首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first step in the common pathway for the biosynthesis of branched-chain amino acids (BCAAs) is catalyzed by acetohydroxyacid synthase (AHAS). The roles of three well-conserved serine residues (S167, S506, and S539) in tobacco AHAS were determined using site-directed mutagenesis. The mutations S167F and S506F were found to be inactive and abolished the binding affinity for cofactor FAD. The Far-UV CD spectrum of the inactive mutants was similar to that of wild-type enzyme, indicating no major conformational changes in the secondary structure. However, the active mutants, S167R, S506A, S506R, S539A, S539F and S539R, showed lower specific activities. Further, a homology model of tobacco AHAS was generated based on the crystal structure of yeast AHAS. In the model, the S167 and S506 residues were identified near the FAD binding site, while the S539 residue was found to near the ThDP binding site. The S539 mutants, S539A and S539R, showed strong resistance to three classes of herbicides, NC-311 (a sulfonylurea), Cadre (an imidazolinone), and TP (a triazolopyrimidine). In contrast, the active S167 and S506 mutants did not show any significant resistance to the herbicides, with the exception of S506R, which showed strong resistance to all herbicides. Thus, our results suggest that the S167 and S506 residues are essential for catalytic activity by playing a role in the FAD binding site. The S539 residue was found to be near the ThDP with an essential role in the catalytic activity and specific mutants of this residue (S539A and S539R) showed strong herbicide resistance as well.  相似文献   

2.
Yoon MY  Hwang JH  Choi MK  Baek DK  Kim J  Kim YT  Choi JD 《FEBS letters》2003,555(2):185-191
Acetohydroxy acid synthase (AHAS) is one of several enzymes that require thiamine diphosphate and a divalent cation as essential cofactors. Recently, the three-dimensional structure of the enzyme from yeast has been determined [Pang et al., J. Mol. Biol. 317 (2002) 249-262]. While this structure sheds light on the binding of the cofactors and the reaction mechanism, the interactions between the substrates and the enzyme remain unclear. We have studied the pH dependence of kinetic parameters in order to obtain information about the chemical mechanism in the active site. Data are consistent with a mechanism in which substrate selectively catalyzed to the enzyme with an unprotonated base having a pK of 6.48, and a protonated group having a pK of 8.25 for catalysis. The temperature dependence of kinetic parameters was pH-dependent, and the enthalpies of ionization, DeltaH(ion), calculated from the slope of pK(1) and pK(2) are both pH-independent. The solvent perturbation of kinetic parameters was pH-dependent, and the pK(1) from the acidic side and the pK(2) from the basic side were shifted down 0.4 pH units and shifted up 0.6 units as water was replaced by 15% ethanol, respectively. The data are discussed in terms of the acid-base chemical mechanism.  相似文献   

3.
Roles of conserved methionine residues in tobacco acetolactate synthase   总被引:2,自引:0,他引:2  
Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine. ALS is the target of several classes of herbicides, including the sulfonylureas, the imidazolinones, and the triazolopyrimidines. The conserved methionine residues of ALS from plants were identified by multiple sequence alignment using ClustalW. The alignment of 17 ALS sequences from plants revealed 149 identical residues, seven of which were methionine residues. The roles of three well-conserved methionine residues (M350, M512, and M569) in tobacco ALS were determined using site-directed mutagenesis. The mutation of M350V, M512V, and M569V inactivated the enzyme and abolished the binding affinity for cofactor FAD. Nevertheless, the secondary structure of each of the mutants determined by CD spectrum was not affected significantly by the mutation. Both M350C and M569C mutants were strongly resistant to three classes of herbicides, Londax (a sulfonylurea), Cadre (an imidazolinone), and TP (a triazolopyrimidine), while M512C mutant did not show a significant resistance to the herbicides. The mutant M350C was more sensitive to pH change, while the mutant M569C showed a profile for pH dependence activity similar to that of wild type. These results suggest that M512 residue is likely located at or near the active site, and that M350 and M569 residues are probably located at the overlapping region between the active site and a common herbicide binding site.  相似文献   

4.
Acetohydroxy acid synthase (AHAS) is an essential enzyme for many organisms as it catalyzes the first step in the biosynthesis of the branched-chain amino acids valine, isoleucine, and leucine. The enzyme is under allosteric control by these amino acids. It is also inhibited by several classes of herbicides, such as the sulfonylureas, imidazolinones and triazolopyrimidines, that are believed to bind to a relic quinone-binding site. In this study, a mutant allele of AHAS3 responsible for sulfonylurea resistance in a Brassica napus cell line was isolated. Sequence analyses predicted a single amino acid change (557 TrpLeu) within a conserved region of AHAS. Expression in transgenic plants conferred strong resistance to the three classes of herbicides, revealing a single site essential for the binding of all the herbicide classes. The mutation did not appear to affect feedback inhibition by the branched-chain amino acids in plants.  相似文献   

5.
Extraction in a polyethylene glycol (PEG)–phosphate aqueous two-phase system was considered as a primary step in purification of the acetohydroxy acid synthase III large catalytic subunit from an E. coli extract. Extraction optimization was achieved by varying the system parameters. Two systems with the following weight compositions were chosen for purification: PEG-2000 (16%)–phosphate (6%) and PEG-4000 (14%)–phosphate (5.5%)–KCl (8%), both at pH 7.0 and 1 mg total protein per 1 g system. Significant purification was achieved by a single extraction step with 70% recovery of the enzyme. After an additional ion-exchange chromatography step, pure enzyme was obtained in a 50% overall yield.  相似文献   

6.
Asparagine (Asn)-71 of the xylanase (XYN) from Bacillus pumilus A-30 was found highly conserved in alkaline xylanases of family G/11. The mutated gene fragments containing different substitutions of Asn-71 was obtained by site-directed mutagenesis to study its role in the alkali-tolerant mechanism of xylanase. The xylanase activity was completely lost if Asn-71 residue was replaced by alkaline arginine (Arg) or lysine (Lys) residues, but obviously depressed with a shift in the pH optimum of the enzyme from 6.7 to 6.3 if substituted by serine (Ser) or aspartate (Asp) residues. No mutant with a shift of the pH optimum to a more basic value was found. Furthermore, N71D lost its activity in the alkaline pH range completely, while N71S did not lose as much as that of N71D. Except for Asn-71, the random mutagenesis to other residues of the xylanase was also studied. The alkali-tolerant mechanism of the xylanase was analyzed by their charged character, ionized state, and the hydrogen bond network of the residues surrounding the two catalytic residues on the basis of homology modeling of the mutated xylanases.  相似文献   

7.
Nicotinate phosphoribosyltransferase (NaPRT, EC 2.4.2.11) catalyzes the conversion of nicotinate (Na) to nicotinate mononucleotide, the first reaction of the Preiss-Handler pathway for the biosynthesis of NAD(+). Even though NaPRT activity has been described to be responsible for the ability of Na to increase NAD(+) levels in human cells more effectively than nicotinamide (Nam), so far a limited number of studies on the human NaPRT have appeared. Here, extensive characterization of a recombinant human NaPRT is reported. We determined its major kinetic parameters and assayed the influence of different compounds on its enzymatic activity. In particular, ATP showed an apparent dual stimulation/inhibition effect at low/high substrates saturation, respectively, consistent with a negative cooperativity model, whereas inorganic phosphate was found to act as an activator. Among other metabolites assayed, including nucleotides, nucleosides, and intermediates of carbohydrates metabolism, some showed inhibitory properties, i.e. CoA, several acyl-CoAs, glyceraldehyde 3-phosphate, phosphoenolpyruvate, and fructose 1,6-bisphosphate, whereas dihydroxyacetone phosphate and pyruvate exerted a stimulatory effect. Furthermore, in light of the absence of crystallographic data, we performed homology modeling to predict the protein three-dimensional structure, and molecular docking simulations to identify residues involved in the recognition and stabilization of several ligands. Most of these residues resulted universally conserved among NaPRTs, and, in this study, their importance for enzyme activity was validated through site-directed mutagenesis.  相似文献   

8.
An aqueous polyethylene glycol/salt two-phase system was used to estimate the dissociation constant, Kdis, of the Escherichia coli isoenzyme AHAS III regulatory subunit, IlvH protein, from the feedback inhibitor valine. The amounts of the bound and free radioactive valine in the system were determined. A Scatchard plot of the data revealed a 1:1 valine–protein binding ratio and Kdis of 133±14 μM. The protein did not bind leucine, and the ilvH protein isolated from a valine resistant mutant showed no valine binding. This method is very simple, rapid and requires only a small amounts of protein compared to the presently used equilibrium dialysis method.  相似文献   

9.
To evaluate their role in the active site of the MurG enzyme from Escherichia coli, 13 residues conserved in the sequences of 73 MurG orthologues were submitted to site-directed mutagenesis. All these residues lay within, or close to, the active site of MurG as defined by its tridimensional structure [Ha et al., Prot. Sci. 9 (2000) 1045-1052, and Hu et al., Proc. Natl. Acad. Sci. USA 100 (2003) 845-849]. Thirteen mutants proteins, in which residues T15, H18, Y105, H124, E125, N127, N134, S191, N198, R260, E268, Q288 or N291 have been replaced by alanine, were obtained as the C-terminal His-tagged forms. The effects of the mutations on the activity were checked: (i) by functional complementation of an E. coli murG mutant strain by the mutated genes; and (ii) by the determination of the steady-state kinetic parameters of the purified proteins. Most mutations resulted in an important loss of activity and, in the case of N134A, in the production of a highly unstable protein. The results correlated with the assigned or putative functions of the residues based on the tridimensional structure.  相似文献   

10.
Huang Y  Lu Z  Liu N  Chen Y 《Biochimie》2012,94(2):471-478
Diketoreductase (DKR) from Acinetobacter baylyi exhibits a unique property of double reduction of a β, δ-diketo ester with excellent stereoselectivity, which can serve as an efficient biocatalyst for the preparation of an important chiral intermediate for cholesterol lowering statin drugs. Taken the advantage of high homology between DKR and human heart 3-hydroxyacyl-CoA dehydrogenase (HAD), a molecular model was created to compare the tertiary structures of DKR and HAD. In addition to the possible participation of His-143 in the enzyme catalysis by pH profile, three key amino acid residues, Ser-122, His-143 and Glu-155, were identified and mutated to explore the possibility of involving in the catalytic process. The catalytic activities for mutants S122A/C, H143A/K and E155Q were below detectable level, while their binding affinities to the diketo ester substrate and cofactor NADH did not change obviously. The experimental results were further supported by molecular docking, suggesting that Ser-122 and His-143 were essential for the proton transfer to the carbonyl functional groups of the substrate. Moreover, Glu-155 was crucial for maintaining the proper orientation and protonation of the imidazole ring of His-143 for efficient catalysis.  相似文献   

11.
Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine. The ALS is the target of several classes of herbicides, including the sulfonylureas, the imidazolinones, and the triazolopyrimidines. The roles of three well-conserved lysine residues (K219, K255, K299) in tobacco ALS were determined using site-directed mutagenesis. The mutation of K219Q inactivated the enzyme and abolished the binding affinity for cofactor FAD. However, the secondary structure of the enzyme was not changed significantly by the mutation. Both mutants, K255F and K255Q, showed strong resistance to three classes of herbicides Londax (a sulfonylurea), Cadre (an imidazolinone), and TP (a triazolopyrimidine). In addition, there was no difference in the secondary structures of wALS and K255F. On the other hand, the mutation of K299Q did not show any significant effect on the kinetic properties or any sensitivity to the herbicides. These results suggest that Lys219 is located at the active site and is likely involved in the binding of FAD, and that Lys255 is located at a binding site common for the three herbicides in tobacco ALS.  相似文献   

12.
Acetohydroxy acid synthase (AHAS) and related enzymes catalyze the production of chiral compounds [(S)-acetolactate, (S)-acetohydroxybutyrate, or (R)-phenylacetylcarbinol] from achiral substrates (pyruvate, 2-ketobutyrate, or benzaldehyde). The common methods for the determination of AHAS activity have shortcomings. The colorimetric method for detection of acyloins formed from the products is tedious and does not allow time-resolved measurements. The continuous assay for consumption of pyruvate based on its absorbance at 333 nm, though convenient, is limited by the extremely small extinction coefficient of pyruvate, which results in a low signal-to-noise ratio and sensitivity to interfering absorbing compounds. Here, we report the use of circular dichroism spectroscopy for monitoring AHAS activity. This method, which exploits the optical activity of reaction products, displays a high signal-to-noise ratio and is easy to perform both in time-resolved and in commercial modes. In addition to AHAS, we examined the determination of activity of glyoxylate carboligase. This enzyme catalyzes the condensation of two molecules of glyoxylate to chiral tartronic acid semialdehyde. The use of circular dichroism also identifies the product of glyoxylate carboligase as being in the (R) configuration.  相似文献   

13.
Anaerobiospirillum succiniciproducens phosphoenolpyruvate (PEP) carboxykinase catalyzes the reversible formation of oxaloacetate and adenosine triphosphate from PEP, adenosine diphosphate, and carbon dioxide, and uses Mn2+ as the activating metal ion. The enzyme is a monomer and presents 68% identity with Escherichia coli PEP carboxykinase. Comparison with the crystalline structure of homologous E. coli PEP carboxykinase [Tari, L. W., Matte, A., Goldie, H., and Delbaere, L. T. J. (1997). Nature Struct. Biol. 4, 990–994] suggests that His225, Asp262, Asp263, and Thr249 are located in the active site of the protein, interacting with manganese ions. In this work, these residues were individually changed to Gln (His225) or Asn. The mutated enzymes present 3–6 orders of magnitude lower values of V max/K m, indicating high catalytic relevance for these residues. The His225Gln mutant showed increased K m values for Mn2+ and PEP as compared with wild-type enzyme, suggesting a role of His225 in Mn2+ and PEP binding. From 1.5–1.6 Kcal/mol lower affinity for the 3(2)-O-(N-methylantraniloyl) derivative of adenosine diphosphate was observed for the His225Gln and Asp263Asn mutant A. succiniciproducens PEP carboxykinases, implying a role of His225 and Asp263 in nucleotide binding.  相似文献   

14.
The objective of this work was to improve the acid stability of alpha amylase from Bacillus licheniformis (BLA) under acidic conditions by site-directed mutagenesis. Based on the analysis of three dimensional structure of BLA, five histidine residues at positions 281, 289, 293, 316, and 327 in BLA were substituted by arginine residues and aspartic acid residues, respectively. Ten mutants H281R/D, H289R/D, H293R/D, H316R/D, and H327R/D were obtained and H293R, H316R, and H327R were active at pH 4.5 and 6.5. Triple mutations of BLA was modified for the construction of H293R/H316R/H327R. Compared with wild type, which lost the activity, H293R, H316R, H327R, and H293R/H316R/H327R could maintain 8, 10, 20, 31% of the initial activity when incubated at pH 4.5 and 70 °C for 40 min, respectively. The results combined with three-dimensional structure analysis demonstrated that H293R, H316R, H327R, and H293R/H316R/H327R showed an improved acid stability under low pH condition as a result of the interactions of electrostatic fields, hydrogen bonding, and hydrophilcity. This work provides the theoretical basis and background data on the improvement of acid stability in BLA for satisfying the industrial requirements by protein engineering, which is beneficial to molecular modification of other industrial enzymes for acid-tolerance ability.  相似文献   

15.
A gene encoding valine dehydrogenase (Vdh) has been cloned from Streptomyces albus, a salinomycin producer, and expressed in Escherichia coli. The S. albus Vdh is composed of 364 amino acids that showed high homology with several other amino acid dehydrogenases as well as Vdhs from Streptomyces spp. and leucine and phenylalanine dehydrogenases (Ldh and Pdh) from Bacillus spp. A protein of 38 kDa, corresponding to the approximate mass of the predicted S. albus Vdh product (38.4 kDa) exhibiting specific Vdh activity, was observed when the S. albus vdh gene was overexpressed in E. coli under the controlled T7 promoter and was subsequently purified to homogeneity. Among branched- and straight-chain amino acids, L-valine and L-alpha-aminobutyrate were the preferred substrates for the enzyme. Lys-79 and Lys-91 of S. albus Vdh were highly conserved in the corresponding region of NAD(P)(+)-dependent amino acid dehydrogenase sequences. To elucidate the functional roles of the lysyl residues, the Lys residues have individually been replaced with Ala by site-directed mutagenesis. Kinetic analyses of the Lys-79 and Lys-91-mutated enzymes revealed that they are involved in the substrate binding site and catalysis, respectively, analogous to the corresponding residues in the homologous Ldh and Pdh.  相似文献   

16.
The serine alkaline protease, SAPB, from Bacillus pumilus CBS is characterized by its high thermoactivity, pH stability and high catalytic efficiency (kcat/Km) as well as its excellent stability and compatibility with an alkaline environment under harsh washing conditions. Based on sequence alignments and homology-modeling studies, the present study identified five amino acids Leu31, Thr33, Asn99, Phe159 and Gly182 being putatively important for the enzymatic behaviour of SAPB. To corroborate the role of these residues, 12 mutants were constructed by site-directed mutagenesis and then purified and characterized. The findings demonstrate that the single mutants F159T, F159S and G182S and combined double substitutions were implicated in the decrease of the optimum pH and temperature to 8.0–9.0 and 50 °C, respectively, and that mutant F159T/S clearly affected substrate affinity and catalytic efficiency. With regards to the single L31I, T33S and N99Y and combined double and triple mutations, the N99Y mutation strongly improved the half-life times at 50 °C and 60 °C to 660 and 295 min from of 220 and 80 min for the wild-type enzyme, respectively. More interestingly, this mutation also shifted the optimum temperature from 65 °C to 75 °C and caused a prominent 31-fold increase in kcat/Km with N-succinyl-l-Ala-Ala-Pro-Phe-p-nitroanilide (AAPF). The L31I and T33S mutants were observed to improve mainly the optimum pH from 11.0 to 11.5 and from 11.0 to 12.0, respectively. Kinetic studies of double and triple mutants showed that the cumulative effect of polar uncharged substitutions had a synergistic effect on the P1 position preference using synthetic peptide substrates, which confirms the implication of these amino acids in substrate recognition and catalytic efficiency.  相似文献   

17.
Lipoxygenases (LOXs) are a class of widespread dioxygenases catalyzing the hydroperoxidation of polyunsaturated fatty acids (PUFA). Recently, we isolated a cDNA encoding a LOX, named olive LOX1, from olive fruit of which the deduced amino acid sequence shows more than 50% identity with plant LOXs. In the present study, a model of olive LOX1 based on the crystal structure of soybean LOX-1 as template has been generated and two bulky amino acid residues highly conserved in LOXs (Phe277) and in plant LOXs (Tyr280), located at the putative entrance of catalytic site were identified. These residues may perturb accessibility of the substrate-binding site and therefore were substituted by less space-filling residues. Kinetic studies using linoleic and linolenic acids as substrates were carried out on wild type and mutants. The results show that the removal of steric bulk at the entrance of the catalytic site induces an increase of substrate affinity and of catalytic efficiency, and demonstrate that penetration of substrates into active site of olive LOX1 requires the movement of the side chains of the Phe277 and Tyr280 residues. This study suggests the involvement of these residues in the accessibility of the substrate-binding site in the lipoxygenase family.  相似文献   

18.
The individual tryptophanyl contributions to the near-ultraviolet circular dichroic activity of apomyoglobin in its native conformation have been resolved by studying recombinant proteins with single tryptophanyl substitutions. Site-directed mutagenesis of sperm whale apomyoglobin was performed in order to obtain proteins containing only Trp A-5 or Trp A-12. These amino acid substitutions have very little effect on the overall globin fold as indicated by comparing the spectroscopic properties of the mutants with those of the wild type protein. The circular dichroism spectra of the two apomyoglobin mutants in the near ultraviolet were found to be significantly different, both indole residues having significant activity but of opposite sign. In particular, Trp A-5 shows the presence of a main positive peak centered near 294 – 295 nm with a marked shoulder at 285 nm, ascribed to the 1LBtransition. The spectrum of the mutant protein containing only Trp A-12 shows a large negative contribution with a minimum near 283 nm and a marked shoulder at 293 nm. The broadness of the negative contribution exhibited by Trp A-12 suggests that it may originate mainly from the 1LA transition. Received: 17 February 1997 / Accepted: 14 August 1997  相似文献   

19.
20.
Isopenicillin N synthase (IPNS) catalyses a key step in the penicillin and cephalosporin biosynthetic pathway which involves the oxidative cyclisation of the acyclic peptide delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV) to isopenicillin N. Based on crystallographic evidence from the Aspergillus nidulans IPNS crystal structure complexed with the substrate ACV (Roach et al. (1997) Nature 387, 827-830), we were able to provide mutational evidence for the critical involvement of the conserved R-X-S motif in ACV binding in IPNS. The crystal structure further implicated arginine-87 in the binding of the aminoadipyl portion of ACV. Thus, in this study, the site-directed mutagenesis of the corresponding arginine-89 in Cephalosporium acremonium IPNS (cIPNS) was performed to ascertain its role in cIPNS. Alteration of arginine-89 to five amino acids from different amino acid groups, namely lysine, serine, alanine, aspartate and leucine, was performed and no activity was detected in all the mutants obtained when enzyme bioassays were performed. Furthermore, the solubility of the mutants was considerably lower than the wild-type cIPNS after expression at 37 degrees C, but could be recovered when the expression temperature was lowered to 25 degrees C. This suggests that arginine-89 could be critical for the activity of cIPNS due to its involvement in ACV binding and the solubility of wild-type enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号