首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute or chronic zinc administration may cause hyperglycemia in experimental animals. These findings are attributed to permissive actions of glucocorticoids and glucagon upon hepatic gluconeogenesis and glycogenolysis. The effect of Zn++ on plasma glucose, C-peptide, glucagon, and cortisol was investigated in healthy and insulin-dependent diabetes mellitus (IDDM) patients. Ten normal individuals (5 of each sex, aged 24.10 ± 1.96) and 10 IDDM (5 of each sex, aged 25.20 ± 8.10) were tested at 7:00 AM after 12-h fast. Twenty-five mg of Zn++ were administered intravenously during 1 min, and blood samples were collected from the contralateral arm at 0, 3, 30, 60, 90 and 120 min after Zn++ injection. The plasma levels of glucose, C-peptide, and glucagon remained constant throughout the experimental period in both groups studied. Plasma cortisol levels decreased significantly, which is consistent with our previous findings. These results suggest that, in contrast to experimental animals, acute Zn++ administration, despite decreasing cortisol levels, does not change carbohydrate metabolism in human beings.  相似文献   

2.
G F Bryce  J H Jacoby 《Life sciences》1978,22(24):2215-2223
Several commonly used serotonin receptor antagonists were studied for their ability to influence basal plasma insulin and glucagon (using 30K antibody) levels as well as the response of these hormones to a glucose or arginine challenge administered systematically to overnight fasted rats. Cyproheptadine, in contrast to other antagonists employed, induced large increases of insulin, glucagon and glucose, although this hyperinsulinemia was of a smaller magnitude when compared with hormone levels observed during an equivalent hyperglycemia resulting from glucose administration. The pancreatic response to a glucose load (increased insulin and decreased glucagon release) and an arginine load (increased insulin and glucagon release) were prevented by cyproheptadine pretreatment. Basal insulin levels were bot consistently altered by methysergide or cinanserin and were slightly elevated by metergoline. Basal glucagon levels were unaffected by these drugs. These three agents potentiated the insulinotropic effect of an arginine load whereas only metergoline exerted a similar effect on the response to glucose loading. Glucagon release in response to these stimuli was not significantly altered by drug pretreatment.  相似文献   

3.
Conclusions drawn from the pancreatic (or islet) clamp technique (suppression of endogenous insulin, glucagon, and growth hormone secretion with somatostatin and replacement of basal hormone levels by intravenous infusion) are critically dependent on the biological appropriateness of the selected doses of the replaced hormones. To assess the appropriateness of representative doses we infused saline alone, insulin (initially 0.20 mU.kg(-1).min(-1)) alone, glucagon (1.0 ng.kg(-1).min(-1)) alone, and growth hormone (3.0 ng.kg(-1).min(-1)) alone intravenously for 4 h in 13 healthy individuals. That dose of insulin raised plasma insulin concentrations approximately threefold, suppressed glucose production, and drove plasma glucose concentrations down to subphysiological levels (65 +/- 3 mg/dl, P < 0.0001 vs. saline), resulting in nearly complete suppression of insulin secretion (P < 0.0001) and stimulation of glucagon (P = 0.0059) and epinephrine (P = 0.0009) secretion. An insulin dose of 0.15 mU.kg(-1).min(-1) caused similar effects, but a dose of 0.10 mU.kg(-1).min(-1) did not. The glucagon and growth hormone infusions did not alter plasma glucose levels or those of glucoregulatory factors. Thus, insulin "replacement" doses of 0.20 and even 0.15 mU.kg(-1).min(-1) are excessive, and conclusions drawn from the pancreatic clamp technique using such doses may need to be reassessed.  相似文献   

4.
Epinephrine increases net hepatic glucose output (NHGO) mainly via increased gluconeogenesis, whereas glucagon increases NHGO mainly via increased glycogenolysis. The aim of the present study was to determine how the two hormones interact in controlling glucose production. In 18-h-fasted conscious dogs, a pancreatic clamp initially fixed insulin and glucagon at basal levels, following which one of four protocols was instituted. In G + E, glucagon (1.5 ng x kg(-1) x min(-1); portally) and epinephrine (50 ng x kg(-1) x min(-1); peripherally) were increased; in G, glucagon was increased alone; in E, epinephrine was increased alone; and in C, neither was increased. In G, E, and C, glucose was infused to match the hyperglycemia seen in G + E ( approximately 250 mg/dl). The areas under the curve for the increase in NHGO, after the change in C was subtracted, were as follows: G = 661 +/- 185, E = 424 +/- 158, G + E = 1178 +/- 57 mg/kg. Therefore, the overall effects of the two hormones on NHGO were additive. Additionally, glucagon exerted its full glycogenolytic effect, whereas epinephrine exerted its full gluconeogenic effect, such that both processes increased significantly during concurrent hormone administration.  相似文献   

5.
The hormone glucagon increases blood glucose levels through increasing hepatic glucose output. In diabetic patients, dysregulation of glucagon secretion contributes to hyperglycemia. Thus, the inhibition of glucagon receptor is one target for the treatment of hyperglycemia in type 2 diabetes. Here we designed and synthesized a series of small molecules based on phenylpyrimidine. Of these, the compound (R)-7a most significantly decreased the glucagon-induced cAMP production and glucagon-induced glucose production during in vitro and in vivo assays. In addition, (R)-7a showed good efficacy in glucagon challenge tests and lowered blood glucose levels in diabetic db/db mice. Our results suggest that the compound (R)-7a could be a potential glucose-lowering agent for treating type 2 diabetes.  相似文献   

6.
The proinflammatory cytokine interleukin-6 (IL-6) may modulate the onset and progression of complications of diabetes. As this cytokine increases after exercise, and many other exercise responses are altered by prior glycemic fluctuations, we hypothesized that prior hyperglycemia might exacerbate the IL-6 response to exercise. Twenty children with type 1 diabetes (12 boys/8 girls, age 12-15 yr) performed 29 exercise studies (30-min intermittent cycling at approximately 80% peak O2 uptake). Children were divided into four groups based on highest morning glycemic reading [blood glucose (BG) < 150, BG 151-200, BG 201-300, or BG > 300 mg/dl]. All exercise studies were performed in the late morning, after hyperglycemia had been corrected and steady-state conditions (plasma glucose < 120 mg/dl, basal insulin infusion) had been maintained for > or = 90 min. Blood samples for IL-6, growth factors, and counterregulatory hormones were drawn at pre-, end-, and 30 min postexercise time points. At all time points, circulating IL-6 was lowest in BG < 150 and progressively higher in the other three groups. The exercise-induced increment also followed a similar dose-response pattern (BG < 150, 0.6 +/- 0.2 ng/ml; BG 151-200, 1.2 +/- 0.8 ng/ml; BG 201-300, 2.1 +/- 1.1 ng/ml; BG > 300, 3.2 +/- 1.4 ng/ml). Other measured variables (growth hormone, IGF-I, glucagon, epinephrine, cortisol) were not influenced by prior hyperglycemia. Recent prior hyperglycemia markedly influenced baseline and exercise-induced levels of IL-6 in a group of peripubertal children with type 1 diabetes. While exercise is widely encouraged and indeed often considered part of diabetic management, our data underscore the necessity to completely understand all adaptive mechanisms associated with physical activity, particularly in the context of the developing diabetic child.  相似文献   

7.
The effects of porcine pancreastatin on insulin release stimulated by insulinotropic agents, glucagon, cholecystokinin-octapeptide (CCK-8), gastric inhibitory polypeptide (GIP) and L-arginine, were compared to those of bovine chromogranin A (CGA) using the isolated perfused rat pancreas. Pancreastatin significantly potentiated glucagon-stimulated insulin release (first phase: 12.5 +/- 0.9 ng/8 min; second phase: 34.5 +/- 1.6 ng/25 min in controls; 16.5 +/- 1.1 ng/8 min and 44.0 +/- 2.2 ng/25 min in pancreastatin group), whereas CGA was ineffective. The first phase of L-arginine-stimulated insulin release was also potentiated by pancreastatin (6.9 +/- 0.5 ng/5 min in controls, 8.4 +/- 0.6 ng/5 min in pancreastatin group), but not by CGA. Pancreastatin did not affect CCK-8 or GIP-stimulated insulin release. Similarly, CGA did not affect insulin release stimulated by CCK-8 or GIP. These findings suggest that pancreastatin stimulates insulin release in the presence of glucagon. Because pancreastatin can have multiple effects on insulin release, which are dependent upon the local concentration of insulin effectors, pancreastatin may participate in the fine tuning of insulin release from B cells.  相似文献   

8.
Impaired suppression of glucagon levels after oral glucose or meal ingestion is a hallmark of type 2 diabetes. Whether hyperglucagonemia after a β-cell loss results from a functional upregulation of glucagon secretion or an increase in α-cell mass is yet unclear. CD-1 mice were treated with streptozotocin (STZ) or saline. Pancreatic tissue was collected after 14, 21, and 28 days and examined for α- and β-cell mass and turnover. Intraperitoneal (ip) glucose tolerance tests were performed at day 28 as well as after 12 days of subcutaneous insulin treatment, and glucose, insulin, and glucagon levels were determined. STZ treatment led to fasting and post-challenge hyperglycemia (P < 0.001 vs. controls). Insulin levels increased after glucose injection in controls (P < 0.001) but were unchanged in STZ mice (P = 0.36). Intraperitoneal glucose elicited a 63.1 ± 4.1% glucagon suppression in control mice (P < 0.001), whereas the glucagon suppression was absent in STZ mice (P = 0.47). Insulin treatment failed to normalize glucagon levels. There was a significant inverse association between insulin and glucagon levels after ip glucose ingestion (r(2) = 0.99). β-Cell mass was reduced by ~75% in STZ mice compared with controls (P < 0.001), whereas α-cell mass remained unchanged (P > 0.05). α-Cell apoptosis (TUNEL) and replication (Ki67) were rather infrequently noticed, with no significant differences between the groups. These studies underline the importance of endogenous insulin for the glucose-induced suppression of glucagon secretion and suggest that the insufficient decline in glucagon levels after glucose administration in diabetes is primarily due to a functional loss of intraislet inhibition of α-cell function rather than an expansion of α-cell mass.  相似文献   

9.
S Lindskog  B Ahrén 《Hormone research》1988,29(5-6):237-240
The effects of the two intrapancreatic peptides galanin and pancreastatin on basal and stimulated insulin and glucagon secretion in the mouse were compared. It was found that at 2 min after intravenous injection of galanin or pancreastatin (4.0 nmol/kg), basal plasma glucagon and glucose levels were slightly elevated. Galanin was more potent than pancreastatin to elevate basal plasma glucagon levels: they increased from 60 +/- 15 to 145 +/- 19 pg/ml (p less than 0.01) after galanin compared to from 35 +/- 5 to 55 +/- 8 pg/ml (p less than 0.05) after pancreastatin. Plasma insulin levels were lowered by galanin (p less than 0.05), but not by pancreastatin. CCK-8 (6.3 nmol/kg) or terbutaline (3.6 mumol/kg) markedly increased the plasma insulin levels. Galanin (4.0 nmol/kg) completely abolished the insulin response to CCK-8 (p less than 0.001), but pancreastatin (4.0 nmol/kg) was without effect. Galanin inhibited the insulin response to terbutaline by approximately 60% (p less than 0.01), but pancreastatin inhibited the insulin response to terbutaline by approximately 35% only (p less than 0.05). CCK-8 and terbutaline did both elevate plasma glucagon levels by moderate potencies: neither pancreastatin nor galanin could affect these responses. Thus, in the mouse, galanin and pancreastatin both inhibit basal and stimulated insulin secretion, and stimulate basal glucagon secretion. Galanin is thereby more potent than pancreastatin. The study also showed that galanin potently inhibits insulin secretion stimulated by the octapeptide of cholecystokin and by the beta 2-adrenoceptor agonist terbutaline, and that pancreastatin inhibits terbutaline-induced insulin secretion.  相似文献   

10.
We aim to investigate the relationship between serum somatostatin(SST) levels and glucose-lipid metabolism at various stages of glucose tolerance in the Jino ethnic minority(n=111) and Han population(n=113) of Yunnan Province, southwest China.Anthropometric parameters and biochemical traits were measured. Serum SST and plasma glucagon levels were tested. Participants were divided into three subgroups: isolated fasting hyperglycemia(IFH), isolated post challenge hyperglycemia(IPH)and normal glucose tolerance(NGT). SST levels were found lower while glucagon levels were significantly higher in the Jino ethnic with IPH(P=0.0026 and P=0.0069, respectively). Fasting glucose and high density lipoprotein-cholesterol(HDL-C)levels were higher(P=0.0055 and P=0.0021, respectively) and fasting insulin levels and homeostasis model assessments β-cell function were lower(P=0.0479 and P=0.0007, respectively) in the Jino population. After adjusting for confounding factors, the serum SST level was associated with glucagon(P0.0001) in both populations. The SST level was correlated with fasting Cpeptide(P=0.0267) in Jino and HDL-C levels in Han(P=0.0079). Our findings suggest that serum SST levels and plasma glucagon levels may vary in subjects with IPH between two ethnics.  相似文献   

11.
Glucose homeostasis is regulated primarily by the opposing actions of insulin and glucagon, hormones that are secreted by pancreatic islets from beta-cells and alpha-cells, respectively. Insulin secretion is increased in response to elevated blood glucose to maintain normoglycemia by stimulating glucose transport in muscle and adipocytes and reducing glucose production by inhibiting gluconeogenesis in the liver. Whereas glucagon secretion is suppressed by hyperglycemia, it is stimulated during hypoglycemia, promoting hepatic glucose production and ultimately raising blood glucose levels. Diabetic hyperglycemia occurs as the result of insufficient insulin secretion from the beta-cells and/or lack of insulin action due to peripheral insulin resistance. Remarkably, excessive secretion of glucagon from the alpha-cells is also a major contributor to the development of diabetic hyperglycemia. Insulin is a physiological suppressor of glucagon secretion; however, at the cellular and molecular levels, how intraislet insulin exerts its suppressive effect on the alpha-cells is not very clear. Although the inhibitory effect of insulin on glucagon gene expression is an important means to regulate glucagon secretion, recent studies suggest that the underlying mechanisms of the intraislet insulin on suppression of glucagon secretion involve the modulation of K(ATP) channel activity and the activation of the GABA-GABA(A) receptor system. Nevertheless, regulation of glucagon secretion is multifactorial and yet to be fully understood.  相似文献   

12.
Cholecystokinin (CCK) is a peptide hormone that is released from the gut in response to nutrients such as lipids to lower food intake. Here we report that a primary increase of CCK-8, the biologically active form of CCK, in the duodenum lowers glucose production independent of changes in circulating insulin levels. Furthermore, we show that duodenal CCK-8 requires the activation of the gut CCK-A receptor and a gut-brain-liver neuronal axis to lower glucose production. Finally, duodenal CCK-8 fails to lower glucose production in the early onset of high-fat diet-induced insulin resistance. These findings reveal a role for gut CCK that lowers glucose production through a neuronal network and suggest that intestinal CCK resistance may contribute to hyperglycemia in response to high-fat feeding.  相似文献   

13.
G Katsuura  S Itoh 《Peptides》1986,7(1):105-110
The effect of intracerebroventricular (ICV) administration of cholecystokinin octapeptide (CCK-8) on electroconvulsive shock (ECS)-induced amnesia in passive avoidance response was studied in rats. In normal rats, CCK-8 in doses from 1 ng to 1 microgram had no effect on the response when injected before the training trials, immediately after foot shock or before the first retention test. However, proglumide, a CCK-8 receptor blocker, induced marked amnesia when injected in doses from 0.1 to 10 micrograms before the training trials and in doses of 1 and 10 micrograms before the first retention test, though not subsequent to foot shock. ECS given immediately after the foot shock caused amnesia in the 24 hr and 48 hr retention tests, which could have been prevented by CCK-8 injected in doses of 10 ng to 1 microgram prior to the training trials, of 10 ng to 1 microgram following ECS and of 0.1 and 1 microgram before the first retention test. In addition, the effects of CCK-8 and proglumide became pronounced following chronic ICV infusion, using an osmotic minipump, for 7 days at a dose of 1 ng/day and 10 ng/day, respectively. The amnesia induced by proglumide was not affected by arginine vasopressin (AVP), while AVP in doses of 10 ng and 100 ng given 30 min before the training trials prevented ECS-induced amnesia. The antiamnesic effect of AVP was abolished by simultaneous administration of proglumide. On the other hand, AVP-antiserum produced marked amnesia which could be antagonized by CCK-8. However, the antiamnesic effect of CCK-8 was not suppressed by AVP-antiserum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We examined the contributions of insulin secretion, glucagon suppression, splanchnic and peripheral glucose metabolism, and delayed gastric emptying to the attenuation of postprandial hyperglycemia during intravenous exenatide administration. Twelve subjects with type 2 diabetes (3 F/9 M, 44 +/- 2 yr, BMI 34 +/- 4 kg/m2, Hb A(1c) 7.5 +/- 1.5%) participated in three meal-tolerance tests performed with double tracer technique (iv [3-3H]glucose and oral [1-14C]glucose): 1) iv saline (CON), 2) iv exenatide (EXE), and 3) iv exenatide plus glucagon (E+G). Acetaminophen was given with the mixed meal (75 g glucose, 25 g fat, 20 g protein) to monitor gastric emptying. Plasma glucose, insulin, glucagon, acetaminophen concentrations and glucose specific activities were measured for 6 h post meal. Post-meal hyperglycemia was markedly reduced (P < 0.01) in EXE (138 +/- 16 mg/dl) and in E+G (165 +/- 12) compared with CON (206 +/- 15). Baseline plasma glucagon ( approximately 90 pg/ml) decreased by approximately 20% to 73 +/- 4 pg/ml in EXE (P < 0.01) and was not different from CON in E+G (81 +/- 2). EGP was suppressed by exenatide [231 +/- 9 to 108 +/- 8 mg/min (54%) vs. 254 +/- 29 to189 +/- 27 mg/min (26%, P < 0.001, EXE vs. CON] and partially reversed by glucagon replacement [247 +/- 15 to 173 +/- 18 mg/min (31%)]. Oral glucose appearance was 39 +/- 4 g in CON vs. 23 +/- 6 g in EXE (P < 0.001) and 15 +/- 5 g in E+G, (P < 0.01 vs. CON). The glucose retained within the splanchnic bed increased from approximately 36g in CON to approximately 52g in EXE and to approximately 60g in E+G (P < 0.001 vs. CON). Acetaminophen((AUC)) was reduced by approximately 80% in EXE vs. CON (P < 0.01). We conclude that exenatide infusion attenuates postprandial hyperglycemia by decreasing EGP (by approximately 50%) and by slowing gastric emptying.  相似文献   

15.
Primary cultures of parenchymal cells isolated from adult rat liver by a collagenase perfusion procedure and maintained as a monolayer in a serum-free culture medium were used to study glucoeogenesis and the role that the glucocorticoids play in the control of this pathway. These cells carried out gluconeogenesis from three-carbon precursors (alanine and lactate) in response to glucagon and dexamethasone added alone or in combination. Maximum glucose production was observed with cells pretreated for several hours with dexamethasone and glucagon prior to addition of substrate and glucagon (8- to 12-fold increase over basal glucose production). Half-maximum stimulation of gluconeogenesis was seen with 3.6 × 10?10 M glucagon and 3.6 × 10?8 M dexamethasone. Maximum stimulation was oberved with 10?7 M glucagon and 10?6 M dexamethasone. The length of time of dexamethasone pretreatment was found to be important in demonstrating the effect of glucocorticoids on glucagon-stimulated gluconeogenesis. Treeatment of cells with dexamethasone for 2 hours did not result in an increase in glucose production over identical experimental conditions in the absence of dexamethasone, wherease pretreatment for 5 hours (1.2-fold increase) or 15 hours (1.7-fold increase) did result in an increase in glucose production. The results establish that the adult rat liver parenchymal cells in primary culture are a valid model system to study hepatic gluconeogenesis. In addition, we have established directly that the glucocorticoids amplify the glucagon stimulation of gluconeogenesis.  相似文献   

16.
We measured the ability of CCK-8 alone, a test meal alone, or a combination of the two, to increase peripheral plasma somatostatin levels in the baboon. Baboons received a five-minute intravenous infusion of either CCK-8 (1, 2, or 4 micrograms/kg) or saline prior to a 30-minute meal. CCK-8 administration at all doses resulted in a significant rise of plasma somatostatin-like immunoreactivity (SLI). In addition, ingestion of a meal following a control saline infusion resulted in a significant rise of plasma SLI. However, the meal-related rise in SLI was blunted by prior administration of CCK-8 at all doses, including a dose which did not significantly decrease meal size. CCK-8 administration at all doses also blunted the meal-related rise of plasma insulin and glucose. We conclude that the known ability of CCK-8 to inhibit gastric emptying, as well as to decrease meal size, may account for its suppression of the meal-related SLI release.  相似文献   

17.
Glucagon secretion from the endocrine pancreas is known to be enhanced by cholinergic stimulation. It has previously been described that vasoactive intestinal polypeptide (VIP) is a potent potentiator of this cholinergically induced glucagon secretion. In the present study, the effects of several gastro-entero-pancreatic polypeptides and glucose on glucagon secretion induced by the cholinergic agonist carbachol were investigated in vivo in the mouse. Carbachol was injected i.v. and it stimulated glucagon secretion. The polypeptides neurotensin and gastric inhibitory polypeptide (GIP) were both found to potentiate the carbachol-induced glucagon secretion, whereas substance P, pancreatic polypeptide, and two different molecular variants of cholecystokinin, CCK-8 and CCK-39, were without effect on cholinergically induced glucagon secretion. Neither of these polypeptides had any influence on basal glucagon secretion when tested over a wide dose range. Somatostatin and glucose both markedly inhibited carbachol-induced glucagon secretion. In conclusion: carbachol is a potent stimulator of glucagon secretion. This cholinergically induced glucagon secretion can be modified by several gastro-entero-pancreatic hormones influencing the release process both in potentiating and inhibiting direction. The physiological relevance of these interactions remains to be further investigated.  相似文献   

18.
S Itoh  A Takashima  K Igano  K Inouye 《Peptides》1989,10(4):843-848
The memory effects of caerulein (CER) and its analogs ([des-Gln2]-CER and [Leu5,Nle8]-CER) were compared with that of cholecystokinin octapeptide (CCK-8) using active and passive avoidance responses in rats. In the active avoidance test, single subcutaneous (SC) injection of CER and its analogs immediately after the learning trials at doses of 10 and 100 ng/kg prevented extinction of learned task for 10 days, and at a dose of 1000 ng/kg for at least 15 days, but the effect of CCK-8 was somewhat weaker. In the saline control group, the number of responses decreased after 5 days. In the passive avoidance response, electroconvulsive shock (ECS)-induced amnesia was partially prevented by CCK-8 at doses of 100 and 1000 ng/kg SC, while CER and its analogs at doses of more than 100 ng/kg totally prevented the ECS-induced amnesia. Intraperitoneal administration of scopolamine caused complete amnesia which was also partially prevented by CCK-8, while CER could totally prevent the amnesia following SC injection of 2 micrograms/kg. These results indicate that CER and its analogs are more effective than CCK-8 for preventing experimental amnesia.  相似文献   

19.
Defects in insulin secretion and/or action contribute to the hyperglycemia of stressed and diabetic patients, and we hypothesize that failure to suppress glucagon also plays a role. We examined the chronic impact of glucagon on glucose uptake in chronically catheterized conscious depancreatized dogs placed on 5 days of nutritional support (NS). For 3 days of NS, a variable intraportal infusion of insulin was given to maintain isoglycemia (approximately 120 mg/dl). On day 3 of NS, animals received a constant low infusion of insulin (0.4 mU.kg-1.min-1) and either no glucagon (CONT), basal glucagon (0.7 ng.kg-1.min-1; BasG), or elevated glucagon (2.4 ng.kg-1.min-1; HiG) for the remaining 2 days. Glucose in NS was varied to maintain isoglycemia. An additional group (HiG+I) received elevated insulin (1 mU.kg-1.min-1) to maintain glucose requirements in the presence of elevated glucagon. On day 5 of NS, hepatic substrate balance was assessed. Insulin and glucagon levels were 10+/-2, 9+/-1, 7+/-1, and 24+/-4 microU/ml, and 24+/-5, 39+/-3, 80+/-11, and 79+/-5 pg/ml, CONT, BasG, HiG, and HiG+I, respectively. Glucagon infusion decreased the glucose requirements (9.3+/-0.1, 4.6+/-1.2, 0.9+/-0.4, and 11.3+/-1.0 mg.kg-1.min-1). Glucose uptake by both hepatic (5.1+/-0.4, 1.7+/-0.9, -1.0+/-0.4, and 1.2+/-0.4 mg.kg-1.min-1) and nonhepatic (4.2+/-0.3, 2.9+/-0.7, 1.9+/-0.3, and 10.2+/-1.0 mg.kg-1.min-1) tissues decreased. Additional insulin augmented nonhepatic glucose uptake and only partially improved hepatic glucose uptake. Thus, glucagon impaired glucose uptake by hepatic and nonhepatic tissues. Compensatory hyperinsulinemia restored nonhepatic glucose uptake and partially corrected hepatic metabolism. Thus, persistent inappropriate secretion of glucagon likely contributes to the insulin resistance and glucose intolerance observed in obese and diabetic individuals.  相似文献   

20.
The present study was designed to examine the effects of intravenously injected alloxan (75 mg/kg) upon plasma somatostatin-like immunoreactivity (SLI), glucagon (IRG), insulin (IRI) and glucose levels in 6 dogs. Within 2 hours of the injection of alloxan, SLI and IRI levels decreased significantly below their respective baselines, while IRG and plasma glucose concentrations increased. At 8 hours SLI levels had increased significantly by 55 pg/ml, together with a rise in IRI and a decrease in IRG and glucose concentrations. After 24 hours, marked hyperglycemia and hyperglucagonemia had developed whereas SLI levels were not different from preinjection values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号