes were obtained from 184 adult (4-20 yr) stallions at slaughter throughout one year. Numbers of Sertoli cells or germ cells were derived from nuclear volume density, volume of individual nuclei, and parenchymal volume. Germ cell to Sertoli cell ratios were calculated from cell numbers. Regression analysis was used to detect age-related differences in the breeding season (May-Jul) or throughout the year. A two-way analysis of variance was used to evaluate time periods (Nov-Jan, Feb-Apr, May-Jul, and Aug-Oct) and age groups (4-5.5, 6-12.5, or 13-20 yr). Paired parenchymal weight and daily sperm production per horse increased significantly with age. Neither regression nor analysis of variance revealed an effect of age on Sertoli cell number. While season contributed (p less than 0.01) to variation in Sertoli cell number per horse, there was no (p greater than 0.05) age x season interaction or age effect on Sertoli cell number. In testes obtained from adult stallions, age had no effect on the number of Sertoli cells per horse, the ratio of maturation-phase spermatids to Sertoli cells, or the ratio of all stage VIII germ cells to Sertoli cells. Given no age effect within a given season on Sertoli cell number per horse, the number of Sertoli cells in the recrudesced testis of the breeding season probably is not significantly different for a given stallion between 4 and 20 yr of age.  相似文献   

17.
Testes from 47 stallions, 1-20 yr of age, were used to examine the influence of age on Sertoli and germ cell populations as well as on functional activity of Sertoli cells. For these stallions, the number of Sertoli cells per paired testes declined linearly with age, and was only 41.7% as great at age 20 as at age 2. However, development of reproductive organs proceeded until age 12-13, as evident from increases in paired testes weight and quantitative rates of spermatozoal production. Although the absolute number of Sertoli cells declined during this period of development, individual Sertoli cells displayed a remarkable capacity to accommodate greater numbers of developing germ cells. Between age 2 and age 12, the mean numbers of developing spermatogonia, young primary spermatocytes, old primary spermatocytes, and round spermatids supported by each Sertoli cell at Stage I of spermatogenesis increased by 49, 176, 153, and 161%, respectively.  相似文献   

18.
The niche is considered to play an important role in stem cell biology. Sertoli cells are the only somatic cells in the seminiferous tubule that closely interact with germ cells to create a favorable environment for spermatogenesis. However, little is known about how Sertoli cells develop to form the male germ line niche. We report here that Sertoli cells recovered and dissociated from testes of donor male mice can be microinjected into recipient testes, form mature seminiferous tubule structures, and support spermatogenesis. Sertoli cells from perinatal donors had a dramatically greater capacity for generating seminiferous tubules than those from adult donors. Furthermore, transplantation of wild-type Sertoli cells into infertile Steel/Steel(dickie) testes created a permissive testicular microenvironment for generating spermatogenesis and spermatozoa. Thus, our results demonstrate that the male germ line stem cell niche can be transferred between animals. In addition, the technique provides a novel tool with which to analyze spermatogenesis and might provide a mechanism for correcting fertility in males suffering from supporting cell defects.  相似文献   

19.
Sertoli cells dictate spermatogonial stem cell niches in the mouse testis   总被引:1,自引:0,他引:1  
Sustained spermatogenesis in adult males relies on the activity of spermatogonial stem cells (SSCs). In general, tissue-specific stem cell populations such as SSCs are influenced by contributions of support cells that form niche microenvironments. Previous studies have provided indirect evidence that several somatic cell populations and the interstitial vasculature influence SSC functions, but an individual orchestrator of niches has not been described. In this study, functional transplantation of SSCs, in combination with experimental alteration of Sertoli cell content by polythiouracil (PTU)-induced transient hypothyroidism, was used to explore the relationship of Sertoli cells with SSCs in testes of adult mice. Transplantation of SSCs from PTU-treated donor mice into seminiferous tubules of normal recipient mice revealed a greater than 3-fold increase in SSCs compared to those from testes of non-PTU-treated donors. In addition, use of PTU-treated mice as recipients for transplantation of SSCs from normal donors revealed a greater than 3-fold increase of accessible niches compared to those of testes of non-PTU treated recipient mice with normal numbers of Sertoli cells. Importantly, the area of seminiferous tubules bordered by interstitial tissue and percentage of seminiferous tubules associated with blood vessels was found to be no different in testes of PTU-treated mice compared to controls, indicating that neither the vasculature nor interstitial support cell populations influenced the alteration of niche number. Collectively, these results provide direct evidence that Sertoli cells are the key somatic cell population dictating the number of SSCs and niches in mammalian testes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号