首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect on exocytosis of La(3+), a known inhibitor of plasma membrane Ca(2+)-ATPases and Na(+)/Ca(2+) exchangers, was studied using cultured bovine adrenal chromaffin cells. At high concentrations (0.3-3 mM), La(3+) substantially increased histamine-induced catecholamine secretion. This action was mimicked by other lanthanide ions (Nd(3+), Eu(3+), Gd(3+), and Tb(3+)), but not several divalent cations. In the presence of La(3+), the secretory response to histamine became independent of extracellular Ca(2+). La(3+) enhanced secretion evoked by other agents that mobilize intracellular Ca(2+) stores (angiotensin II, bradykinin, caffeine, and thapsigargin), but not that due to passive depolarization with 20 mM K(+). La(3+) still enhanced histamine-induced secretion in the presence of the nonselective inhibitors of Ca(2+)-permeant channels SKF96365 and Cd(2+), but the enhancement was abolished by prior depletion of intracellular Ca(2+) stores with thapsigargin. La(3+) inhibited (45)Ca(2+) efflux from preloaded chromaffin cells in the presence or absence of Na(+). It also enhanced and prolonged the rise in cytosolic [Ca(2+)] measured with fura-2 during mobilization of intracellular Ca(2+) stores with histamine in Ca(2+)-free buffer. The results suggest that the efficacy of intracellular Ca(2+) stores in evoking exocytosis is enhanced dramatically by inhibiting Ca(2+) efflux from the cell.  相似文献   

2.
研究了镧、轧、镱及四种配合物对Ca~(2+)-ATP酶活性的影响.结果表明,低浓度的La~(3+),Gd~(3+)和Yb~(3+)对肌质网Ca~(2+)-ATP酶有激活作用;随着其浓度的增加,它们对酶活性的抑制程度增大;而La~(3+),Gd~(3+)和Yb~(3+)对纯化的Ca2~(+)-ATP酶则只有抑制作用;Gd─N─乙酰─缬氨酸和Yb─丙氨酰代丙氨酸配合物对肌质网膜和纯化的Ca~(2+)-ATP酶活性的影响与Gd~(3+)及Yb~(3+)类似,但其激活程度和抑制程度比Gd~(3+)及Yb~(3+)小;Gd─DTPA和Yb-DTPA对Ca2~(+)-ATP酶活性基本无影响。  相似文献   

3.
Lanthanides such as La(3+) and Gd(3+) are well known to have large effects on the function of membrane proteins such as mechanosensitive ionic channels and voltage-gated sodium channels, and also on the structure of phospholipid membranes. In this report, we have investigated effects of La(3+) and Gd(3+) on the shape of giant unilamellar vesicle (GUV) of dioleoylphosphatidylcholine (DOPC-GUV) and GUV of DOPC/cholesterol by the phase-contrast microscopy. The addition of 10-100 microM La(3+) (or Gd(3+)) through a 10-microm diameter micropipette near the DOPC-GUV (or DOPC/cholesterol-GUV) triggered several kinds of shape changes. We have found that a very low concentration (10 microM) of La(3+) (or Gd(3+)) induced a shape change of GUV such as the discocyte via stomatocyte to inside budded shape transformation, the two-spheres connected by a neck to prolate transformation, and the pearl on a string to cylinder (or tube) transformation. To understand the effect of these lanthanides on the shape of the GUV, we have also investigated phase transitions of 30 microM dipalmitoylphosphatidylcholine-multilamellar vesicle (DPPC-MLV) by the ultra-sensitive differential scanning calorimetry (DSC). The chain-melting phase transition temperature and the L(beta') to P(beta') phase transition temperature of DPPC-MLV increased with an increase in La(3+) concentration. This result indicates that the lateral compression pressure of the membrane increases with an increase in La(3+) concentration. Thereby, the interaction of La(3+) (or Gd(3+)) on the external monolayer membrane of the GUV induces a decrease in its area (A(ex)), whereas the area of the internal monolayer membrane (A(in)) keeps constant. Therefore, the shape changes of the GUV induced by these lanthanides can be explained reasonably by the decrease in the area difference between two monolayers (DeltaA=A(ex)-A(in)).  相似文献   

4.
We have used near-infrared (NIR) vibronic fluorescence spectroscopy to study the vibrational structure of ligands associated with model complexes of the lanthanide Yb(3+). This technique exploits the similar binding properties of the lanthanide Yb(3+) to probe Ca(2+)-binding sites in proteins. The (NIR) fluorescence of complexed Yb(3+) exhibits, in addition to main 0-0 (2F5/2----2F7/2) electronic transition of Yb(3+), weak vibronic sidebands which provide infrared-like, local vibrational spectra of the chelates (inner sphere ligands) of Yb(3+). A similar approach has been used for the lanthanide Gd(3+) (MacGregor, R.B., Jr (1989) Arch. Biochem. Biophys. 274, 312-316) which fluoresces in the UV and which is usually complicated by amino-acid residues fluorescing in the same spectral region. In this same spectral region, other complications in studying photosynthetic membranes occur in the form of the excitation wavelength being actinic, promoting photodegradation of the membranes, as well as the reabsorption of Gd(3+) fluorescence. NIR excitation and fluorescence detection of Yb(3+) avoid these problems when studying photosynthetic membranes. A preliminary study has been conducted here on rat muscle parvalbumin.  相似文献   

5.
Here, the effects of the ethylene-releasing compound, ethephon, and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), on ionic currents across plasma membranes and on the cytosolic Ca(2+) activity ([Ca(2+)](c)) of tobacco (Nicotiana tabacum) suspension cells were characterized using a patch-clamp technique and confocal laser scanning microscopy. Exposure of tobacco protoplasts to ethephon and ACC led to activation of a plasma membrane cation channel that was permeable to Ba(2+), Mg(2+) and Ca(2+), and inhibited by La(3+), Gd(3+) and Al(3+). The ethephon- and ACC-induced Ca(2+)-permeable channel was abolished by the antagonist of ethylene perception (1-metycyclopropene) and by the inhibitor of ACC synthase (aminovinylglycin), indicating that activation of the Ca(2+)-permeable channels results from ethylene. Ethephon elicited an increase in the [Ca(2+)](c) of tobacco suspension cells, as visualized by the Ca(2+)-sensitive probe Fluo-3 and confocal microscopy. The ethephon-induced elevation of [Ca(2+)](c) was markedly inhibited by Gd(3+) and BAPTA, suggesting that an influx of Ca(2+) underlies the elevation of [Ca(2+)](c). These results indicate that an elevation of [Ca(2+)](c), resulting from activation of the plasma membrane Ca(2+)-permeable channels by ethylene, is an essential component in ethylene signaling in plants.  相似文献   

6.
The lanthanide ions La(3+) and Gd(3+) block Ca(2+)-permeable cation channels and have been used as important tools to characterize channels of the transient receptor potential (TRP) family. However, widely different concentrations of La(3+) and Gd(3+) have reportedly been required for block of TRP3 channels in various expression systems. The present study provides a possible explanation for this discrepancy. After overexpression of TRP3 in Chinese hamster ovary cells, whole-cell currents through TRP3 were reversibly inhibited by La(3+) with an EC(50) of 4 microm. For comparison, the organic blocker SKF96365 required an EC(50) of 8 microm. Gd(3+) blocked with an EC(50) of 0.1 microm, but this block was slow in onset and was not reversible after wash-out. When the two lanthanides were added to the cytosolic side of inside-out patches, block was achieved with considerably lower concentrations (EC(50) for La(3+), 0.02 microm; EC(50) for Gd(3+), 0.02 microm). Uptake of La(3+) into the cytosol of Chinese hamster ovary cells was demonstrated with intracellular fura-2. We conclude that lanthanides block TRP3 more potently from the cytosolic than from the extracellular side of the plasma membrane and that uptake of lanthanides will largely affect the apparent EC(50) values after extracellular application.  相似文献   

7.
The aim of the present study was to further understand how changes in membrane organization can lead to higher rates of lipid oxidation. We previously demonstrated that Al(3+), Sc(3+), Ga(3+), Be(2+), Y(3+), and La(3+) promote lipid packing and lateral phase separation. Using the probe Laurdan, we evaluated in liposomes if the higher rigidity of the membrane caused by Al(3+) can alter membrane phase state and/or hydration, and the relation of this effect to Al(3+)-stimulated lipid oxidation. In liposomes of dimyristoyl phosphatidylcholine and dimyristoyl phosphatidylserine, Al(3+) (10-100 microM) induced phase coexistence and displacement of T(m). In contrast, in liposomes of brain phosphatidylcholine and brain phosphatidylserine, Al(3+) (10-200 microM) did not affect membrane phase state but increased Laurdan generalized polarization (GP = -0. 04 and 0.09 in the absence and presence of 200 microM Al(3+), respectively). Sc(3+), Ga(3+), Be(2+), Y(3+), and La(3+) also increased GP values, with an effect equivalent to a decrease in membrane temperature between 10 and 20 degrees C. GP values in the presence of the cations were significantly correlated (r(2) = 0.98, P < 0.001) with their capacity to stimulate Fe(2+)-initiated lipid oxidation. Metal-promoted membrane dehydration did not correlate with ability to enhance lipid oxidation, indicating that dehydration of the phospholipid polar headgroup is not a mechanism involved in cation-mediated enhancement of Fe(2+)-initiated lipid oxidation. Results indicate that changes in membrane phospholipid phase state favoring the displacement to gel state can facilitate the propagation of lipid oxidation.  相似文献   

8.
Previously we showed that the redox active Cu(2+) was much more effective than Cd(2+) at inducing reactive oxygen species ("ROS") formation in hepatocytes and furthermore "ROS" scavengers prevented Cu(2+)-induced hepatocyte cytotoxicity (Pourahmad and O'Brien, 2000). In the following it is shown that hepatocyte cytotoxicity induced by Cu(2+), but not Cd(2+), was preceded by lysosomal membrane damage as demonstrated by acridine orange release. Cytotoxicity, "ROS" formation, and lipid peroxidation were also readily prevented by methylamine or chloroquine (lysosomotropic agents) or 3-methyladenine (an inhibitor of autophagy). Hepatocyte lysosomal proteolysis was also activated by Cu(2+), but not Cd(2+), as tyrosine was released from the hepatocytes and was prevented by leupeptin and pepstatin (lysosomal protease inhibitors). Cu(2+)-induced cytotoxicity was also prevented by leupeptin and pepstatin. A marked increase in Cu(2+)-induced hepatocyte toxicity also occurred if the lysosomal toxins gentamicin or aurothioglucose were added at the same time as the Cu(2+). Furthermore, destabilizing lysosomal membranes beforehand by preincubating the hepatocytes with gentamicin or aurothioglucose prevented Cu(2+)-induced hepatocyte cytotoxicity. It is proposed that Cu(2+)-induced cytotoxicity involves lysosomal damage that causes the release of cytotoxic digestive enzymes as a result of lysosomal membrane damage by "ROS" generated by lysosomal Cu(2+) redox cycling.  相似文献   

9.
The mechanism of the effects of the lanthanum ion (La(3+)) and the gadolinium ion (Gd(3+)), which are lanthanides, on the function of membrane proteins and the stability of the membrane structure is not well understood. We investigated the effects of La(3+) on the stability of the hexagonal II (H(II)) phase of the phosphatidylethanolamine (PE) membrane at 20 degrees C by small-angle X-ray scattering. As PE membrane we used DPOPE (dipalmitoleoylphosphatidylethanolamine) membrane, which was in the L(alpha) phase in 10 mM PIPES buffer (pH 7.4) at 20 degrees C. An L(alpha) to H(II) phase transition occurred in the DPOPE membrane at 1.4 mM La(3+) in 0 M KCl, and at 0.4 mM La(3+) in 0.5 M KCl and above the critical concentrations the membranes were in the H(II) phase, indicating that La(3+) stabilizes the H(II) phase rather than the L(alpha) phase. The basis vector length, d, of DPOPE and DOPE (dioleoylphosphatidylethanolamine) membranes containing 16 wt% tetradecane in excess water condition did not change with an increase in La(3+) concentration, suggesting that La(3+) did not change the spontaneous curvature of these PE monolayer membranes. The chain-melting transition temperature of the dielaidoylphosphatidylethanolamine membrane increased with an increase in La(3+) concentration, indicating that the lateral compression pressure increased. To elucidate the effects of a small percentage of 'guest' lipids with longer acyl chains than the average length of 'host' lipids on the stability of the H(II) phase, we investigated the effects of the concentration of a guest lipid (DOPE) in a host lipid (DPOPE) membrane on their phase behavior and structure. 12 mol% DOPE induced an L(alpha) to H(II) phase transition in DOPE/DPOPE membrane, without changing the spontaneous curvature of the monolayer membrane. We found that Ca(2+) also induced an L(alpha) to H(II) phase transition in the DPOPE membrane, and compared the effects of Ca(2+) on PE membranes with those of La(3+). Based on these results, we have proposed a new model for the mechanism of the L(alpha) to H(II) phase transition and the stabilization of the H(II) phase by La(3+).  相似文献   

10.
Y Liu  K Zhang  Y Wu  J Zhao  J Liu 《Chemistry & biodiversity》2012,9(8):1533-1544
8-Hydroxyquinoline-7-carboxaldehyde (8-HQ-7-CA), Schiff-base ligand 8-hydroxyquinoline-7-carboxaldehyde benzoylhydrazone, and binuclear complexes [LnL(NO(3) )(H(2) O)(2) ](2) were prepared from the ligand and equivalent molar amounts of Ln(NO(3) )?6 H(2) O (Ln=La(3+) , Nd(3+) , Sm(3+) , Eu(3+) , Gd(3+) , Dy(3+) , Ho(3+) , Er(3+) , Yb(3+) , resp.). Ligand acts as dibasic tetradentates, binding to Ln(III) through the phenolate O-atom, N-atom of quinolinato unit, and C?N and ?O?C?N? groups of the benzoylhydrazine side chain. Dimerization of this monomeric unit occurs through the phenolate O-atoms leading to a central four-membered (LnO)(2) ring. Ligand and all of the Ln(III) complexes can strongly bind to CT-DNA through intercalation with the binding constants at 10(5) -10(6) M(-1) . Moreover, ligand and all of the Ln(III) complexes have strong abilities of scavenging effects for hydroxyl (HO(.) ) radicals. Both the antioxidation and DNA-binding properties of Ln(III) complexes are much better than that of ligand.  相似文献   

11.
Cadmium-Ca-Zn interactions for uptake have been studied in human intestinal crypt cells HIEC. Our results failed to demonstrate any significant cross-inhibition between Cd and Ca uptake under single metal exposure conditions. However, they revealed a strong reciprocal inhibition for a Zn-stimulated mechanism of transport. Optimal stimulation was observed under exposure conditions that favor an inward-directed Zn gradient, suggesting activation by extracellular rather than intracellular Zn. The effect of Zn on the uptake of Ca was concentration-dependent, and zinc-induced stimulation of Cd uptake resulted in a 3- and 5.8-fold increase in the K(m) and V(max) values, respectively. Neither basal nor Zn-stimulated Ca uptakes were sensitive to membrane depolarization. However, the stimulated component of uptake was inhibited by the trivalent cations Gd(3+), and La(3+) and to a lesser extent by Mg(2+) and Ba(2+). RT-PCR analysis as well as uptake measurement performed with extracellular ATP and/or suramin do not support the involvement of purinergic P2X receptor channels. Uptake and fluorescence data led to the conclusion that Zn is unlikely to trigger Ca influx in response to Ca release from thapsigargin-sensitive intracellular pools. Our data show that Zn may potentiate Cd accumulation in intestinal crypt cells through mechanism that still needs to be clarified.  相似文献   

12.
Caffeine activates a mechanosensitive Ca(2+) channel in human red cells   总被引:1,自引:0,他引:1  
Cordero JF  Romero PJ 《Cell calcium》2002,31(5):189-200
Caffeine is known to activate influx of both mono- and divalent cations in various cell types, suggesting that this xanthine opens non-selective cation channels at the plasma membrane. This possibility was investigated in human erythrocytes, studying the caffeine action on net Ca(2+), Na(+) and K(+) movements in ATP-depleted cells. Whole populations and subpopulations of young and old erythrocytes were employed. Caffeine was tested in the presence of known mechanosensitive channel blockers (Gd(3+), neomycin and amiloride) and ruthenium red as a possible inhibitor. Caffeine enhanced net cation fluxes in a concentration-dependent way. In whole populations, the Ca(2+) entry elicited by 20 mM caffeine was fully suppressed by Gd(3+) (5 microM), amiloride (250 microM) and ruthenium red (100 microM) and partially blocked by neomycin (100 microM). The above blockers also inhibited caffeine-dependent Na(+) entry whilst showing antagonistic effects on the corresponding K(+) efflux. These compounds fully suppressed hypotonically-induced (-35 mOsm/kg) Ca(2+) influx at nearly the same concentrations completely blocking caffeine-stimulated Ca(2+) entry. The effect of inhibitors on Ca(2+) influx in young cells exceeded that in old cells at similar concentrations. The results clearly show that caffeine stimulates a stretch-activated Ca(2+) channel in human red cells and that aged cells are less susceptible to mechanosensitive channel blockers.  相似文献   

13.
Yu S  Hu J  Yang X  Wang K  Qian ZM 《Biochemistry》2006,45(37):11217-11225
The effects of La(3+) on the extracellular signal-regulated kinase (ERK) signaling were investigated to explore the mechanism by which La(3+) results in cell proliferation associated with apoptosis in mouse embryo fibroblast NIH 3T3 cells. Our data showed that La(3+) ions could induce a pulse of phosphorylation of ERK mainly through an unknown metal-sensing mechanism, which is different from the Ca(2+)-sensing receptor . The putative sensor protein showed one binding site for La(3+) with a dissociation constant of approximately 8 nM. Inductions of c-fos, c-myc, and cyclin D1 and phosphorylation of retinoblastoma protein (pRb) were observed after activation of ERK. These results are consistent with our previous observation that La(3+) promotes proliferation by helping the cells pass through the G1/S restriction point and enter S phase. This La(3+)-induced signaling cascade exhibited abnormally sustained c-myc induction and pRb phosphorylation. Furthermore, a continual increase of the p53 level was observed along with the signal transduction, and a significant decrease of B-cell lymphoma/leukemia-2 gene was observed after approximately 18 h of incubation. All of the results were highly correlated with the increase of S-phase population and apoptotic cells. Therefore, the experimental results suggested that La(3+) induced cell proliferation and apoptosis compatible to a p53-related mechanism in NIH 3T3 cells via an ERK-signaling cascade induced by a metal-sensing mechanism.  相似文献   

14.
稀土离子对烟草RuBPcase的激活作用及EXFAS研究   总被引:4,自引:0,他引:4  
研究了稀土离子(Ln3 +) 对烟草(Nicotiana tabacum)1 ,5 - 二磷酸核酮糖羧化酶(RuBPcase)活力的影响。结果表明,在该酶的反应体系中,用Ln3 + 替代Mg2 + ,烟草RuBPcase 的活力随Ln3 + 浓度的变化曲线呈双相效应, 即在高浓度时, Ln3 + 抑制该酶活性; 低浓度的Ln3 + 提高RuBPcase 活性。其活化效应为轻稀土离子大于重稀土离子,但Ln3 + 的活化效应低于Mg2 + 。在有Mg2 + 的反应体系中,Ln3 + 在低浓度时也有提高RuBPcase 活性的能力,提高幅度较低;而高浓度的Ln3 + 显著地抑制酶活性。进一步对RuBPcase - La 二元复合物的EXFAS 研究,证实La3 + 与RuBPcase 氨基酸残基的O 原子键合,键长为2 .51?;La3 + 还与S 原子结合。最后对Ln3 + 和RuBPcase 相互作用的分子机制进行讨论  相似文献   

15.
The aim of this study was to characterize the mechanism implicated in Zn(2+) transport in MDCK cells. Trace elements such as Zn(2+), Cd(2+) or Cu(2+) induced MDCK cell depolarization at the micromolar level as demonstrated by bis-oxonol fluorescence and whole-cell patch experiments. This depolarization was inhibited by La(3+) and Gd(3+) and was not related to the activation of Na(+) or Cl(-) channels. Uptake of 65Zn was assessed under initial rate conditions. The kinetic parameters obtained at 37 degrees C were a K(m) of 18.9 microM and a V(max) of 0.48 nmol min(-1) (mg protein(-1)). Intracellular pH measurements using BCECF probe demonstrated that Zn(2+) transport induced a cytoplasmic acidification. The cytoplasmic acidification resulting from Zn(2+) uptake activated Na(+)/H(+) antiporter, which allowed for the recycling of protons. These data suggest that Zn(2+) enters MDCK cells through a proton-coupled metal-ion transporter, the characteristics of which are slightly different from those described for the metal transporter DCT1. This mechanism could be in part responsible of the metal transport evidenced in the distal parts of the renal tubule.  相似文献   

16.
17.
Mammalian members of the classical transient receptor potential channel (TRPC) subfamily (TRPC1-7) are Ca(2+)-permeable cation channels involved in receptor-mediated increases in intracellular Ca(2+). Unlike most other TRP-related channels, which are inhibited by La(3+) and Gd(3+), currents through TRPC4 and TRPC5 are potentiated by La(3+). Because these differential effects of lanthanides on TRPC subtypes may be useful for clarifying the role of different TRPCs in native tissues, we characterized the potentiating effect in detail and localized the molecular determinants of potentiation by mutagenesis. Whole cell currents through TRPC5 were reversibly potentiated by micromolar concentrations of La(3+) or Gd(3+), whereas millimolar concentrations were inhibitory. By comparison, TRPC6 was blocked to a similar extent by La(3+) or Gd(3+) at micromolar concentrations and showed no potentiation. Dual effects of lanthanides on TRPC5 were also observed in outside-out patches. Even at micromolar concentrations, the single channel conductance was reduced by La(3+), but reduction in conductance was accompanied by a dramatic increase in channel open probability, leading to larger integral currents. Neutralization of the negatively charged amino acids Glu(543) and Glu(595)/Glu(598), situated close to the extracellular mouth of the channel pore, resulted in a loss of potentiation, and, for Glu(595)/Glu(598) in a modification of channel inhibition. We conclude that in the micromolar range, the lanthanide ions La(3+) and Gd(3+) have opposite effects on whole cell currents through TRPC5 and TRPC6 channels. The potentiation of TRPC4 and TRPC5 by micromolar La(3+) at extracellular sites close to the pore mouth is a promising tool for identifying the involvement of these isoforms in receptor-operated cation conductances of native cells.  相似文献   

18.
The binding and uptake of Gd3+ ions by human erythrocytes in vitro were studied by determining the Gd contents in membrane and in cytosol by means of particle-induced X-ray emission (PIXE) spectrometry. Results obtained from varied incubation time revealed that the Gd3+ ions bind to the membrane proteins and lipids at first. Gd3+ binding to the membrane lipids and proteins lasts 0 approximately 20 and 20 approximately 100 ms respectively, as shown by the stopped-flow studies. Then a fraction of Gd3+ ions diffuses through the membrane. The kinetics of Gd3+ binding indicates that the binding to phospholipids is prior to that to the membrane proteins, but a portion of the lipid-bound Gd3+ redistributed later to the proteins. PIXE studies showed that the entry of Gd3+ increased the influx of Ca2+ and Cl-. By monitoring the changes in fluorescence of proteins and that of the Ln3+, the uptake of La3+, Eu3+, Gd3+ and Tb3+ was shown to be a process comprising a series of events. Binding to the membrane molecules induces the phase transition of lipid bilayer and conformational changes and aggregation of membrane proteins. Conformational changes of the proteins were characterized by Fourier transform IR spectroscopy (FT-IR) deconvolved spectra, i.e. alpha-helix content decreases while beta-sheet increases. ESR spectra of MSL-labeled proteins reflect the aggregation state related with the conformational change. [31P]NMR spectra of membrane lipid bilayer revealed the Ln3+ ions induced hexagonal (H(II)) phase formation. Phase transition and aggregation of membrane proteins cause the formation of domain structure and perforation in the membrane. These alterations in membrane structure are responsible for the Ln3+ enhanced membrane permeability. Thus the previous Ln3+ binding will facilitate the across-membrane transport of other Ln3+ ions through the membrane.  相似文献   

19.
TRPC3 has been suggested as a key component of phospholipase C-dependent Ca(2+) signaling. Here we investigated the role of TRPC3-mediated Na(+) entry as a determinant of plasmalemmal Na(+)/Ca(2+) exchange. Ca(2+) signals generated by TRPC3 overexpression in HEK293 cells were found to be dependent on extracellular Na(+), in that carbachol-stimulated Ca(2+) entry into TRPC3 expressing cells was significantly suppressed when extracellular Na(+) was reduced to 5 mm. Moreover, KB-R9743 (5 microm) an inhibitor of the Na(+)/Ca(2+) exchanger (NCX) strongly suppressed TRPC3-mediated Ca(2+) entry but not TRPC3-mediated Na(+) currents. NCX1 immunoreactivity was detectable in HEK293 as well as in TRPC3-overexpressing HEK293 cells, and reduction of extracellular Na(+) after Na(+) loading with monensin resulted in significant rises in intracellular free Ca(2+) (Ca(2+)(i)) of HEK293 cells. Similar rises in Ca(2+)(i) were recorded in TRPC3-overexpressing cells upon the reduction of extracellular Na(+) subsequent to stimulation with carbachol. These increases in Ca(2+)(i) were associated with outward membrane currents at positive potentials and inhibited by KB-R7943 (5 microm), chelation of extracellular Ca(2+), or dominant negative suppression of TRPC3 channel function. This suggests that Ca(2+) entry into TRPC3-expressing cells involves reversed mode Na(+)/Ca(2+) exchange. Cell fractionation experiments demonstrated co-localization of TRPC3 and NCX1 in low density membrane fractions, and co-immunoprecipitation experiments provided evidence for association of TRPC3 and NCX1. Glutathione S-transferase pull-down experiments revealed that NCX1 interacts with the cytosolic C terminus of TRPC3. We suggest functional and physical interaction of nonselective TRPC cation channels with NCX proteins as a novel principle of TRPC-mediated Ca(2+) signaling.  相似文献   

20.
The surfactin can inhibit proliferation and induce apoptosis in cancer cells. Moreover, surfactin can induce cell death in human breast cancer MCF-7 cells through mitochondrial pathway. However, the molecular mechanism involved in this pathway remains to be elucidated. Here, the reactive oxygen species (ROS) and Ca(2+) on mitochondria permeability transition pore (MPTP) activity, and MCF-7 cell apoptosis which induced by surfactin were investigated. It is found that surfactin evoked mitochondrial ROS generation, and the surfactin-induced cell death was prevented by N-acetylcysteine (NAC, an inhibitor of ROS). An increasing cytoplasmic Ca(2+) concentration was detected in surfactin-induced MCF-7 apoptosis, which was inhibited by 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM, a chelator of calcium). In addition, the relationship between ROS generation and the increase of cytoplasm Ca(2+) was determined. The results showed that surfactin initially induced the ROS formation, leading to the MPTP opening accompanied with the collapse of mitochondrial membrane potential (ΔΨ(m)). Then the cytoplasmic Ca(2+) concentration increased in virtue of the changes of mitochondrial permeability, which was prevented by BAPTA-AM. Besides, cytochrome c (cyt c) was released from mitochondria to cytoplasm through the MPTP and activated caspase-9, eventually induced apoptosis. In summary, surfactin has notable anti-tumor effect on MCF-7 cells, however, there was no obvious cytotoxicity on normal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号