首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
We investigated ADP/ATP exchange mediated by the adenine nucleotide translocator and opening of the mitochondrial permeability transition pore in homogenates from cerebellar granule cells en route to apoptosis induced by low potassium. We showed that, in the first 3 h of apoptosis, when maximum cytochrome c release had already occurred, adenine nucleotide translocator function was impaired owing to the action of reactive oxygen species, but no permeability transition pore opening occurred. Over 3-8 h of apoptosis, the permeability transition pore progressively opened, owing to caspase action, and further ADP/ATP translocator impairment occurred. The kinetics of transport and permeability transition pore opening were inversely correlated, both in the absence and presence of inhibitors of antioxidant and proteolytic systems. We conclude that, en route to apoptosis, alteration of the adenine nucleotide translocator occurs, resulting in permeability transition pore opening. This process depends on the action of caspase on pore component(s) other than the ADP/ATP translocator, because no change in either amount or molecular weight of the latter protein was noted during apoptosis, as measured by western blotting. Cell death occurs via apoptosis in the presence of cyclosporin A, the permeability transition pore inhibitor, thus showing that permeability transition pore opening, not needed for cytochrome c release, is also unnecessary for apoptosis to occur.  相似文献   

2.
In rat cerebellar granule cells, cytochrome c release takes place during glutamate toxicity and apoptosis due to deprivation of depolarising levels of potassium. We show that, as in necrosis, the released cytochrome c present in the cytosolic fraction obtained from cerebellar granule cells undergoing apoptosis can operate as a reactive oxygen species (ROS) scavenger and as a respiratory substrate. The capability of the cytosolic fraction containing cytochrome c, obtained from cerebellar granule cells undergoing either necrosis or apoptosis, to energise coupled mitochondria isolated by the same cells is also investigated. We show that, in both cases, the cytosolic fraction containing cytochrome c, added to mitochondria, can cause proton ejection, and membrane potential generation and can drive ATP synthesis and export in the extramitochondrial phase, as photometrically measured via the ATP detecting system. Cytochrome c, separated immunologically from the cytosolic fraction of apoptotic cells when added to mitochondria, is found to cause proton ejection to generate membrane potential and to drive ATP synthesis and export in a manner not sensitive to the further addition of the cytosolic fraction depleted of cytochrome c, which failed to do this. In the light of these findings we propose that in apoptosis the released cytochrome c can contribute to provide ATP required for the cell programmed death to occur.  相似文献   

3.
Cerebellar granule neurons grown in high potassium undergo rapid apoptosis when switched to medium containing 5 mm potassium, a stimulus mimicking deafferentation. This cell death can be blocked by genetic deletion of Bax, a member of the pro-apoptotic Bcl-2 family, cycloheximide an inhibitor of macromolecular synthesis or expression of dominant-negative c-jun. These observations suggest that Bax activation is the result of c-jun target gene(s) up-regulation following trophic withdrawal. Candidate genes include the BH3-only Bcl-2 family members Dp5 and Bim. The molecular mechanisms underlying granule cell neuronal apoptosis in response to low potassium were investigated using CEP-1347 (KT7515), an inhibitor of the MLK family of JNKKK. CEP-1347 provided protection of potassium-serum-deprived granule cells, but such neuroprotection was not long term. The incomplete protection was not due to incomplete blockade of the JNK signaling pathway because c-jun phosphorylation as well as induction of c-jun RNA and protein were completely blocked by CEP-1347. Following potassium-serum deprivation the JNKK MKK4 becomes phosphorylated, an event blocked by CEP-1347. Cells that die in the presence of CEP-1347 activate caspases; and dual inhibition of caspases and MLKs has additive, not synergistic, effects on survival. A lack of synergism was also seen with the p38 inhibitor SB203580, indicating that the neuroprotective effect of the JNK pathway inhibitor cannot be explained by p38 activation. Activation of the JNK signaling pathway seems to be a key event in granule cell apoptosis, but these neurons cannot survive long term in the absence of sustained PI3 kinase signaling.  相似文献   

4.
Apoptosis may be initiated in neurons via mitochondrial release of the respiratory protein, cytochrome c. The mechanism of cytochrome c release has been studied extensively, but little is known about its dynamics. It has been claimed that release is all-or-none, however, this is not consistent with accumulating evidence of cytosolic mechanisms for 'buffering' cytochrome c. This study has attempted to model an underlying disease pathology, rather than inducing apoptosis directly. The model adopted was diminished activity of the mitochondrial respiratory chain complex I, a recognized feature of Parkinson's disease. Titration of rat brain mitochondrial respiratory function, with the specific complex I inhibitor rotenone, caused proportional release of cytochrome c from isolated synaptic and non-synaptic mitochondria. The mechanism of release was mediated, at least in part, by the mitochondrial outer membrane component Bak and voltage-dependent anion channel rather than non-specific membrane rupture. Furthermore, preliminary data were obtained demonstrating that in primary cortical neurons, titration with rotenone induced cytochrome c release that was subthreshold for the induction of apoptosis. Implications for the therapy of neurodegenerative diseases are discussed.  相似文献   

5.
Opening of the permeability transition pore (PTP) has been implicated as an important mitochondrial event that occurs during apoptosis. We examined the role of the PTP in the well-characterized cell death of rat sympathetic neurons deprived of nerve growth factor (NGF) in vitro. Removal of NGF causes these neurons to undergo either a classic apoptotic cell death or, when treated with a broad-spectrum caspase inhibitor such as boc-aspartyl(OMe)-fluoromethylketone (BAF), a delayed, nonapoptotic cell death. The PTP inhibitor, cyclosporin A (CsA), blocked commitment-to-die in the presence of BAF, as defined by the ability of NGF readdition to rescue cells, but had little effect on commitment-to-die in the absence of BAF. CsA did not have trophic effects on BAF-saved cells, but did block the decrease in mitochondrial membrane potential. These data suggest that PTP opening is a critical event in caspase-independent, nonapoptotic (but not caspase-dependent, apoptotic) death of NGF-deprived rat sympathetic neurons.  相似文献   

6.
研究Zn2+对Ca2+介导线粒体通透过渡孔道(PTP)开放和线粒体细胞色素c释放的影响,及其与线粒体膜电位(ΔΨm)和Ca2+介导的线粒体Ca2+释放(mCICR)之间的关系.提取大鼠肝线粒体,通过紫外分光光度仪检测不同浓度Zn2+作用下Ca2+介导的PTP开放状态;采用荧光分光光度仪测定不同浓度Zn2+作用下线粒体膜电位的变化;采用双波长双光束紫外分光光度仪检测不同浓度Zn2+作用下测试体系内Ca2+浓度的变化,以反映线粒体Ca2+的转运情况(即mCICR);通过免疫印迹法检测不同浓度Zn2+作用下Ca2+介导的线粒体细胞色素c的释放.高浓度Zn2+完全抑制Ca2+介导的PTP开放和细胞色素c释放.一定浓度的Zn2+部分抑制Ca2+介导的PTP开放和细胞色素c释放.适当浓度Zn2+自身介导PTP开放和细胞色素c释放.低浓度Zn2+加速Ca2+介导PTP开放和Ca2+释放;高浓度和一定浓度Zn2+分别完全或部分破坏ΔΨm;高浓度Zn2+完全抑制mCICR.当抑制mCICR时,Ca2+和Zn2+对PTP开放和细胞色素c释放的作用完全抑制.结果表明,Zn2+以浓度依赖方式双向调节PTP开放和细胞色素c释放.Zn2+的作用可能与Zn2+破坏ΔΨm和影响mCICR相关.  相似文献   

7.
Here we report that in staurosporine-induced apoptosis of HeLa cells, Bid, a BH3 domain containing protein, translocates from the cytosol to mitochondria. This event is associated with a change in conformation of Bax which leads to the unmasking of its NH2-terminal domain and is accompanied by the release of cytochrome c from mitochondria. A similar finding is reported for cerebellar granule cells undergoing apoptosis induced by serum and potassium deprivation. The Bax-conformational change is prevented by Bcl-2 and Bcl-xL but not by caspase inhibitors. Using isolated mitochondria and various BH3 mutants of Bid, we demonstrate that direct binding of Bid to Bax is a prerequisite for Bax structural change and cytochrome c release. Bcl-xL can inhibit the effect of Bid by interacting directly with Bax. Moreover, using mitochondria from Bax-deficient tumor cell lines, we show that Bid- induced release of cytochrome c is negligible when Bid is added alone, but dramatically increased when Bid and Bax are added together. Taken together, our results suggest that, during certain types of apoptosis, Bid translocates to mitochondria and binds to Bax, leading to a change in conformation of Bax and to cytochrome c release from mitochondria.  相似文献   

8.
The role of mitochondrial membrane potential in ischemic heart failure   总被引:1,自引:0,他引:1  
The molecular events occurring during myocardial infarction and cardioprotection are described with an emphasis on the changes of the mitochondrial membrane potential (ΔΨm). The low ΔΨm values of the normal beating heart (100–140 mV) are explained by the allosteric ATP-inhibition of cytochrome c oxidase (CcO) through feedback inhibition by ATP at high [ATP]/[ADP] ratios. During ischemia the mechanism is reversibly switched off by signaling through reactive oxygen species (ROS). At reperfusion high ΔΨm values cause a burst of ROS production leading to apoptosis and/or necrosis. Ischemic preconditioning is suggested to cause additional phosphorylation of CcO, protecting the enzyme from immediate dephosphorylation via ROS signaling.  相似文献   

9.
Exposure of cerebellar granule cells (CGCs) to 1-methyl-4-phenylpyridinium (MPP+) results in apoptotic cell death, which is markedly attenuated by co-treatment of CGCs with the radical scavenger vitamin E. Analysis of free radical production and mitochondrial transmembrane potential (DeltaPsim), using specific fluorescent probes, showed that MPP+ mediates early radical oxygen species (ROS) production without a loss of DeltaPsim. Exposure to MPP+ also produces an early increase in Bad dephosphorylation and translocation of Bax to the mitochondria. These events are accompanied by cytochrome c release from mitochondria to cytosol, which is followed by caspase 3 activation. Exposure of the neurons to vitamin E maintains Bad phosphorylation and attenuates Bax translocation, inhibiting cytochrome c release and caspase activation. MPP+-mediated cytochrome c release is also prevented by allopurinol, suggesting the participation of xanthine oxidase in the process. Our results indicate that free radicals play an active role in the MPP+-induced early events that culminate with cell death.  相似文献   

10.
Summary In this study, we determined the timing of events associated with cell death induced by the host-selective toxin, victorin. We show that the victorin-induced collapse in mitochondrial transmembrane potential (Deltapsi(m)), indicative of a mitochondrial permeability transition (MPT), on a per cell basis, did not occur simultaneously in the entire mitochondrial population. The loss of Deltapsi(m) in a predominant population of mitochondria preceded cell shrinkage by 20-35 min. Rubisco cleavage, DNA laddering, and victorin binding to the P protein occurred concomitantly with cell shrinkage. During and following cell shrinkage, tonoplast rupture did not occur, and membranes, including the plasma membrane and tonoplast, retained integrity. Ethylene signaling was implicated upstream of a victorin-induced loss in mitochondrial motility and the collapse in Deltapsi(m). Results suggest that the victorin-induced collapse in Deltapsi(m) is a consequence of an MPT and that the timing of the victorin-induced MPT is poised to influence the cell death response. The retention of plasma membrane and tonoplast integrity during cell shrinkage supports the interpretation that victorin induces an apoptotic-like cell death response.  相似文献   

11.
The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update   总被引:14,自引:0,他引:14  
Mitochondrial dysfunction has been shown to participate in the induction of apoptosis and has even been suggested to be central to the apoptotic pathway. Indeed, opening of the mitochondrial permeability transition pore has been demonstrated to induce depolarization of the transmembrane potential (m), release of apoptogenic factors and loss of oxidative phosphorylation. In some apoptotic systems, loss of m may be an early event in the apoptotic process. However, there are emerging data suggesting that, depending on the model of apoptosis, the loss of m may not be an early requirement for apoptosis, but on the contrary may be a consequence of the apoptotic-signaling pathway. Furthermore, to add to these conflicting data, loss of m has been demonstrated to not be required for cytochrome c release, whereas release of apoptosis inducing factor AIF is dependent upon disruption of m early in the apoptotic pathway. Together, the existing literature suggests that depending on the cell system under investigation and the apoptotic stimuli used, dissipation of m may or may not be an early event in the apoptotic pathway. Discrepancies in this area of apoptosis research may be attributed to the fluorochromes used to detect m. Differential degrees of sensitivity of these fluorochromes exist, and there are also important factors that contribute to their ability to accurately discriminate changes in m.  相似文献   

12.
The mitochondrial peripheral benzodiazepine receptor (PBR) is involved in a functional structure designated as the mitochondrial permeability transition (MPT) pore, which controls apoptosis. PBR expression in nervous system has been reported in glial and immune cells. We now show expression of both PBR mRNA and protein, and the appearance of binding of a synthetic ligand fluo-FGIN-1-27 in mitochondria of rat cerebellar granule cells (CGCs). Additionally, the effect of PBR ligands on colchicine-induced apoptosis was investigated. Colchicine-induced neurotoxicity in CGCs was measured at 24 h. We show that, in vitro, PBR ligands 1-(2-chlorophenyl-N-methylpropyl)-3-isoquinolinecarboxamide (PK11195), 7-chloro-5-(4-chlorophenyl)-1,3-dihydro-1-methyl-2H-1,4- benzodiazepin-2-one (Ro5-4864) and diazepam (25– 50 M) enhanced apoptosis induced by colchicine, as demonstrated by viability experiments, flow cytometry and nuclear chromatin condensation. Enhancement of colchicine-induced apoptosis was characterized by an increase in mitochondrial release of cytochrome c and AIF proteins and an enhanced activation of caspase-3, suggesting mitochondrion dependent mechanism that is involved in apoptotic process. Our results indicate that exposure of neural cells to PBR ligands generates an amplification of apoptotic process induced by colchicine and that the MPT pore may be involved in this process.  相似文献   

13.
Hyperstimulation with cholecystokinin analogue cerulein induces a mild edematous pancreatitis in rats. There is evidence for a diminished energy metabolism of acinar cells in this experimental model. The aim of this study was to demonstrate permeability transition of the mitochondrial inner membrane as an early change in mitochondrial function and morphology. As functional parameters, the respiration and membrane potential of mitochondria isolated from control and cerulein-treated animals were measured, and changes in volume and morphology were investigated by swelling experiments and electron microscopy. Five hours after the first injection of cerulein, the leak respiration was nearly doubled and the resting membrane potential was decreased by about 17 mV. These alterations were reversed by extramitochondrial ADP or did not occur when cyclosporin A was added to the mitochondrial incubation. A considerable portion of the mitochondria isolated from cerulein-treated animals was swollen and showed dramatic changes in morphology such as a wrinkled outer membrane and the loss of a distinct cristae structure. These data provide evidence for the opening of the mitochondrial permeability transition pore at an early stage of cerulein induced pancreatitis. This suggests that the permeability transition is an initiating event for lysis of individual mitochondria and the initiation of apoptosis and/or necrosis, as had been shown to occur in this experimental model.  相似文献   

14.
Unlike oleate and linoleate, palmitate induced mitochondrial apoptosis in GL15 glioblastoma cells. Decrease in membrane potential in a subpopulation of mitochondria of palmitate-treated cells was revealed using the 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide probe. The diminished ability to reduce a tetrazolium salt indicated an impairment of mitochondrial function. Up to 50% cytochrome c (cyt c ) was detached from the inner mitochondrial membrane and released outside mitochondria in palmitate-treated cells, whereas no release was detected after oleate and linoleate treatments. Cyt c release into the cytosol was followed by caspase 3 activation. Released cyt c and caspase 3 activity were not affected by neutral and acid sphingomyelinase inhibitors and by the inhibitor of serine palmitoyltransferase cycloserine, indicating that apoptosis was independent of the ceramide pathway, nor the mitochondrial pro-apoptotic AIF or Bcl-2/Bax factors appeared to be involved in the effect. Utilization of palmitate by GL15 cells altered phospholipid composition. Cardiolipin (CL), the lipid involved in cyt c interaction with the inner mitochondrial membrane, was decreased and highly saturated. This produced an imbalance in hydrophilic/hydrophobic interactions underlying the anchorage of cyt c , by weakening the hydrophobic component and facilitating detachment of the protein and activation of downstream processes. The primary role of CL was explored by supplying GL15 with exogenous CL through a fusion process of CL liposomes with cell plasma membrane. Fused CL moved to mitochondria, as detected by nonylacridine orange probe. Enrichment of mitochondrial membranes with CL prior to palmitate treatment of cells caused decreased cyt c release and caspase 3 activity.  相似文献   

15.
The permeability transition pore (PTP) is central for apoptosis by acting as a good candidate pathway for the release of Cyt. c and apoptosis induction factors (AIF). Arsenite induces apoptosis via a direct effect on PTP. To characterize the exact mechanism for arsenite induces PTP opening, the effect of Ca2+ on As2O3-induced PTP opening, the relationship between As2O3-induced PTP opening and Cyt. c release from mitochondria and calcium-induced calcium release from mitochondria (mCICR), and the effects of As2O3 on Ca2+-induced PTP opening were studied. The results showed As2O3 induces Cyt. c release by triggering PTP opening. Ca2+ is necessary for As2O3-induced PTP opening. As2O3-induced PTP opening and Cyt. c release depends on mCICR. As2O3 promotes PTP opening by lowering Ca2+-threshold. These results indicated As2O3 induce Cyt. c release from mitochondria by lowering Ca2+-threshold for PTP and triggering mCICR-dependent PTP opening. Suggesting that it is possible to control apoptosis by altering Ca2+ threshold and mCICR to modulate PTP opening and Cyt. c release.  相似文献   

16.
We investigate the death route induced by potassium depletion in cerebellar granule cells in 0-15 h time range and study whether and how mutual relationship occurs between the cell antioxidant and proteolytic system. To achieve this, we incubated cells in the absence or presence of inhibitors of the antioxidant system, including superoxide dismutase and catalase, and of the proteolytic system, consisting of proteasomes and caspases, and investigated whether and how (i) cell survival, (ii) reactive oxygen species (ROS) production and (iii) antioxidant enzyme and caspase-3 activity change as a function of time after the apoptotic stimulus. The involvement of both antioxidant and proteolytic system on cytochrome c release was also investigated. Cell survival was found to increase in the presence of either proteasome or caspase inhibitors. On the contrary, as a result of the antioxidant system impairment, shift from apoptosis to necrosis occurs. We show that the antioxidant system, which exhibits a huge activity increase up to 3 h after apoptosis induction, is subjected to the proteasome-dependent proteolysis and that the increase in the antioxidant system found in the absence of proteasome activity is accompanied by ROS production decrease. Consistently, the early ROS-dependent release of cytochrome c was found to be prevented when the activity of the antioxidant system increased. Finally, caspase-3 activation was prevented by the inhibitors of both antioxidant system and proteasome.  相似文献   

17.
The life cycle of a cell is partly regulated by the programmed cell death (PCD) process. From development to demise, a cell's PCD process must respond to external signals and internal factors mediated by mitochondria. Previous studies show that the release of histones into the cytosol caused by DNA damage or loss of nuclear integrity is correlated with apoptosis in mammalian cells. These released histones bind to mitochondria and permeabilize its inner and outer membranes, which causes the release of cytochrome c into the cytosol that leads to caspase activation and the demise of the cell. Owing to the high conservation of histones, we hypothesize that histone‐mediated cytochrome c release from mitochondria may be conserved across a wide range of eukaryotes. We investigated this histone–mitochondrial interaction in cauliflower using density‐gradient purified mitochondria and exogenous histones from a crude histone fraction, then added the exogenous histone fractions to the purified cauliflower mitochondria and analyzed the mitochondrial pellets and supernatants by immunoblotting against cytochrome c and H3. Our data clearly shows that histone‐enriched fractions elicited cytochrome c release from mitochondria, and that mitochondria bind exogenous histone H3.  相似文献   

18.
Previous studies have shown that evodiamine could trigger apoptosis in human malignant melanoma A375-S2 cells within 24 h. To further investigate the biochemical basis of this activity, the roles of reactive oxygen species (ROS) and mitochondrial permeability transition (MPT) were evaluated. Exposure to evodiamine led to a rapid increase in intracellular ROS followed by an onset of mitochondrial depolarization. ROS scavenger rescued the ΔΨm dissipation and cell death induced by evodiamine, whilst MPT inhibitor blocked the second-time ROS formation as well as cell death. Expressions of key proteins in Fas- and mitochondria-mediated pathways were furthermore examined. Both pathways were activated and regulated by ROS and MPT and were converged to a final common pathway involving the activation of caspase-3. These data suggested that a phenomenon termed ROS-induced ROS release (RIRR) was involved in evodiamine-treated A375-S2 cells and greatly contributed to the apoptotic process through both extrinsic and intrinsic pathways.  相似文献   

19.
Previous studies have shown that evodiamine could trigger apoptosis in human malignant melanoma A375-S2 cells within 24 h. To further investigate the biochemical basis of this activity, the roles of reactive oxygen species (ROS) and mitochondrial permeability transition (MPT) were evaluated. Exposure to evodiamine led to a rapid increase in intracellular ROS followed by an onset of mitochondrial depolarization. ROS scavenger rescued the ΔΨm dissipation and cell death induced by evodiamine, whilst MPT inhibitor blocked the second-time ROS formation as well as cell death. Expressions of key proteins in Fas- and mitochondria-mediated pathways were furthermore examined. Both pathways were activated and regulated by ROS and MPT and were converged to a final common pathway involving the activation of caspase-3. These data suggested that a phenomenon termed ROS-induced ROS release (RIRR) was involved in evodiamine-treated A375-S2 cells and greatly contributed to the apoptotic process through both extrinsic and intrinsic pathways.  相似文献   

20.
瞬时受体电位香草酸亚型1(TRPV1)在心肌缺血激活后可传导心绞痛信号,释放神经肽,减轻心肌梗死后的心肌细胞凋亡。目前,TRPV1激活抑制心肌梗死后细胞凋亡的具体机制尚不清楚。线粒体通透性转换孔(MPTP)的开放与心肌细胞缺血再灌注损伤密切相关,抑制其开放可保护心肌缺血后的心肌细胞抗凋亡。本研究证明,TRPV1激活通过抑制MPTP开放而减少心肌细胞凋亡。首先,本研究利用左冠状动脉前降支结扎术建立了TRPV1基因敲除(TRPV1-/-)和野生型(WT)小鼠心肌梗死模型,辅以环孢素A(CSA)预处理抑制 MPTP开放,比较观察TRPV1、MPTP在心肌梗死中的作用。心肌组织切片氯化三苯基四氮唑(TTC)染色显示,心肌缺血24 h,TRPV1-/-小鼠的心肌梗死面积明显大于WT型小鼠。而经CSA预处理的TRPV1-/-小鼠比TRPV1-/-小鼠梗死面积明显减小。TUNEL检测心肌细胞凋亡指数(AI)揭示,WT型心肌梗死小鼠的AI明显低于TRPV1-/- 心肌梗死小鼠,而CSA预处理明显降低TRPV1-/-小鼠心肌细胞的AI。Western印迹检测胱天蛋白酶3、胱天蛋白酶9、Bcl-2、Bax、p53和细胞色素C(Cyt-C)水平。结果证明,TRPV1的激活可抑制MPTP的开放,减少线粒体Cyt-C的外溢,降低胱天蛋白酶9和胱天蛋白酶3的表达。GENMEN光度法检测MPTP开放实验显示,激活的TRPV1明显抑制了MPTP的开放。本研究证实,急性心肌梗死后的TRPV1激活可能通过抑制MPTP开放而抵抗心肌细胞凋亡,对心肌起保护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号