首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antioxidative activity and ameliorative effects on memory impairment by sulfur-containing compounds which occur in Allium vegetables such as onion and garlic were investigated. The antioxidative activities of S-alk(en)yl-L-cysteines and their sulfoxides, volatile alk(en)yl disulfides and trisulfides, and vinyldithiins were examined by using human low-density lipoprotein. It was elucidated that the alk(en)yl substituents and the number of sulfur atoms in the compounds were important for the antioxidative activities. To demonstrate the ameliorative effects on memory impairment, onion extract and synthesized di-n-propyl trisulfide were administered to senescence-accelerated mouse P8. The behavioral experiments showed that onion extract and di-n-propyl trisulfide had highly ameliorative effect of memory impairment. Furthermore, it was found that the hippocampus lipid hydroperoxide in senescence-accelerated mouse P8 was decreased by the administration of di-n-propyl trisulfide. These results suggest that di-n-propyl trisulfide contained in onion ameliorates memory impairment in SAMP8 mouse by its antioxidant effect.  相似文献   

2.
Health benefits of garlic and other Allium vegetables (e.g., onions), such as lipid lowering and anticancer effects, are credited to metabolic byproducts, including diallyl trisulfide (DATS). Evidence for anticancer effects of garlic derives from both population-based case-control studies, and clinical and laboratory investigations using purified garlic constituents such as DATS. Studies have shown that DATS can offer protection against chemically-induced neoplasia as well as oncogene-driven spontaneous cancer development in experimental rodents. Mechanisms underlying cancer chemopreventive effects of DATS are not completely understood, but known pharmacological responses to this natural product include alteration in carcinogen-metabolizing enzymes, cell cycle arrest, induction of apoptotic cell death, suppression of oncogenic signal transduction pathways, and inhibition of neoangiogenesis. This article reviews mechanisms and targets of cancer chemoprevention by DATS.  相似文献   

3.
Phytochemistry Reviews - Garlic has been used as a medicinal food for centuries. The biological activity of garlic relies on the presence of highly reactive sulfur compounds. Widespread in vitro...  相似文献   

4.
The aim of the present studies was to determine whether the mechanism of biological action of garlic-derived sulfur compounds in human hepatoma (HepG2) cells can be dependent on the presence of labile sulfane sulfur in their molecules. We investigated the effect of allyl sulfides from garlic: monosulfide, disulfide and trisulfide on cell proliferation and viability, caspase 3 activity and hydrogen peroxide (H(2)O(2)) production in HepG2 cells. In parallel, we also examined the influence of the previously mentioned compounds on the levels of thiols, glutathione, cysteine and cysteinyl-glycine, and on the level of sulfane sulfur and the activity of its metabolic enzymes: rhodanese, 3-mercaptopyruvate sulfurtransferase and cystathionase. Among the compounds under study, diallyl trisulfide (DATS), a sulfane sulfur-containing compound, showed the highest biological activity in HepG2 cells. This compound increased the H(2)O(2) formation, lowered the thiol level and produced the strongest inhibition of cell proliferation and the greatest induction of caspase 3 activity in HepG2 cells. DATS did not affect the activity of sulfurtransferases and lowered sulfane sulfur level in HepG2 cells. It appears that sulfane sulfur containing DATS can be bioreduced in cancer cells to hydroperthiol that leads to H(2)O(2) generation, thereby influencing transmission of signals regulating cell proliferation and apoptosis.  相似文献   

5.
Natural organosulfur compounds (OSCs) have been shown to have chemopreventive effects and to suppress the proliferation of tumor cells in vitro through the induction of apoptosis. The biochemical mechanisms underlying the antitumorigenic and anti-proliferative effects of garlic-derived OSCs are not fully understood. Several modes of action of these compounds have been proposed, and it seems likely that the rate of clearance of allyl sulfur groups from cells is a determinant of the overall response. The aim of this review is to focus attention on the effects of natural allyl sulfur compounds on the cell detoxification system in normal and tumor cells. It has been already reported that several natural allyl sulfur compounds induce chemopreventive effects by affecting xenobiotic metabolizing enzymes and inducing their down-activation. Moreover, different effects of water- and oil-soluble allyl sulfur compounds on enzymes involved in the detoxification system of rat tissues have been observed. A direct interaction of the garlic allyl sulfur compounds with proteins involved in the detoxification system was studied in order to support the hypothesis that proteins possessing reactive thiol groups and that are involved in the detoxification system and in the cellular redox homeostasis, are likely the preferential targets of these compounds. The biochemical transformation of the OSCs in the cell and their adducts with thiol functional groups of these proteins, could be considered relevant events to uncover the anticancer properties of the allyl sulfur compounds. Although additional studies, using proteomic approaches and transgenic models, are needed to identify the molecular targets and modes of action of these natural compounds, the allyl sulfur compounds can represent potential ideal agents in anticancer therapy, either alone or in association with other antitumor drugs.  相似文献   

6.
Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy were used to study the cell injury and inactivation of Campylobacter jejuni from exposure to antioxidants from garlic. C. jejuni was treated with various concentrations of garlic concentrate and garlic-derived organosulfur compounds in growth media and saline at 4, 22, and 35°C. The antimicrobial activities of the diallyl sulfides increased with the number of sulfur atoms (diallyl sulfide < diallyl disulfide < diallyl trisulfide). FT-IR spectroscopy confirmed that organosulfur compounds are responsible for the substantial antimicrobial activity of garlic, much greater than those of garlic phenolic compounds, as indicated by changes in the spectral features of proteins, lipids, and polysaccharides in the bacterial cell membranes. Confocal Raman microscopy (532-nm-gold-particle substrate) and Raman mapping of a single bacterium confirmed the intracellular uptake of sulfur and phenolic components. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to verify cell damage. Principal-component analysis (PCA), discriminant function analysis (DFA), and soft independent modeling of class analogs (SIMCA) were performed, and results were cross validated to differentiate bacteria based upon the degree of cell injury. Partial least-squares regression (PLSR) was employed to quantify and predict actual numbers of healthy and injured bacterial cells remaining following treatment. PLSR-based loading plots were investigated to further verify the changes in the cell membrane of C. jejuni treated with organosulfur compounds. We demonstrated that bacterial injury and inactivation could be accurately investigated by complementary infrared and Raman spectroscopies using a chemical-based, "whole-organism fingerprint" with the aid of chemometrics and electron microscopy.  相似文献   

7.
The curative properties of garlic in medicine have been known for a long time. But, it was only in the last three decades when garlic properties were seriously investigated confirming its potential as therapeutic agent. Allicin, ajoene, thiosulfinates and a wide range of other organosulphurate compounds, are known to be the constituents linked to the garlic properties. Regarding the biochemical properties of these compounds, ajoene [(E,Z)-4,5,9 Trithiadodeca 1,6,11 Triene 9-oxide] is stable in water, and it can be obtained by chemical synthesis. There is evidence that some of the garlic constituents exert a wide variety of effects on different biological systems. However, ajoene is the garlic compound related to more biological activities, as showed in in vitro and in vivo systems. Those studies found that ajoene has antithrombotic, anti-tumoral,antifungal, and antiparasitic effects. This study deals with a recently described antifungal property of ajoene, and its potential use in clinical trails to treat several fungal infections.  相似文献   

8.
Garlic is known as a potent spice and a medicine with broad therapeutic properties ranging from antibacterial to anticancer, antidiabetic, and anticoagulant. Two major proteins of 40 KD and 14 KD constituting approximately 96% of total garlic proteins have been recently purified at our Institute. This immunocytochemical and ultrastructural study revealed that the 40 KD protein was localized in the parenchyma sheath cells (PSC) of garlic bulbs, whereas the 14 KD protein was present in the cortical cells (CC). Immunogold electron microscopy study indicated that the 40 KD protein was specifically localized in the globular granules of the cytoplasmic area of PSC. Each globular granule was amorphous and homogenous with membrane limiting its outermost layer. The yellowish color of PSC in freshly cut slices of garlic bulb suggested that PSC may have sulfur-containing compounds such as allicin, the primary contributor of the pungency and medicinal properties of garlic. Ellman's reagent test quantitatively revealed that there were 17.8 n moles sulfhydryl (SH)/ml of 40 KD garlic protein. Microtubule tubulin in mitotic figures from PHA-stimulated human short-term whole blood cultures reacted strongly with antitubulin antibody but reacted negatively with anti-40 KD garlic protein antibodies and therefore was not related to the 40 KD garlic protein immunocytochemically.  相似文献   

9.
Garlic (Allium sativum) and onion (Allium cepa) are among the oldest of all cultivated plants. Additionally, both plants have been used as medicinal agents for thousands of years. Both garlic and onion have been shown to have applications as antimicrobial, antithrombotic, antitumor, hypolipidaemic, antiarthritic and hypoglycemic agents. In recent years, extensive research has focussed on the beneficial and medicinal properties of garlic and onions. In particular, the use of these agents in the treatment and prevention of cardiovascular disease and cancer is an area of considerable investigation and interest.  相似文献   

10.
Antimicrobial properties of Allium sativum (garlic)   总被引:13,自引:0,他引:13  
Although garlic has been used for its medicinal properties for thousands of years, investigations into its mode of action are relatively recent. Garlic has a wide spectrum of actions; not only is it antibacterial, antiviral, antifungal and antiprotozoal, but it also has beneficial effects on the cardiovascular and immune systems. Resurgence in the use of natural herbal alternatives has brought the use of medicinal plants to the forefront of pharmacological investigations, and many new drugs are being discovered. This review aims to address the historical use of garlic and its sulfur chemistry, and to provide a basis for further research into its antimicrobial properties.  相似文献   

11.

Allium species, belonging to Alliaceae family, are among the oldest cultivated vegetables used as food. Garlic, onions, leeks and chives, which belong to this family, have been reported to have medicinal properties. The Allium species constituents have been shown to have antibacterial and antioxidant activities, and, in addition, other biological properties. These activities are related to their rich organosulfur compounds. These organosulfur compounds are believed to prevent the development of cancer, cardiovascular, neurological, diabetes, liver diseases as well as allergy and arthritis. There have also been reports on toxicities of these compounds. The major active compounds of Allium species includes, diallyl disulfide, diallyl trisulfide, diallyl sulfide, dipropyl disulfide, dipropyl trisulfide, 1-propenylpropyl disulfide, allyl methyl disulfide and dimethyl disulfide. The aim of this review is to focus on a variety of experimental and clinical reports on the effectiveness, toxicities and possible mechanisms of actions of the active compounds of garlic, onions, leek and chives.

  相似文献   

12.
Research over the last three decades has provided convincing evidence to support the premise that diets rich in fruits and vegetables may be protective against the risk of different types of cancers. Initial evidence for protective effect of fruits and vegetables against cancer risk came from population-based case-control studies, which prompted intense research aimed at (a) identification of bioactive component(s) responsible for the anticancer effects of fruits and vegetables, (b) elucidation of the mechanisms by which bioactive food components may prevent cancer, and (c) determination of their efficacy for prevention of cancer in animal models. The bioactive components responsible for cancer chemopreventive effects of various edible plants have now been identified. For instance, anticancer effect of Allium vegetables including garlic is attributed to organosulfur compounds (e.g., diallyl trisulfide). Interestingly, unlike cancer chemotherapy drugs, many bioactive food components selectively target cancer cells. Molecular basis for selectivity of anticancer bioactive food components towards cancer cells remains elusive, but these agents appear promiscuous and target multiple signal transduction pathways to inhibit cancer cell growth in vitro and in vivo. Despite convincing observational and experimental evidence, however, limited effort has been directed towards clinical investigations to determine efficacy of bioactive food components for prevention of human cancers. This article reviews current knowledge on cancer chemopreventive effects of a few highly promising dietary constituents, including garlic-derived organosulfides, berry compounds, and cruciferous vegetable-derived isothiocyanates, and serves to illustrate complexity of the signal transduction mechanisms in cancer chemoprevention by these promising bioactive food components.  相似文献   

13.
Sulfur compounds contributed to the health promotion in Allium species are produced via enzymic and thermal reactions. Potent antithrombotic agents which have been identified as allyl trisulfides, dithiins, and ajoene in garlic (A. sativum) and caucas (A. victorialis) are thermochemically transformed from allicin (allyl 2-propenethiosulfinate). The leaves and stems of Japanese domestic Allium plant, A. victorialis L. which is widely distributed in the northern part of Japan, under the name "Gyoja-ninniku" is a nutritious vegetable. The significant flavor compounds of caucas are methyl allyl disulfide (Chinese chive odor), diallyl disulfide (garlic-like odor), and dimethyl disulfide and methyl allyl trisulfide (pickles-like odor) among more than 85 peaks on the gas chromatogram. 2-Vinyl-4H-1,3-dithiin and 3,4-dihydro-3-vinyl-1,2-dithiin as platelet aggregation inhibitors were found eliminated in dichloromethane extract of caucas. The significant health promoting factors, allyl trisulfides and dithiins were relatively increased when caucas was cooked on a frying pan.  相似文献   

14.
Chronic Helicobacter pylori disease is reduced with Allium vegetable intake. This study was designed to assess the in vivo anti-H. pylori potential of a variety of garlic substances. The garlic materials all showed substantial but widely differing anti-H. pylori effects against all strains and isolates tested. The MICs (range, 8 to 32 microg/ml) and minimum bactericidal concentrations (MBCs) (range, 16 to 32 microg/ml) of undiluted garlic oil (GO) were smaller than those of garlic powder (GP) (MIC range, 250 to 500 microg/ml; MBC range, 250 to 500 microg/ml) but greater than the MIC of allicin (4. 0 microg/ml) (Table 2) present in GP. Allicin (MIC, 6 microg/ml; MBC, 6 microg/ml) was more potent than diallyl disulfide (MIC range, 100 to 200 microg/ml; MBC range, 100 to 200 microg/ml), its corresponding sulfide, but of a strength similar to that of diallyl tetrasulfide (MIC range, 3 to 6 microg/ml; MBC range, 3 to 6 microg/ml). Antimicrobial activity of the diallyl sulfides increased with the number of sulfur atoms. Time course viability studies and microscopy showed dose-dependent anti-H. pylori effects with undiluted GO, GP, allicin, and diallyl trisulfide after a lag phase of ca. 1 to 2 h. Substantial in vitro anti-H. pylori effects of pure GO and GP and their diallyl sulfur components exist, suggesting their potential for in vivo clinical use against H. pylori infections.  相似文献   

15.

Background

Diallyl trisulfide (DATS) is one of the major constituents in garlic oil and has demonstrated various pharmacological activities, including antimicrobial, antihyperlipidemic, antithrombotic, and anticancer effects. However, the mechanisms of antiproliferative activity in leukemia cells are not fully understood. In this study, the apoptotic effects of DATS were investigated in human leukemia cells.

Results

Results of this study indicated that treatment with DATS resulted in significantly inhibited leukemia cell growth in a concentration- and time-dependent manner by induction of apoptosis. In U937 cells, DATS-induced apoptosis was correlated with down-regulation of Bcl-2, XIAP, and cIAP-1 protein levels, cleavage of Bid proteins, activation of caspases, and collapse of mitochondrial membrane potential. The data further demonstrated that DATS increased intracellular reactive oxygen species (ROS) generation, which was attenuated by pretreatment with antioxidant N-acetyl-l-cysteine (NAC), a scavenger of ROS. In addition, administration of NAC resulted in significant inhibition of DATS-induced apoptosis by inhibiting activation of caspases.

Conclusions

The present study reveals that the cytotoxicity caused by DATS is mediated by generation of ROS and subsequent activation of the ROS-dependent caspase pathway in U937 leukemia cells.  相似文献   

16.
Thiocystine (bis[2-amino-2-carboxyethyl]trisulfide) functions as a persulfide in transferring its sulfane sulfur to thiophilic acceptors. This occurs by formation of a reactive intermediate, thiocysteine (alanine hydrogen disulfide). In the absence of an acceptor sulfur is released in elemental form. Thiocystine is relatively stable in the pH range of 2–9. However, its conversion to unstable thiocysteine is accelerated by sulfhydryl compounds, rhodanese, or reagents that cleave sulfur-sulfur bonds to yield sulfhydryl groups. Since thiocystine has been detected in biological systems, it is proposed that in provides a storage form of sulfane sulfur. Trisulfides related to thiocystine show qualitatively similar properties.  相似文献   

17.
18.
Garlic's pungent flavor has made it a popular ingredient in cuisines around the world and throughout history. Garlic's health benefits have been elevated from folklore to clinical study. Although there is some controversy as to the efficacy of garlic, garlic products are one of the most popular herbal supplements in the U.S. Chemically complex, garlic contains different assortments of sulfur compounds depending on whether the cloves are intact, crushed, cooked, or raw. Raw garlic, when cut and placed on the tongue or lips, elicits painful burning and prickling sensations through unknown mechanisms. Here, we show that raw but not baked garlic activates TRPA1 and TRPV1, two temperature-activated ion channels that belong to the transient receptor potential (TRP) family. These thermoTRPs are present in the pain-sensing neurons that innervate the mouth. We further show that allicin, an unstable component of fresh garlic, is the chemical responsible for TRPA1 and TRPV1 activation and is therefore likely to cause garlic's pungency.  相似文献   

19.
Shi  Tongfei  Gao  Mohan  He  Meihui  Yue  Fengli  Zhao  Yawei  Sun  Madi  He  Kan  Chen  Li 《Molecular and cellular biochemistry》2019,460(1-2):151-164
Molecular and Cellular Biochemistry - Diallyl trisulfide (DATS) is distinguished as the most potent polysulfide isolated from garlic. The aim of our study was to investigate effects of oral...  相似文献   

20.
Onion and garlic essential oils were previously shown to inhibit mouse skin tumor promotion, as were the enzymes, lipoxygenase, and cyclooxygenase. In the present study, the inhibition of soybean lipoxygenase (EC 1.13.11.12) by onion and garlic components and related compounds was investigated. The IC50 values as well as the kinetic inhibition constants were determined for the most active compounds. Di-(1-propenyl) sulfide, an analog of the substrate moiety required for oxygenase action, was the only irreversible inhibitor observed with Ki = 59 microM and k3 = 0.53/min. Inhibition in the presence of substrate was uncompetitive at 88 and 132 microM linoleic acid with Ki = 129 microM. At 173 microM linoleic acid, however, inhibition was competitive with Ki = 66 microM. Dially trisulfide, allyl methyl trisulfide, and diallyl disulfide were competitive inhibitors, while 1-propenylpropyl sulfide and (E, Z)-4,5,9-trithiadodeca-1,6,11-triene 9-oxide (ajoene) were mixed inhibitors. Nordihydroguaiaretic acid (NDGA), the most potent lipoxygenase inhibitor, was a competitive inhibitor with Ki = 0.29 microM. The results indicate a relative potency of inhibition for structural features in the following order: di(1-propenyl) sulfide greater than an alkenyl trisulfide greater than an alkenyl disulfide. Di(n-propyl) disulfide, a major onion oil component, inhibited neither lipoxygenase nor promotion. Di(1-propenyl) sulfide and ajoene inhibited both. This suggests that the inhibition of lipoxygenase may be involved in antipromotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号