首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Alternative splicing (AS) events occur in the majority of human genes. AS in a single gene can give rise to different functions among multiple isoforms. Human ortholog of mammalian enabled (Mena) is a conserved regulator of actin dynamics that plays an important role in metastasis. Mena has been shown to have multiple splice variants in human tumor cells due to AS. However, the mechanism mediated Mena AS has not been elucidated. Here we showed that polypyrimidine tract-binding protein 1 (PTBP1) could modulate Mena AS. First, PTBP1 levels were elevated in metastatic lung cancer cells as well as during epithelial-mesenchymal transition (EMT) process. Then, knockdown of PTBP1 using shRNA inhibited migration and invasion of lung carcinoma cells and decreased the Mena exon11a skipping, whereas overexpression of PTBP1 had the opposite effects. The results of RNA pull-down assays and mutation analyses demonstrated that PTBP1 functionally targeted and physically interacted with polypyrimidine sequences on both upstream intron11 (TTTTCCCCTT) and downstream intron11a (TTTTTTTTTCTTT). In addition, the results of migration and invasion assays as well as detection of filopodia revealed that the effect of PTBP1 was reversed by knockdown of Mena but not Mena11a+. Overexpressed MenaΔ11a also rescued the PTBP1-induced migration and invasion. Taken together, our study provides a novel mechanism that PTBP1 modulates Mena exon11a skipping, and indicates that PTBP1 depends on the level of Mena11a− to promote lung cancer cells migration and invasion. The regulation of Mena AS may be a potential prognostic marker and a promising target for treatment of lung carcinoma.  相似文献   

2.
3.
4.
Alternative splicing (AS) modulates many physiological and pathological processes. For instance, AS of the BCL-X gene balances cell survival and apoptosis in development and cancer. Herein, we identified the polypyrimidine tract binding protein (PTBP1) as a direct regulator of BCL-X AS. Overexpression of PTBP1 promotes selection of the distal 5′ splice site in BCL-X exon 2, generating the pro-apoptotic BCL-Xs splice variant. Conversely, depletion of PTBP1 enhanced splicing of the anti-apoptotic BCL-XL variant. In vivo cross-linking experiments and site-directed mutagenesis restricted the PTBP1 binding site to a polypyrimidine tract located between the two alternative 5′ splice sites. Binding of PTBP1 to this site was required for its effect on splicing. Notably, a similar function of PTBP1 in the selection of alternative 5′ splice sites was confirmed using the USP5 gene as additional model. Mechanistically, PTBP1 displaces SRSF1 binding from the proximal 5′ splice site, thus repressing its selection. Our study provides a novel mechanism of alternative 5′ splice site selection by PTBP1 and indicates that the presence of a PTBP1 binding site between two alternative 5′ splice sites promotes selection of the distal one, while repressing the proximal site by competing for binding of a positive regulator.  相似文献   

5.
6.
7.
Here we use an in vivo cross-linking and immunoprecipitation procedure to detect RNA targets of the multifunctional RNA-binding protein polypyrimidine tract-binding protein (PTBP) 2 in mouse testis. Eleven known mRNAs, including Ptbp2 mRNA, 28 RNAs matching intron sequences, and 12 small RNAs and repeat sequences are identified. The specificity of interaction between PTBP2 and its target RNAs was confirmed using RNA interference with mouse N2A cells. Reduction of PTBP2 levels led to decreases in 7 of 10 of the mRNAs, to the repression of alternative splicing of introns, and to reductions in specific miRNAs.  相似文献   

8.
Gene paralogs are copies of an ancestral gene that appear after gene or full genome duplication. When two sister gene copies are maintained in the genome, redundancy may release certain evolutionary pressures, allowing one of them to access novel functions. Here, we focused our study on gene paralogs on the evolutionary history of the three polypyrimidine tract binding protein genes (PTBP) and their concurrent evolution of differential codon usage preferences (CUPrefs) in vertebrate species. PTBP1-3 show high identity at the amino acid level (up to 80%) but display strongly different nucleotide composition, divergent CUPrefs and, in humans and in many other vertebrates, distinct tissue-specific expression levels. Our phylogenetic inference results show that the duplication events leading to the three extant PTBP1-3 lineages predate the basal diversification within vertebrates, and genomic context analysis illustrates that local synteny has been well preserved over time for the three paralogs. We identify a distinct evolutionary pattern towards GC3-enriching substitutions in PTBP1, concurrent with enrichment in frequently used codons and with a tissue-wide expression. In contrast, PTBP2s are enriched in AT-ending, rare codons, and display tissue-restricted expression. As a result of this substitution trend, CUPrefs sharply differ between mammalian PTBP1s and the rest of PTBPs. Genomic context analysis suggests that GC3-rich nucleotide composition in PTBP1s is driven by local substitution processes, while the evidence in this direction is thinner for PTBP2-3. An actual lack of co-variation between the observed GC composition of PTBP2-3 and that of the surrounding non-coding genomic environment would raise an interrogation on the origin of CUPrefs, warranting further research on a putative tissue-specific translational selection. Finally, we communicate an intriguing trend for the use of the UUG-Leu codon, which matches the trends of AT-ending codons. Our results are compatible with a scenario in which a combination of directional mutation–selection processes would have differentially shaped CUPrefs of PTBPs in vertebrates: the observed GC-enrichment of PTBP1 in placental mammals may be linked to genomic location and to the strong and broad tissue-expression, while AT-enrichment of PTBP2 and PTBP3 would be associated with rare CUPrefs and thus, possibly to specialized spatio-temporal expression. Our interpretation is coherent with a gene subfunctionalisation process by differential expression regulation associated with the evolution of specific CUPrefs.  相似文献   

9.
He  Xin  Sheng  Jie  Yu  Wei  Wang  Kejian  Zhu  Shujuan  Liu  Qian 《Cellular and molecular neurobiology》2021,41(6):1271-1284

Temozolomide (TMZ) is widely used for glioma therapy in the clinic. Currently, the development of TMZ resistance has largely led to poor prognosis. However, very little is understood about the role of MIR155HG, as a long noncoding RNA, in TMZ resistance. In our study, MIR155HG level was markedly higher in glioma patients than in normal controls and that poor survival was positively correlated with MIR155HG expression. It was apparent that TMZ sensitivity was promoted by downregulation of MIR155HG, and this could be reversed by MIR155HG overexpression in vivo and in vitro. Furthermore, polypyrimidine tract binding protein 1 (PTBP1) was proven to bind with MIR155HG and to regulate MIR155HG-related TMZ resistance. Mechanistic investigation showed that the expression levels of both MIR155HG and PTBP1 influenced the expression of relevant proteins in the Wnt/β-catenin pathway. Collectively, the study demonstrated that the knockdown of MIR155HG increased glioma sensitivity to TMZ by inhibiting Wnt/β-catenin pathway activation via potently downregulating PTBP1.

  相似文献   

10.
Invasion and migration is the hallmark of malignant tumors as well as the major cause for breast cancer death. The polypyrimidine tract binding, PTB, protein serves as an important model for understanding how RNA binding proteins affect proliferation and invasion and how changes in the expression of these proteins can control complex programs of tumorigenesis. We have investigated some roles of polypyrimidine tract binding protein 1 (PTBP1) in human breast cancer. We found that PTBP1 was upregulated in breast cancer tissues compared with normal tissues and the same result was confirmed in breast cancer cell lines. Knockdown of PTBP1 substantially inhibited tumor cell growth, migration, and invasion. These results suggest that PTBP1 is associated with breast tumorigenesis and appears to be required for tumor cell growth and maintenance of metastasis. We further analyzed the relationship between PTBP1 and clinicopathological parameters and found that PTBP1 was correlated with her‐2 expression, lymph node metastasis, and pathological stage. This will be a novel target for her‐2(+) breast cancer. PTBP1 exerts these effects, in part, by regulating the phosphatase and tensin homolog‐phosphatidylinositol‐4,5‐bisphosphate 3‐kinase/protein kinase B (PTEN‐PI3K/Akt) pathway and autophagy, and consequently alters cell growth and contributes to the invasion and metastasis.  相似文献   

11.
Dopamine receptor D(2) (DRD2) has two splicing isoforms, a long form (D2L) and short form (D2S), which have distinct functions in the dopaminergic system. However, the regulatory mechanism of the alternative splicing of DRD2 is unknown. In this study, we examined which splicing factors regulate the expression of D2L and D2S by over-expressing several RNA-binding proteins in HEK293 cells. In a cellular splicing assay, the over-expression of polypyrimidine tract-binding protein 1 (PTBP1) reduced the expression of D2S, whereas the knockdown of PTBP1 increased the expression of D2S. We also identified the regions of DRD2 that are responsive to PTBP1 using heterologous minigenes and deletion mutants. Our results indicate that PTBP1 regulates the alternative splicing of DRD2. Considering that DRD2 inhibits cAMP-dependent protein kinase A, which modulates the intracellular localization of PTBP1, PTBP1 may contribute to the autoregulation of DRD2 by regulating the expression of its isoforms.  相似文献   

12.
Incubation in HeLa nuclear extract of a 32P-labeled 61 nucleotide-long RNA corresponding to the lariat branch site/polypyrimidine tract/3' splice site of the first intron of human beta-globin pre-mRNA led to the crosslinking of a single protein of approximately 62,000 mol. wt. (p62). p62 corresponds to a polypyrimidine tract-binding protein recently described by Garcia-Blanco et al. (Genes & Dev. 3: 1874-1886, 1989). Crosslinking of p62 to the 61 nt RNA was highly sequence specific. No p62 crosslinking was observed with a 60 nt pGEM vector RNA, a 63 nt RNA antisense to the 61-mer or a 72 nt U2 RNA sequence. p62 crosslinking to the 61 nt RNA was competed by unlabeled 61 nt RNA, by beta-globin pre-mRNA containing intron 1, and by poly(U) and poly(C), but was competed to a lesser extent or not at all by pGEM RNA, a beta-globin RNA lacking intron 1, or poly(A). Experiments with mutated RNAs revealed that neither the lariat branch site adenosine nor the 3' splice site were required for p62 crosslinking to polypyrimidine tract-containing RNA. Elimination of the polypyrimidine tract reduced p62 crosslinking, as did mutation of a polypyrimidine tract UU dinucleotide to GA. However, replacement of a pyrimidine-rich tract immediately adjacent (3') to the lariat branch site with a 57% A + G pGEM vector RNA sequence also significantly reduced p62 crosslinking, indicating the involvement of both this pyrimidine-rich region and the classical polypyrimidine tract adjacent to the 3' splice site. The sites of protein interaction were further defined by RNase H protection experiments, the results of which confirmed the patterns of p62 crosslinking to mutant RNAs. p62 crosslinking was efficiently competed by a DNA oligonucleotide having the same sequence as the 61 nt RNA, showing that p62 requires neither ribose 2' OH groups nor uracil bases for its interaction with the polypyrimidine tract. p62 was not crosslinked to double-stranded 61 nt RNA. Q-Sepharose chromatography of HeLa nuclear extract yielded an unbound fraction (QU) in which p62 was the only polypyrimidine tract-crosslinkable protein and a bound fraction (QB) in which, surprisingly, several non-p62 proteins were crosslinkable to the polypyrimidine tract RNA. Yet, when the two Q-Sepharose fractions were combined, p62 strongly out-competed the otherwise-crosslinkable QB proteins for polypyrimidine tract RNA crosslinking. This indicates that p62 may have the highest affinity and/or crosslinking efficiency for the intron polypyrimidine tract of any HeLa nuclear protein.  相似文献   

13.
14.
15.
16.
Single‐nucleotide polymorphisms (SNPs) in the regulatory regions of the genome can have a profound impact on phenotype. The G3072A polymorphism in intron 3 of insulin‐like growth factor 2 (IGF2) is implicated in higher muscle content and reduced fat in European pigs and is bound by a putative repressor. Here, we identify this repressor—which we call muscle growth regulator (MGR)—by using a DNA protein interaction screen based on quantitative mass spectrometry. MGR has a bipartite nuclear localization signal, two BED‐type zinc fingers and is highly conserved between placental mammals. Surprisingly, the gene is located in an intron and belongs to the hobo‐Ac‐Tam3 transposase superfamily, suggesting regulatory use of a formerly parasitic element. In transactivation assays, MGR differentially represses the expression of the two SNP variants. Knockdown of MGR in C2C12 myoblast cells upregulates Igf2 expression and mild overexpression retards growth. Thus, MGR is the repressor responsible for enhanced muscle growth in the IGF2 G3072A polymorphism in commercially bred pigs.  相似文献   

17.
Previous studies of alternative splicing of the rat beta-tropomyosin gene have shown that nonmuscle cells contain factors that block the use of the skeletal muscle exon 7 (Guo, W., Mulligan, G. J., Wormsley, S., and Helfman, D. M. (1991) Genes & Dev. 5, 2095-2106). Using an RNA mobility-shift assay we have identified factors in HeLa cell nuclear extracts that specifically interact with sequences responsible for exon blockage. Here we present the purification to apparent homogeneity of a protein that exhibits these sequence specific RNA binding properties. This protein is identical to the polypyrimidine tract binding protein (PTB) which other studies have suggested is involved in the recognition and efficient use of 3'-splice sites. PTB binds to two distinct functional elements within intron 6 of the beta-tropomyosin pre-mRNA: 1) the polypyrimidine tract sequences required for the use of branch points associated with the splicing of exon 7, and 2) the intron regulatory element that is involved in the repression of exon 7. Our results demonstrate that the sequence requirements for PTB binding are different than previously reported and shows that PTB binding cannot be predicted solely on the basis of pyrimidine content. In addition, PTB fails to bind stably to sequences within intron 5 and intron 7 of beta-TM pre-mRNA, yet forms a stable complex with sequences in intron 6, which is not normally spliced in HeLa cells in vitro and in vivo. The nature of the interactions of PTB within this regulated intron reveals several new details about the binding specificity of PTB and suggests that PTB does not function exclusively in a positive manner in the recognition and use of 3'-splice sites.  相似文献   

18.
Jumonji domain-containing proteins (JMJD) catalyze the oxidative demethylation of a methylated lysine residue of histones by using O2, α-ketoglutarate, vitamin C, and Fe(II). Several JMJDs are induced by hypoxic stress to compensate their presumed reduction in catalytic activity under hypoxia. In this study, we showed that an H3K27me3 specific histone demethylase, JMJD3 was induced by hypoxia-inducible factor (HIF)-1α/β under hypoxia and that treatment with Clioquinol, a HIF-1α activator, increased JMJD3 expression even under normoxia. Chromatin immunoprecipitation (ChIP) analyses showed that both HIF-1α and its dimerization partner HIF-1β/Arnt occupied the first intron region of the mouse JMJD3 gene, whereas the HIF-1α/β heterodimer bound to the upstream region of the human JMJD3, indicating that human and mouse JMJD3 have hypoxia-responsive regulatory regions in different locations. This study shows that both mouse and human JMJD3 are induced by HIF-1.  相似文献   

19.
The mRNA that encodes the testis-specific protein phosphoglycerate kinase (PGK2) is a long-lived mRNA that is transcribed in meiotic and postmeiotic male germ cells. Pgk2 mRNA is present in germ cells for up to 2 wk before its protein product is detected. Using affinity chromatography with the 3'-UTR of the Pgk2 mRNA, several proteins, including the RNA-binding protein, polypyrimidine tract binding protein 2 (PTBP2), were identified in mouse testis extracts. Coimmunoprecipitation experiments confirmed that PTBP2 binds to Pgk2 mRNA in the testis and RNA gel shifts demonstrated that PTBP2, but not PTBP1, binds to a specific region of the Pgk2 3'-UTR. Recombinant PTBP2 increased the stability of reporter constructs that contained the 3'-UTR Pgk2 sequence element in both testis extracts and transfected HeLa cells. We propose that PTBP2 is a trans-acting factor that helps to stabilize Pgk2 mRNA in male mouse germ cells.  相似文献   

20.
蛋白质翻译起始通常有两种机制,一是依赖帽结构的翻译,另一种是依赖5′非翻译区的内部核糖体进入位点(IRES).在后一种方式中,在某些IRES反式作用因子,如La蛋白、多聚嘧啶串结合蛋白1等的参与下,直接招募核糖体小亚基到mRNA的翻译起始位点,启始翻译.研究发现,参与细胞生长、分化、细胞周期进程、凋亡和压力调控的相关蛋白中通常含有IRES元件.基于功能,我们提出假说:转录激活因子1(ATF1)的5′-UTR可能具有IRES活性.为验证假说,首先构建了含全长ATF1 5′-UTR的双荧光素酶报告质粒|质粒转染结合报告酶活性分析显示,ATF1 5′-UTR在Bel7402、HCT-8和HEK293细胞中表现出不同的IRES活性|而此IRES活性与5′-UTR中的隐藏启动子无关.同时还发现,ATF1 5′-UTR在NIH3T3细胞中却没有IRES活性.与此结果相一致,Western印迹检测ATF1在这几种细胞系中的表达.结果显示,Bel7402、HCT 8和HEK293中ATF1蛋白质表达水平较高,而在NIH3T3中却极低. ATF1 5′-UTR的系列5′-删除突变及报告酶分析证明,ATF1 5′-UTR的完整性对其IRES活性大小发挥重要作用|其中5′端的204 bp序列对其IRES活性贡献较大. RNA-蛋白免疫共沉淀实验揭示,ATF1 5′-UTR可与La和PTBP1蛋白结合|抑制La和PTBP1蛋白质的表达,并可减低HEK293细胞中ATF1蛋白质表达水平.这些结果提示,La和PTBP1蛋白(两种ITAFs)为ATF1 5′-UTR发挥IRES活性所必需.总之,上述结果证明,ATF1 5′-UTR具有IRES活性,其活性发挥依赖与La和PTBP1蛋白的结合.上述发现为进一步研究La和PTBP1表达及亚细胞定位对ATF1 IRES调控机制的影响奠定了基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号