首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ATP-gated P2X1 ion channel is the only P2X subtype expressed in human platelets. Via transmission electron microscopy, we found that P2X1 mediates fast, reversible platelet shape change, secretory granule centralization, and pseudopodia formation. In washed human platelets, the stable P2X1 agonist alpha,beta-methylene ATP (alpha,beta-meATP) causes rapid, transient (2-5 s), and dose-dependent myosin light chain (MLC) phosphorylation, requiring extracellular Ca2+. Phosphorylation was inhibited by the calmodulin (CaM) inhibitor W-7, but not by the Rho kinase inhibitor HA-1077, i.e. it is exclusively regulated by Ca2+/CaM-dependent MLC kinase. Correspondingly, the P2X1-induced platelet shape change was inhibited by W-7 and by the MLC kinase inhibitor ML-7 but not by HA-1077. W-7, ML-7, the protein kinase C inhibitor GF109203-X, and the Src family kinase inhibitor PP1 inhibited the collagen and convulxin-induced early platelet degranulation, shape change, and subsequent aggregation, indicating a role for Ca2+/CaM and MLC kinase in these glycoprotein VI-related platelet responses. The secreted ATP-mediated P2X1-dependent ERK2 activation induced by low collagen concentrations contributes to MLC kinase activation since P2X1 desensitization or blockade of ERK2 phosphorylation by U0126 strongly attenuated MLC phosphorylation, degranulation, and aggregation. We therefore conclude that at low doses of collagen, glycoprotein VI activation leads to early protein kinase C- and MLC kinase-dependent degranulation. Rapidly released ATP triggers P2X1 -mediated Ca2+ influx, activating ERK2, in turn amplifying platelet secretion by reinforcing the early MLC kinase phosphorylation. Hence, the P2X1-ERK2-MLC axis contributes to collagen-induced platelet activation by enhancing platelet degranulation.  相似文献   

2.
Retzer M  Essler M 《Cellular signalling》2000,12(9-10):645-648
Platelet activation plays an important role in arterial thrombotic disorders. Here we show that the serum-borne phospholipid lysophosphatidic acid (LPA) activates the GTPase Rho and its target Rho-kinase to induce myosin light-chain (MLC) and moesin phosphorylation, leading to platelet shape change. MLC phosphorylation, moesin phosphorylation, and shape change were blocked by preincubating platelets with C3 transferase from Clostridium botulinum and Y-27632-specific inhibitors of Rho and Rho kinase, respectively. LPA did not increase the cytosolic Ca(2+) concentration during shape change. Our results suggest that LPA via Rho-Rho kinase induces MLC and moesin phosphorylation leading to shape change in the absence of an increase in the cytosolic Ca(2+) concentration. Rho/Rho kinase inhibition could be a therapeutic strategy to prevent pathologic platelet activation during arterial thrombotic disorders.  相似文献   

3.
Shape change is the earliest response of platelets to stimuli; it is mainly dependent upon Ca(2+)/calmodulin interaction subsequent to Ca(2+) mobilization and is mediated by myosin light chain kinase (MLCK) activation. It has been recently suggested that collagen itself is not able to elicit platelet shape change in the absence of ADP and thromboxane A(2) costimulation but is capable of inducing MLCK activation. Since we hypothesize that the morphological changes of the few platelets that adhere to collagen might not be revealed by turbidimetry, the aim of this study was to assess platelet shape change using transmission electron microscopy, in the absence of the amplificatory feedback pathways of ADP and thromboxane A(2). Our results demonstrated that only the platelets in contact with insoluble collagen fibers underwent a typical shape change, whereas those further away remained quiescent. Moreover, since cAMP enhances Ca(2+) mobilization in response to collagen, in the present study, we also investigated whether cAMP is involved in the inhibition of collagen-induced platelet shape change and MLC phosphorylation. Platelets were thus treated with iloprost (28 nm) prior to stimulation. Electron microscopy studies demonstrated that iloprost did not modify collagen-induced shape change, whereas immunoblotting studies showed a slight inhibition of MLC phosphorylation in the presence of enhanced cAMP levels. We can thus conclude that collagen is able to cause platelet shape change through activation of Ca(2+)/calmodulin-dependent MLCK, without the involvement of amplificatory pathways. Enhanced cytosolic cAMP levels do not inhibit collagen-induced platelet shape change but exert a weak inhibitory action on MLCK.  相似文献   

4.
Platelets undergo shape change upon activation with agonists. During shape change, disc-shaped platelets turn into spiculated spheres with protruding filopodia. When agonist-induced cytosolic Ca(2+) increases were prevented using the cytosolic Ca(2+) chelator, 5, 5'-dimethyl-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (5, 5'-dimethyl-BAPTA), platelets still underwent shape change, although the onset was delayed and the initial rate was dramatically decreased. In the absence of cytosolic Ca(2+), agonist-stimulated myosin light chain phosphorylation was significantly inhibited. The myosin light chain was maximally phosphorylated at 2 s in control platelets compared with 30 s in 5,5'-dimethyl-BAPTA-treated platelets. ADP, thrombin, or U46619-induced Ca(2+)-independent platelet shape change was significantly reduced by staurosporine, a nonselective kinase inhibitor, by the selective p160 Rho-associated coiled-coil-containing protein kinase inhibitor Y-27632, or by HA 1077. Both Y-27632 and HA 1077 reduced peak levels of ADP-induced platelet shape change and myosin light chain phosphorylation in control platelets. In 5,5'-dimethyl-BAPTA-treated platelets, Y-27632 and HA 1077 completely abolished both ADP-induced platelet shape change and myosin light chain phosphorylation. Our results indicate that Ca(2+)/calmodulin-stimulated myosin light chain kinase and p160 Rho-associated coiled-coil-containing protein kinase independently contribute to myosin light chain phosphorylation and platelet shape change, through Ca(2+)-sensitive and Ca(2+)-insensitive pathways, respectively.  相似文献   

5.
Plasmin-induced platelet activation is considered to be a cause of reocclusion after thrombolytic therapy with plasminogen activators. However, little is known regarding its mechanism and regulation, particularly with respect to the initial step shape change. We here demonstrate that a Ca2+-independent pathway is involved in plasmin-induced human platelet shape change, and that Rho-kinase plays an important role in this pathway. When the increase in cytosolic Ca2+ was prevented by an intracellular Ca2+ chelator, 5,5'-dimethyl-BAPTA, plasmin-induced platelet shape change was partially inhibited but still occurred. In the presence of 5,5'-dimethyl-BAPTA, a specific Rho-kinase inhibitor, Y-27632, completely inhibited the shape change. Phosphorylation of myosin light chain, a key regulator of platelet shape change, was completely inhibited by Y-27632 in 5,5'-dimethyl-BAPTA-treated platelets. Although plasmin caused tyrosine phosphorylation of the 80 kDa protein during the shape change, it did not seem to have a critical role. cAMP-elevating agents inhibited plasmin-induced shape change in 5,5'-dimethyl-BAPTA- or Y-27632-treated platelets with similar efficiency. These results indicated that plasmin causes platelet shape change by activating Ca2+-dependent and Ca2+-independent-Rho-kinase-dependent pathways, both of which are sensitive to cAMP.  相似文献   

6.
Shin SW  Park DS  Kim SC  Park HY 《FEBS letters》2000,466(1):70-74
Oxidised low density lipoprotein (LDL) plays an important role in the pathogenesis of atherosclerosis. Here we demonstrate that mildly oxidised (mox) LDL engages the GTPase Rho and its effector molecule p160 Rho-kinase to induce phosphorylation of myosin light chain and of moesin leading to platelet shape change. Pretreatment of platelets with the selective Rho inhibitor C3-transferase from Clostridium botulinum or with the Rho-kinase inhibitor Y-27632 blocked mox-LDL-induced myosin light chain phosphorylation, moesin phosphorylation and shape change. Mox-LDL did not induce an increase in cytosolic Ca(2+) during shape change. We propose that Rho/Rho-kinase inhibition could be a strategy for prevention of the pathologic platelet activation during atherogenesis.  相似文献   

7.
The signaling cascades initiated by motilin receptors in gastric and intestinal smooth muscle cells were characterized. Motilin bound with high affinity (IC(50) 0.7 +/- 0.2 nM) to receptors on smooth muscle cells; the receptors were rapidly internalized via G protein-coupled receptor kinase 2 (GRK2). Motilin selectively activated G(q) and G(13), stimulated G alpha(q)-dependent phosphoinositide (PI) hydrolysis and 1,4,5-trisphosphate (IP(3))-dependent Ca(2+) release, and increased cytosolic free Ca(2+). PI hydrolysis was blocked by expression of G alpha(q) minigene and augmented by overexpression of dominant negative RGS4(N88S) or GRK2(K220R). Motilin induced a biphasic, concentration-dependent contraction (EC(50) = 1.0 +/- 0.2 nM), consisting of an initial peak followed by a sustained contraction. The initial Ca(2+)-dependent contraction and myosin light-chain (MLC)(20) phosphorylation were inhibited by the PLC inhibitor U-73122 and the MLC kinase inhibitor ML-9 but were not affected by the Rho kinase inhibitor Y27632 or the PKC inhibitor bisindolylmaleimide. Sustained contraction and MLC(20) phosphorylation were RhoA dependent and mediated by two downstream messengers: PKC and Rho kinase. The latter was partly inhibited by expression of G alpha(q) or G alpha(13) minigene and abolished by coexpression of both minigenes. Sustained contraction and MLC(20) phosphorylation were partly inhibited by Y27632 and bisindolylmaleimide and abolished by a combination of both inhibitors. The inhibition reflected phosphorylation of two MLC phosphatase inhibitors: CPI-17 via PKC and MYPT1 via Rho kinase. We conclude that motilin initiates a G alpha(q)-mediated cascade involving Ca(2+)/calmodulin activation of MLC kinase and transient MLC(20) phosphorylation and contraction as well as a sustained G alpha(q)- and G alpha(13)-mediated, RhoA-dependent cascade involving phosphorylation of CPI-17 by PKC and MYPT1 by Rho kinase, leading to inhibition of MLC phosphatase and sustained MLC(20) phosphorylation and contraction.  相似文献   

8.
Platelets respond to various stimuli with rapid changes in shape followed by aggregation and secretion of their granule contents. Platelets lacking the alpha-subunit of the heterotrimeric G protein Gq do not aggregate and degranulate but still undergo shape change after activation through thromboxane-A2 (TXA2) or thrombin receptors. In contrast to thrombin, the TXA2 mimetic U46619 led to the selective activation of G12 and G13 in Galphaq-deficient platelets indicating that these G proteins mediate TXA2 receptor-induced shape change. TXA2 receptor-mediated activation of G12/G13 resulted in tyrosine phosphorylation of pp72(syk) and stimulation of pp60(c-src) as well as in phosphorylation of myosin light chain (MLC) in Galphaq-deficient platelets. Both MLC phosphorylation and shape change induced through G12/G13 in the absence of Galphaq were inhibited by the C3 exoenzyme from Clostridium botulinum, by the Rho-kinase inhibitor Y-27632 and by cAMP-analogue Sp-5,6-DCl-cBIMPS. These data indicate that G12/G13 couple receptors to tyrosine kinases as well as to the Rho/Rho-kinase-mediated regulation of MLC phosphorylation. We provide evidence that G12/G13-mediated Rho/Rho-kinase-dependent regulation of MLC phosphorylation participates in receptor-induced platelet shape change.  相似文献   

9.
Mildly oxidized low density lipoprotein (mox-LDL) is critically involved in the early atherogenic responses of the endothelium and increases endothelial permeability through an unknown signal pathway. Here we show that (i) exposure of confluent human endothelial cells (HUVEC) to mox-LDL but not to native LDL induces the formation of actin stress fibers and intercellular gaps within minutes, leading to an increase in endothelial permeability; (ii) mox-LDL induces a transient decrease in myosin light chain (MLC) phosphatase that is paralleled by an increase in MLC phosphorylation; (iii) phosphorylated MLC stimulated by mox-LDL is incorporated into stress fibers; (iv) cytoskeletal rearrangements and MLC phosphorylation are inhibited by C3 transferase from Clostridium botulinum, a specific Rho inhibitor, and Y-27632, an inhibitor of Rho kinase; and (v) mox-LDL does not increase intracellular Ca(2+) concentration. Our data indicate that mox-LDL induces endothelial cell contraction through activation of Rho and its effector Rho kinase which inhibits MLC phosphatase and phosphorylates MLC. We suggest that inhibition of this novel cell signaling pathway of mox-LDL could be relevant for the prevention of atherosclerosis.  相似文献   

10.
During Gram-negative sepsis bacterial LPS induces endothelial cell contraction, actin reorganization, and loss of endothelial integrity by an unknown signal mechanism. In this study, we provide evidence that LPS-stimulation of endothelial cells (HUVEC) decreases myosin light chain (MLC) phosphatase, resulting in an increase in MLC phosphorylation followed by cell contraction. All of these LPS effects could be blocked by the Rho-GTPase inhibitor C3 transferase from Clostridium botulinum or the Rho kinase inhibitor Y-27632. These data suggest that LPS induces MLC phosphorylation via Rho/Rho kinase-mediated inhibition of MLC phosphatase in HUVEC. Furthermore, we observed that cAMP-elevating drugs, known to exert a vasoprotective function, mimicked the effects of C3 transferase and Y-27632, i.e., inhibited LPS-induced MLC phosphatase inactivation and MLC phosphorylation. cAMP elevation did not inhibit myosin phosphorylation induced by constitutively active V14Rho or the MLC phosphatase inhibitor calyculin and did not induce phosphorylation of RhoA in HUVEC, indicating inhibition of an upstream regulator of Rho/Rho kinase. Taken together, Rho/Rho kinase appears to be a central target for inflammatory mediators causing endothelial cell contraction such as bacterial toxins, but also for vasoprotective molecules elevating intracellular cAMP.  相似文献   

11.
In this study we have used several complementary biochemical and immunological techniques to examine the involvement of Ca2+ and myosin light chain kinase in collagen-induced platelet activation. Our results indicate that collagen stimulates a rapid influx of external Ca2+ (within the first 1-5 min of treatment) which is followed by phosphorylation of myosin light chains (within 10 min of treatment) and granule secretion (within 15 min of treatment). In addition, we have found that certain Ca2+ channel entry blockers (e.g. nifedipine and bepridil) or calmodulin antagonists (e.g. W-7) specifically inhibit collagen-induced Ca2+ influx, myosin light chain phosphorylation and subsequent granule secretion. These data suggest that Ca2+/calmodulin-dependent myosin light chain kinase-mediated myosin light chain phosphorylation is necessary for regulating the actomyosin-related contractility required for normal platelet function.  相似文献   

12.
Acute hypoxia dilates most systemic arteries leading to increased tissue perfusion. We have previously shown that at high-stimulus conditions, porcine coronary artery was relaxed by hypoxia without a change in intracellular [Ca(2+)] (27). This Ca(2+)-desensitizing hypoxic relaxation (CDHR) was validated in permeabilized porcine coronary artery smooth muscle (PCASM) in which hypoxia decreased force and myosin regulatory light chain phosphorylation (p-MRLC) despite fixed [Ca(2+)] (10). Rho kinase-dependent phosphorylation of myosin phosphatase-targeting subunit 1 (p-MYPT1) is associated with decreased MRLC phosphatase activity and increased Ca(2+) sensitivity of both p-MRLC and force. We recently reported that p-MYPT1 dephosphorylation was a key effector in CDHR (33). In the current study, we tested the hypothesis that Rho kinase and not p-MYPT1 phosphatase is the regulated enzyme involved in CDHR. We used alpha-toxin to permeabilize deendothelialized PCASM. CDHR was attenuated in contractions attributable to myosin light chain kinase (MLCK, in the presence of the Rho kinase inhibitor Y-27632). In contrast, hypoxia relaxed contractions attributable to Rho kinase phosphorylation of MYPT1 and MRLC or MRLC alone (in the presence of the MLCK inhibitor ML7). Using an in situ assay, we showed that Rho kinase activity, measured as thiophosphorylation of MYPT1 and MRLC, was nearly abolished by hypoxia. The in vitro activity of the catalytically active fragment of Rho kinase was not affected by hypoxia. Our evidence strongly implicates that hypoxia directly inhibits Rho kinase-dependent phosphorylation of MYPT1. This underlies the decreases in both p-MYPT1 and p-MRLC and thereby leads to the Ca(2+)-desensitizing hypoxic relaxation.  相似文献   

13.
We examined the effects of Rho kinase on contraction and intracellular Ca2+ concentration ([Ca2+](i)) in guinea pig trachealis by measuring isometric force and the fura 2 signal [340- to 380-nm fluorescence ratio (F340/F380)]. A Rho kinase inhibitor, Y-27632 (1-1,000 microM), inhibited methacholine (MCh)-induced contraction, with a reduction in F340/F380 in a concentration-dependent manner. The values of EC(50) for contraction and F340/F380 induced by 1 microM MCh with Y-27632 were 27.3 +/- 5.1 and 524.1 +/- 31.0 microM, respectively. With 0.1 microM MCh, the values for these parameters were decreased to 1.0 +/- 0.1 and 98.2 +/- 6.2 microM, respectively. Tension-F340/F380 curves for MCh indicated that Y-27632 caused an ~50% inhibition of MCh-induced contraction, without a reduction in F340/F380. These effects of Y-27632 were not inhibited by a protein kinase C inhibitor, GF-109203X. Our results indicate that inhibition of Rho kinase attenuates both Ca2+ sensitization and [Ca2+](i).  相似文献   

14.
Tsai MH  Jiang MJ 《Life sciences》2005,76(8):877-888
Smooth muscle contractility is regulated by both intracellular Ca2+ concentration ([Ca2+]i) and Ca2+ sensitivity of the contractile apparatus. Extracellular signal-regulated kinases1/2 (ERK1/2) have been implicated in modulating Ca2+ sensitivity of smooth muscle contraction but mechanisms of action remain elusive. This study investigated the roles of ERK1/2 in modulating [Ca2+]i, calcium sensitivity and the 20-kDa myosin light chain (MLC20) phosphorylation during contraction activated by alpha1-adrenoceptor agonist phenylephrine and thromboxane A2 mimetic U46619 in rat tail artery strips. A specific inhibitor for ERK1/2 activation, U0126, inhibited phenylephrine- and U46619-induced contraction, shifting both concentration-response curves rightward. During phenylephrine-stimulated contraction, U0126 exhibited concentration-dependent inhibition towards force but significant decreases in [Ca2+]i were detected only at higher concentration. Both phenylephrine and U46619 induced a transient activation of ERK1/2 which was abolished by U0126 but unaffected by a general tyrosine kinase inhibitor genistein or Rho kinase inhibitor Y27632 at concentrations inhibiting more than 50% force. Interestingly, U0126 had no effect on steady-state MLC20 phosphorylation levels stimulated by both receptor agonists. These results indicated that during contraction of rat tail artery smooth muscle activated by alpha1-adrenoceptor agonist or thromboxane A2 analogue, ERK1/2 increase Ca2+ sensitivity that does not involve the modulation of MLC20 phosphorylation.  相似文献   

15.
This study was undertaken to demonstrate the role of the RhoA/Rho kinase pathway in endothelin-1 (ET-1)-induced contraction of the rabbit basilar artery. Isometric tension and Western blot were used to examine ET-1-induced contraction and RhoA activation. The upstream effect on ET-1-induced RhoA activity was determined by using ET(A) and ET(B) receptor antagonists, protein kinase C (PKC), tyrosine kinase, and phosphatidylinositol-3 kinase inhibitors. The downstream effect of ET-1-induced contraction and RhoA activity was studied in the presence of the Rho kinase inhibitor Y-27632. The effect of Rho kinase inhibitor on ET-1-induced myosin light chain (MLC) phosphorylation was investigated by using urea-glycerol-PAGE immunoblotting. We found 1) ET-1 increased RhoA activity (membrane binding RhoA) in a concentration-dependent manner; 2) ET(A), but not ET(B), receptor antagonist abolished the effect of ET-1 on RhoA activation; 3) phosphodylinositol-3 kinase inhibitor, but not PKC and tyrosine kinase inhibitors, reduced ET-1-induced RhoA activation; 4) Rho kinase inhibitor Y-27632 (10 microM) inhibited ET-1-induced contraction; and 5) ET-1 increased the level of MLC phosphorylation. Rho kinase inhibitor Y-27632 reduced the effect of ET-1 on MLC phosphorylation. This study demonstrated that RhoA/Rho kinase activation is involved in ET-1-induced contraction in the rabbit basilar artery. Phosphodylinositol-3 kinase and MLC might be the upstream and downstream factors of RhoA activation.  相似文献   

16.
Low concentrations of Ca2+-mobilizing agonists such as vasopressin, platelet-activating factor, ADP, the endoperoxide analogue U44069 and the Ca2+ ionophore A23187 enhance the binding of [3H]phorbol 12,13-dibutyrate (PdBu) to intact human platelets. This effect is prevented by preincubation of platelets with prostacyclin (except for A23187). Adrenaline, which does not increase Ca2+ in the platelet cytosol, does not enhance the binding of [3H]PdBu to platelets. In addition, all platelet agonists except adrenaline potentiate the phosphorylation of the substrate of protein kinase C (40 kDa protein) induced by PdBu. Potentiation of protein kinase C activation is associated with increased platelet aggregation and secretion. Stimulus-induced myosin light-chain phosphorylation and shape change are not significantly affected, but formation of phosphatidic acid is decreased in the presence of PdBu. The results may indicate that low concentrations of agonists induce in intact platelets the translocation of protein kinase C to the plasma membrane by eliciting mobilization of Ca2+, and thereby place the enzyme in a strategic position for activation by phorbol ester. Such activation enhances platelet aggregation and secretion, but at the same time suppresses activation of phospholipase C. Therefore, at least part of the synergism evoked by Ca2+ and phorbol ester is mediated through a single pathway which involves protein kinase C. It is likely that the priming of protein kinase C by prior Ca2+ mobilization occurs physiologically in activated platelets.  相似文献   

17.
Suspensions of aspirin-treated, 32P-prelabelled, washed platelets containing ADP scavengers in the buffer were activated with either phorbol 12,13-dibutyrate (PdBu) or the Ca2+ ionophore A23187. High concentrations of PdBu (greater than or equal to 50 nM) induced platelet aggregation and the protein kinase C (PKC)-dependent phosphorylation of proteins with molecular masses of 20 (myosin light chain), 38 and 47 kDa. No increase in cytosolic Ca2+ was observed. Preincubation of platelets with prostacyclin (PGI2) stimulated the phosphorylation of a 50 kDa protein [EC50 (concn. giving half-maximal effect) 0.6 ng of PGI2/ml] and completely abolished platelet aggregation [ID50 (concn. giving 50% inhibition) 0.5 ng of PGI2/ml] induced by PdBu, but had no effect on phosphorylation of the 20, 38 and 47 kDa proteins elicited by PdBu. The Ca2+ ionophore A23187 induced shape change, aggregation, mobilization of Ca2+, rapid phosphorylation of the 20 and 47 kDa proteins and the formation of phosphatidic acid. Preincubation of platelets with PGI2 (500 ng/ml) inhibited platelet aggregation, but not shape change, Ca2+ mobilization or the phosphorylation of the 20 and 47 kDa proteins induced by Ca2+ ionophore A23187. The results indicate that PGI2, through activation of cyclic AMP-dependent kinases, inhibits platelet aggregation at steps distal to protein phosphorylation evoked by protein kinase C and Ca2+-dependent protein kinases.  相似文献   

18.
Studies were performed to investigate regulatory pathways of loop diuretic-sensitive Na+/K+/Cl- cotransport in cultured rat glomerular mesangial cells. Angiotensin II, alpha-thrombin, and epidermal growth factor (EGF) all stimulated Na+/K+/Cl- cotransport in a concentration-dependent manner. Pertussis toxin pretreatment reduced the effects of angiotensin II and alpha-thrombin but not that of EGF. Addition of the protein kinase C inhibitor staurosporine or down-regulation of protein kinase C by prolonged incubation with phorbol 12-myristate 13-acetate partially reduced the effects of angiotensin II and alpha-thrombin and completely blunted the phorbol 12-myristate 13-acetate-induced stimulation of Na+/K+/Cl- cotransport but did not affect EGF-induced stimulation. Exposure of cells to a calcium ionophore, A23187, resulted in a concentration-dependent stimulation of Na+/K+/Cl- cotransport, which was not significantly inhibited by down-regulation of protein kinase C but was completely inhibited by the calmodulin antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7). Stimulation of the cotransport by angiotensin II or alpha-thrombin was also partially inhibited by W-7. Inhibitory effects of protein kinase C down-regulation and W-7 were additive and, when combined, produced a complete inhibition of angiotensin II-induced stimulation of Na+/K+/Cl- cotransport. In saponin-permeabilized mesangial cells, phosphorylation of a synthetic decapeptide substrate for Ca2+/calmodulin-dependent kinase II, Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ser-Ser-NH3, was demonstrated. Maximal activation of the decapeptide substrate phosphorylation required the presence of Ca2+ and calmodulin and was dependent on Ca2+ concentration. These findings indicate that stimulation of Na+/K+/Cl- cotransport by angiotensin II and alpha-thrombin is mediated by protein kinase C and Ca2+/calmodulin-dependent kinases whereas the action of EGF is mediated by other pathways.  相似文献   

19.
Alveolar epithelial cells (AECs) maintain integrity of the blood-gas barrier with actin-anchored intercellular tight junctions. Stretched type I-like AECs undergo magnitude- and frequency-dependent actin cytoskeletal remodeling into perijunctional actin rings. On the basis of published studies in human pulmonary artery endothelial cells (HPAECs), we hypothesize that RhoA activity, Rho kinase (ROCK) activity, and phosphorylation of myosin light chain II (MLC2) increase in stretched type I-like AECs in a manner that is dependent on stretch magnitude, and that RhoA, ROCK, or MLC2 activity inhibition will attenuate stretch-induced actin remodeling and preserve barrier properties. Primary type I-like AEC monolayers were stretched biaxially to create a change in surface area (ΔSA) of 12%, 25%, or 37% in a cyclic manner at 0.25 Hz for up to 60 min or left unstretched. Type I-like AECs were also treated with Rho pathway inhibitors (ML-7, Y-27632, or blebbistatin) and stained for F-actin or treated with the myosin phosphatase inhibitor calyculin-A and quantified for monolayer permeability. Counter to our hypothesis, ROCK activity and MLC2 phosphorylation decreased in type I-like AECs stretched to 25% and 37% ΔSA and did not change in monolayers stretched to 12% ΔSA. Furthermore, RhoA activity decreased in type I-like AECs stretched to 37% ΔSA. In contrast, MLC2 phosphorylation in HPAECs increased when HPAECs were stretched to 12% ΔSA but then decreased when they were stretched to 37% ΔSA, similar to type I-like AECs. Perijunctional actin rings were observed in unstretched type I-like AECs treated with the Rho pathway inhibitor blebbistatin. Myosin phosphatase inhibition increased MLC2 phosphorylation in stretched type I-like AECs but had no effect on monolayer permeability. In summary, stretch alters RhoA activity, ROCK activity, and MLC2 phosphorylation in a manner dependent on stretch magnitude and cell type.  相似文献   

20.
KCl causes smooth muscle contraction by elevating intracellular free Ca2+, whereas receptor stimulation activates an additional mechanism, termed Ca2+ sensitization, that can involve activation of RhoA-associated kinase (ROK) and PKC. However, recent studies support the hypothesis that KCl may also increase Ca2+ sensitivity. Our data showed that the PKC inhibitor GF-109203X did not, whereas the ROK inhibitor Y-27632 did, inhibit KCl-induced tonic (5 min) force and myosin light chain (MLC) phosphorylation in rabbit artery. Y-27632 also inhibited BAY K 8644- and ionomycin-induced MLC phosphorylation and force but did not inhibit KCl-induced Ca2+ entry or peak ( approximately 15 s) force. Moreover, KCl and BAY K 8644 nearly doubled the amount of ROK colocalized to caveolae at 30 s, a time that preceded inhibition of force by Y-27632. Colocalization was not inhibited by Y-27632 but was abolished by nifedipine and the calmodulin blocker trifluoperazine. These data support the hypothesis that KCl caused Ca2+ sensitization via ROK activation. We discuss a novel model for ROK activation involving translocation to caveolae that is dependent on Ca2+ entry and involves Ca2+-calmodulin activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号