首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The significance of reutilization of surfactant phosphatidylcholine   总被引:8,自引:0,他引:8  
To assess the magnitude of reutilization of surfactant phosphatidylcholine, 68 3-day-old rabbits were injected intratracheally with a trace dose of [3H]choline-labeled surfactant mixed with [14C]palmitate-labeled synthetic dipalmitoylphosphatidylcholine. After timed kills we measured the total phosphatidylcholine associated counts/min in whole lung and alveolar wash and the specific activities of phosphatidylcholine in the alveolar wash, lamellar bodies, and microsomes isolated from the lung of each rabbit. Using a modification of the compartment analysis of Skinner et al. (Skinner, S. M., Clark, R. E., Baker, N., and Shipley, R. A. (1959) Am. J. Physiol. 196, 238-244), we found that surfactant phosphatidylcholine was reutilized with greater than 90% efficiency. The turnover time of the alveolar wash phosphatidylcholine was estimated to be 10.1 h and 9.3 h as measured by the 3H and 14C labels, respectively. From the ratios of alveolar wash-associated natural to synthetic phosphatidylcholine specific activities and from similar ratios obtained in 30 additional rabbits using [14C]choline-labeled natural surfactant and [3H]choline-labeled dipalmitoylphosphatidylcholine, we showed that phosphatidylcholine was reutilized intact rather than as component parts. Within 6 h of injection, the synthetic dipalmitoylphosphatidylcholine functioned metabolically as that administered in the form of natural surfactant.  相似文献   

2.
Developing rabbits reutilize the phosphatidylcholine of surfactant with an efficiency of about 95%. The efficiency of reutilization of other components of surfactant have not been determined. 3-day-old rabbits were injected intratracheally with [3H]dipalmitoylphosphatidylcholine (DPPC) mixed with unlabeled natural surfactant and either disaturated [32P]phosphatidylglycerol (DSPG) or [14C]dipalmitoylphosphatidyl-ethanolamine (DPPE). The recovery of [3H]DPPC, [14C]DPPE, and [32P]DSPG in the alveolar wash was measured at different times after injection. By plotting the ratio of [32P]DSPG to [3H]DPPC or [14C]DPPE to [3H]DPPC counts/min in the alveolar wash vs. time after injection we showed that these two phospholipids are reutilized less efficiently than phosphatidylcholine. Based on other studies, several assumptions were made about the kinetics of surfactant phosphatidylethanolamine and phosphatidylglycerol. From the slopes of the semilog plots of total [14C]DPPE and total [32P]DSPG counts/min in the alveolar wash vs. time and these assumptions, we determined that these two phospholipids were reutilized at an efficiency of only 79%.  相似文献   

3.
Intrapulmonary surfactant catabolism was investigated by use of a phospholipase A1- and A2-resistant analogue of dipalmitoylphosphatidylcholine (DPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPC ether). [14C]DPC ether, made into liposomes with [3H]DPC and associated with 32P-labeled rabbit surfactant, was given intratracheally to 1-kg rabbits, which were killed at preset times to 48 h. Recoveries of radiolabel as saturated phosphatidylcholine (Sat PC) isolated from alveolar wash (AW), postlavage lung homogenate (LH), and alveolar macrophages were measured. All groups had similar AW and LH Sat PC pool sizes, indicating no perturbation of endogenous Sat PC pools. Despite a nearly fivefold accumulation of [14C]DPC ether in the lung by 48 h (P less than 0.01), the three probes had similar alveolar clearance curves. Furthermore, the Sat PC reutilization efficiency (41.6%) and turnover time (5.9 h) calculated for DPC ether were not different from values for the DPC and rabbit surfactant. Of the DPC ether (0.7%) and DPC (9%) labels recovered as PC in organs outside the lung, greater than 85% was unsaturated, indicating de novo synthesis using precursors from degraded PC. DPC ether was a useful probe of intrapulmonary DPC catabolism, and after alveolar uptake there was no direct reentry of intact DPC from the catabolic compartment(s) into the secretory pathway.  相似文献   

4.
Adult rabbits reutilize the phosphatidylcholine (PC) of surfactant much less efficiently than developing rabbits (22% vs. 95%). Comparisons of reutilization efficiency of other components of surfactant in adult rabbits have not been determined. We injected adult rabbits intratracheally with [3H]dipalmitoylphosphatidylcholine (DPPG) mixed with [14C]lysophosphatidylcholine (lysoPC) and natural surfactant or [14C]DPPC mixed with [3H]dipalmitoylphosphatidylglycerol (DPPG) and natural surfactant. Recovery in the alveolar wash and lamellar bodies of labelled DPPC, lysoPC and DPPG was determined at different times after injection. By plotting the ratio of [3H]DPPG to [14C]DPPC in the alveolar wash versus time after injection we found that phosphatidylglycerol was reutilized with an efficiency of only 0-7% which was much less than the reutilization of PC in these animals. At early times after injection, adult rabbits injected with [14C]lysoPC had a ratio of [14C]PC in their alveolar wash to lamellar bodies that was larger than 1.0. By comparison, 3-day old rabbits injected intratracheally with [14C]lysoPC had a ratio of [14C]PC in alveolar wash to lamellar bodies less than 1.0 at the earliest times measurable. Thus adult rabbits demonstrate a pathway for accumulation of PC in their alveolar space prior to its appearance in lamellar bodies. This was not detected in developing rabbits. As in developing rabbits, adult rabbits reutilize the phosphatidylglycerol of surfactant less efficiently than the PC of surfactant.  相似文献   

5.
Twenty-five adult rabbits were each injected intratracheally with a solution containing 1-palmitoyl-2-[3H]palmitoyl phosphatidylcholine (DPPC) and 1-palmitoyl-2-[14C]oleoyl-PC that had been associated with with 32P-labeled natural rabbit surfactant. The animals were killed in groups of 5 at 1, 4, 8, 15 and 24 h after isotope injection. Isotope recovery and PC specific activities were measured in alveolar washes, lung homogenates, lamellar bodies and microsomes. The percent clearance per h of PC was very similar for the three labels and were; 3.56, 3.44 and 3.00%, respectively, for the 3H-, 14C- and 32P-labeled PC in the total lung (alveolar wash plus lung homogenate) and 3.84, 3.79 and 3.70%, respectively, for alveolar wash alone. The intracellular pathways of the three labels were assessed by comparing the specific activities in the lamellar bodies over 24 h as well as comparing the ratios of lamellar body to microsome specific activities over this period. These ratios were very similar for the monoenoic and saturated PC labels over time, indicating comparable recycling. In a separate experiment, three other unsaturated species; 1,2-[14C]dioleoyl-PC, 1-palmitoyl-2-[14C]linoleoyl-PC, and 1-palmitoyl-2-[14C]arachidonyl-PC were compared to 1-palmitoyl-2-[14C]oleoyl-PC. Recovery in the alveolar wash and total lung were similar at 16 h for all four labeled phospholipids. The intracellular pathways were also similar, except for the arachidonyl compound. More relative to the lamellar bodies as compared to the other. Thus, the catabolic pathways were similar for the saturated and unsaturated PC species initially present in the airspaces. The only metabolic difference between the compounds appears to be in the intracellular handling of the arachidonic species.  相似文献   

6.
Tracer quantities of 3H-labeled lysoPC and 32P-labeled natural rabbit surfactant were given intratracheally via a bronchoscope and [14C]palmitate was given intravenously to 25 rabbits with labeled PC and lysoPC measured in the alveolar wash, lung homogenate, lamellar bodies and microsomes at five times from 10 min to 6 h after tracheal injection. Surprisingly, only 31% of the administered lysoPC remained in its original form in the total lungs (alveolar wash + lung homogenate) by 10 min, of which 77% was in the alveolar wash. Meanwhile, by 10 min an additional 37% was already converted to PC, of which more than 98% was in the lung homogenate. LysoPC continued to be rapidly and efficiently converted to PC, with 62% conversion measured at 3 h. The converted lysoPC initially appeared with high specific activity in microsomes, then in lamellar bodies, and finally in the alveolar wash. The intravascular palmitate labeled lung PC had similar specific activity-time profiles in the subcellular fractions, while intratracheally administered natural rabbit surfactant had a constantly low specific activity in microsomes and much higher specific activities in lamellar bodies and alveolar wash. Another 25 rabbits received intratracheal lysoPC labeled in both the choline and palmitate moieties and then were studied from 1 to 24 h after tracheal injection. The ratio of the palmitate to choline labels indicated uptake and conversion to PC primarily by direct acylation rather than transacylation and by intact reuptake and conversion rather than breakdown and resynthesis. LysoPC is an attractive 'metabolic probe' of surfactant metabolism which undergoes very rapid and efficient intracellular conversion to PC via a subcellular pathway that parallels the remodeling and de novo synthetic pathways.  相似文献   

7.
1. The formation of phosphatidylcholine from radioactive precursors was studied in adult rat lung alveolar type II epithelial cells in primary culture. 2. The incorporation of [Me-14C]choline into total lipids and phosphatidylcholine was stimulated by addition of palmitate, whereas the incorporation of [U-14C]glucose into phosphatidylcholine and disaturated phosphatidylcholine was stimulated by addition of choline. Addition of glucose decreased the absolute rate of incorporation of [1(3)-3H]glycerol into total lipids, phosphatidylcholine and disaturated phosphatidylcholine, decreased the percentage [1(3)-3H]glycerol recovered in phosphatidylcholine, but increased the percentage phosphatidylcholine label in the disaturated species. 3. At saturating substrate concentrations, the percentages of phosphatidylcholine radioactivity found in disaturated phosphatidylcholine after incubation with [1-(14)C]acetate (in the presence of glucose) [1-(14)C]palmitate (in the presence of glucose), [Me-14C]choline (in the presence of glucose and palmitate) and [U-14C]glucose (in the presence of choline and palmitate) were 78, 75, 74 and 90%, respectively. 4. Fatty acids stimulated the incorporation of [U-14C]glucose into the glycerol moiety of phosphatidylcholine. The degree of unsaturation of the added fatty acids was reflected in the distribution of [U-14C]glucose label among the different molecular species of phosphatidylcholine. It is suggested that the glucose concentration in the blood as related to the amount of available fatty acids and their degree of unsaturation may be factors governing the synthesis of surfactant lipids.  相似文献   

8.
The deacylation and reacylation process of phospholipids is the major pathway of turnover and repair in erythrocyte membranes. In this paper, we have investigated the role of carnitine palmitoyltransferase in erythrocyte membrane phospholipid fatty acid turnover. The role of acyl-L-carnitine as a reservoir of activated acyl groups, the buffer function of carnitine, and the importance of the acyl-CoA/free CoA ratio in the reacylation process of erythrocyte membrane phospholipids have also been addressed. In intact erythrocytes, the incorporation of [1-14C]palmitic acid into acyl-L-carnitine, phosphatidylcholine, and phosphatidylethanolamine was linear with time for at least 3 h. The greatest proportion of the radioactivity was found in acyl-L-carnitine. Competition experiments using [1-14C]palmitic and [9,10-3H]oleic acid demonstrated that [9,10-3H]oleic acid was incorporated preferentially into the phospholipids and less into acyl-L-carnitine. When an erythrocyte suspension was incubated with [1-14C]palmitoyl-L-carnitine, radiolabeled palmitate was recovered in the phospholipid fraction, and the carnitine palmitoyltransferase inhibitor, 2-tetradecylglycidic acid, completely abolished the incorporation. ATP depletion decreased incorporation of [1-14C]palmitic and/or [9,10-3H]oleic acid into acyl-L-carnitine, but the incorporation into phosphatidylcholine and phosphatidylethanolamine was unaffected. In contrast, ATP depletion enhanced the incorporation into phosphatidylcholine and phosphatidylethanolamine of the radiolabeled fatty acid from [1-14C]palmitoyl-L-carnitine. These data are suggestive of the existence of an acyl-L-carnitine pool, in equilibrium with the acyl-CoA pool, which serves as a reservoir of activated acyl groups. The carnitine palmitoyltransferase inhibition by 2-tetradecylglycidic acid or palmitoyl-D-carnitine caused a significant reduction of radiolabeled fatty acid incorporation into membrane phospholipids, only when intact erythrocytes were incubated with [9,10-3H]oleic acid. These latter data may be explained by the differences in rates and substrates specificities between acyl-CoA synthetase and the reacylating enzymes for palmitate and oleate, which support the importance of carnitine palmitoyltransferase in modulating the optimal acyl-CoA/free CoA ratio for the physiological expression of the membrane phospholipids fatty acid turnover.  相似文献   

9.
The effects of intratracheally instilled silica (10 mg/rat) on the biosynthesis of surfactant phospholipids was investigated in the lungs of rats. The sizes of the intracellular and extracellular pools of surfactant phospholipids were measured 7, 14 and 28 days after silica exposure. The ability of lung slices to incorporate [14C]choline and [3H]palmitate into surfactant phosphatidylcholine (PC) and disaturated phosphatidylcholine (DSPC) was also investigated. Both intra- and extra-cellular pools of surfactant phospholipids were increased by silica treatment. The intracellular pool increased linearly over the 28-day time period, ultimately reaching a size 62-fold greater than controls. The extracellular pool also increased, but showed a pattern different from that of the intracellular pool. The extracellular pool increased non-linearly up to 14 days, and then declined. At its maximum, the extracellular pool was increased 16-fold over the control. The ability of lung slices to incorporate phospholipid precursors into surfactant-associated PC and DSPC was elevated at all time periods. The rate of incorporation of [14C]choline into surfactant PC and DSPC was maximal at 14 days and was nearly 3-fold greater than the rate in controls. The rate of incorporation of [3H]palmitate was also maximal at 14 days, approx. 5-fold above controls for PC and 3-fold for DSPC. At this same time point, the microsomal activity of cholinephosphate cytidylyltransferase was increased 4.5-fold above controls, but cytosolic activity was not significantly affected by silica treatment. These data indicate that biosynthesis of surfactant PC is elevated after treatment of lungs with silica and that this increased biosynthesis probably underlies the expansion of the intra- and extra-cellular pools of surfactant phospholipids.  相似文献   

10.
Saturated phosphatidylcholine and phosphatidylglycerol are important components of pulmonary surface active material, but the relative contributions of different pathways for the synthesis of these two classes of phospholipids by alveolar type II cells are not established. We purified freshly isolated rat type II cells by centrifugal elutriation and incubated them with [1-14C]palmitate as the sole exogenous fatty acid in one series of experiments or with [9,10-3H]palmitate, mixed fatty acids (16:0, 18:1 and 18:2), and [U-14C]glucose in another series of experiments. Type II cells readily incorporated [1-14C]palmitate into saturated phosphatidic acid (55-59% of total phosphatidic acid), saturated diacylglycerol (82-87% of total diacylglycerol), saturated phosphatidylcholine (69-76% of total phosphatidylcholine), and saturated phosphatidylglycerol (55-59% of total phosphatidylglycerol). Saturated phosphatidic acid, diacylglycerol and phosphatidylglycerol were nearly equally labeled in the sn-1 and sn-2 positions, whereas saturated phosphatidylcholine was preferentially labeled in the sn-2 position. With [9,10-3H]palmitate and [U-14C]glucose, the labeling patterns of phosphatidic acid, diacylglycerol and phosphatidylglycerol were similar to each other but different from that of phosphatidylcholine. The glucose label was found predominantly in the unsaturated phosphatidylcholines at early times (3-10 min) and in the saturated phosphatidylcholines at later times (30-90 min). Similarly, the 3H/14C ratio was very high in saturated phosphatidylcholine and always above that in saturated diacylglycerol. We conclude that freshly isolated type II cells synthesize saturated phosphatidic acid, diacylglycerol, phosphatidylcholine and phosphatidylglycerol and that under our in vitro conditions the deacylation-reacylation pathway is important for the synthesis of saturated phosphatidylcholine but is less important for the synthesis of saturated phosphatidylglycerol. By the assumptions stated in the text during the pulse chase experiment de novo synthesis of saturated phosphatidylcholine from saturated diacylglycerol accounted for 25% of the total synthesis of saturated phosphatidylcholine.  相似文献   

11.
Lung surfactant dipalmitoylphosphatidylcholine (DPPC) is endocytosed by alveolar epithelial cells and degraded by lysosomal-type phospholipase A2 (aiPLA2). This enzyme is identical to peroxiredoxin 6 (Prdx6), a bifunctional protein with PLA2 and GSH peroxidase activities. Lung phospholipid was studied in Prdx6 knockout (Prdx6-/-) mice. The normalized content of total phospholipid, phosphatidylcholine (PC), and disaturated phosphatidylcholine (DSPC) in bronchoalveolar lavage fluid, lung lamellar bodies, and lung homogenate was unchanged with age in wild-type mice but increased progressively in Prdx6-/- animals. Degradation of internalized [3H]DPPC in isolated mouse lungs after endotracheal instillation of unilamellar liposomes labeled with [3H]DPPC was significantly decreased at 2 h in Prdx6-/- mice (13.6 +/- 0.3% vs. 26.8 +/- 0.8% in the wild type), reflected by decreased dpm in the lysophosphatidylcholine and the unsaturated PC fractions. Incorporation of [14C]palmitate into DSPC at 24 h after intravenous injection was decreased by 73% in lamellar bodies and by 54% in alveolar lavage surfactant in Prdx6-/- mice, whereas incorporation of [3H]choline was decreased only slightly. Phospholipid metabolism in Prdx6-/- lungs was similar to that in wild-type lungs treated with MJ33, an inhibitor of aiPLA2 activity. These results confirm an important role for Prdx6 in lung surfactant DPPC degradation and synthesis by the reacylation pathway.  相似文献   

12.
12-O-Tetradecanoylphorbol-13-acetate (TPA) stimulated the release of [3H]ethanolamine from HeLa cells prelabeled with [3H]ethanolamine within 2 min, and of [3H]choline from cells prelabeled with [3H]choline after a lag of 10-20 min. This result suggests that TPA activates phospholipase D. Propranolol alone or propranolol plus TPA stimulated phosphatidic acid (PA) labeling in cells prelabeled with [3H]hexadecanol. In the presence of ethanol, TPA stimulated the accumulation of labeled phosphatidylethanol (PEth); no PEth was formed in the absence of TPA. TPA-dependent PEth accumulation was not observed in cells pretreated with TPA to down-regulate protein kinase C, whereas propranolol-induced accumulation of PA was unaffected by TPA pretreatment. Incubation of prelabeled cells with propranolol alone caused a rapid loss of label and phospholipid mass from both phosphatidylethanolamine and phosphatidylcholine (PC) together with an accumulation of PA and phosphatidylinositol plus phosphatidylserine. When [3H]hexadecanol-prelabeled cells were pulse labeled with 32P to label nucleotide pools, propranolol induced the accumulation of both 3H- and 32P-labeled PA. When cells were prelabeled with lyso-PC double labeled with 3H and 32P, and incubated with propranolol, only 3H-labeled PA accumulated, indicating that the pathways involved in the basal turnover of PC resulted in the loss of 32P from the lipid. These results suggest that the basal turnover of phosphatidylethanolamine and PC involves the sequential actions of phospholipase C, diglyceride kinase, and PA phosphohydrolase.  相似文献   

13.
A comparison of the occurrence, fatty acid composition, and metabolism of phosphatidyglycerol and phosphatidylcholine in the surfactant and residual fraction of rat lung has been carried out. The surfactant and residual fractions were separated by discontinuous sucrose density gradient centrifugation. The surfactant fraction was found to contain 69 percent phosphatidylcholine and 7 percent phosphatidylglycerol. The residual fraction contained 46 percent phosphatidylcholine and 3 percent phosphatidylglycerol. Phosphatidylcholine and phosphatidylglycerol were found to contain 85 and 79 percent palmitate in the surfactant fraction and 67 and 68 percent in the residual fraction, respectively. Isolated rat lungs were perfused with medium containing [U-14C]glucose, [9,10-3H]palmitate, and [1-14C]acetate and the incorporation into palmitate isolated from the alpha and beta position of phosphatidylcholine and phosphatidylglycerol was determined. Each radioactive substrate was found to be incorporated into palmitate of phosphatidylcholine equally at the alpha and beta position of the surfactant fraction. In the residual fraction the specific activity of the beta position palmitate was found to be twice that of the alpha position. The incorporation of [9,10-3H]palmitate and [1-14C]acetate into palmitate at the alpha and beta positions of phosphatidylglycerol was similar in both the surfactant and residual fractions. In each case palmitate at the alpha position had approximately twice the specific activity of that at the beta position. The incorporation of [U-14C]glucose into phosphatidylglycerol of the surfactant fraction was, however, greater in palmitate at the beta position than at the alpha. The results show that phosphatidylglycerol is associated with the lung surfactant fraction and suggest that palmitate esterified to the alpha and beta positions of phosphatidylglycerol and phosphatidylcholine occurs at different rates and is dependent upon the precursor source of palmitate.  相似文献   

14.
The biochemical characteristics of type II alveolar epithelial cells dissociated from adult rabbit lung by instillation of low concentrations of an elastase trypsin mixture are reported. Cells studied immediately (within 4 h) after isolation were found to incorporate the radioactively labelled precursors [U-14C]glucose, [methyl-3H]choline and [3H]palmitate into cellular phosphatidylcholine at rates 2–10-fold higher than previously reported for cells not subject to short-term cell culture. Secretion of phosphatidylcholine was stimulated by beta-adrenergic agonists. Measurement of specific activities of enzymes of phospholipid biosynthesis in subcellular fractions of isolated lung cells showed a significant enrichment of acyl coenzyme A-lysophosphatidylcholine acyltransferase, an enzyme believed to be involved in pulmonary surfactant phosphatidylcholine remodeling, in the endoplasmic reticulum of type II cells. These observations support the utility of freshly isolated type II cells as a model system for the study of the functions of the alveolar epithelium.  相似文献   

15.
1. Cholinephosphosphotransferase catalyzes the conversion of diacylglycerol and CDPcholine into phosphatidylcholine and CMP. Incubation of rat lung microsomes containing phosphatidyl[Me-14C]choline with CMP resulted in an increase in water-soluble radioactivity, suggesting that also in rat lung microsomes the cholinephosphotransferase reaction is reversible. 2. Microsomes containing 14C-labeled disaturated and 3H-labeled monoenoic phosphatidylcholine were prepared by incubation of these organelles with [1-14C]palmitate and [9,10-3H2]oleate in the presence of 1-palmitoyl-sn-glycero-3-phosphocholine, ATP, coenzyme A and MgCl2. Incubation of these microsomes with CMP resulted in an equal formation of 14C- and 3H-labeled diacylglycerols, indicating that disaturated and monoenoic phosphatidylcholines were used without preference by the backward reaction of the cholinephosphotransferase. When in a similar experiment the phosphatidylcholine was labeled with [9,10-3H2]palmitate and [1-14C]linoleate, somewhat more 14C- than 3H-labeled diacylglycerol was formed. 3. The backward reaction was used to generate membrane-bound mixtures of [1-14C]palmitate- and [9,10-3H2]oleate- or of [9,10-3H2]palmitate- and [1-14C]linoleate-labeled diacylglycerols. When the microsomes containing diacylglycerols were incubated with CDPcholine, both 3H- and 14C-labeled diacylglycerols were used for the formation of phosphatidylcholine, indicating that there is no absolute discrimination against disaturated diacylglycerols. This observation is in line with our previous findings and indicates that also the CDPcholine pathway may contribute to dipalmitoylphosphatidylcholine synthesis in lung.  相似文献   

16.
To test the hypothesis that hydrolysis of glycerophosphatides causes displacement of apolipoprotein C from very low density lipoprotein, we have studied the effects of a snake venom phospholipase A2 on very low density lipoprotein labeled with [125I]apoC, [3H]cholesterol, [14C]palmitate and [32P]phospholipids. In spite of hydrolysis of 97% of the phosphatidylcholine, only small amounts of labeled apoC and labeled cholesterol were displaced from the very low density lipoprotein. With purified lipoprotein lipase in contrast, 80-90% of the labeled apoC and cholesterol were removed from the lipoprotein. It is concluded that hydrolysis of phosphatidylcholine does not cause an appreciable dissociation of apolipoprotein C from very low density lipoprotein.  相似文献   

17.
Rabbit thymocytes were isolated and incubated for various lengths of time with concanavalin A. The cultures were pulsed for the last 12.5 min of incubation with equimolar mixtures of radioactively labelled fatty acids, either [3H]arachidonate and [14C]oleate or [3H]arachidonate and [14C]palmitate, and the uptake of each fatty acid into phospholipid of plasma membrane was determined. Upon binding of the mitogen, the fatty acids were incorporated at an increased rate with a new steady state being reached between 12.5 and 42.5 min after stimulation. Initially after 12.5 min, when the two fatty acids were added together, no preferential incorporation of the polyunsaturated fatty acid arachidonate was seen compared to the saturated or monounsaturated ones, palmitate or oleate. However shortly thereafter arachidonate, when compared to palmitate or oleate, started to be preferentially incorporated into plasma membrane phospholipid so that by 4 h after activation, only arachidonate was incorporated at an increased rate: the uptake of palmitate and oleate had reverted to that of unstimulated cells. In contrast, when palmitate or oleate were added alone, after 4 h of activation incorporation was increased similar to that of arachidonate, suggesting that all long chain fatty acids compete for the same activated enzyme(s). A detailed analysis of incorporation into phospholipid species showed that all fatty acids were taken up with the highest rate into phosphatidylcholine. After activation, fatty acid incorporation was increased by approx. 50% for phosphatidylcholine: the highest stimulation rates were observed with phosphatidylinositol (3-7-fold) and phosphatidylethanolamine (2-3-fold). The data suggest that shortly after stimulation with mitogens, the membrane phospholipids start to change by replacing saturated and monounsaturated fatty acids by polyunsaturated ones, thus creating a new membrane.  相似文献   

18.
Cytidine, as cytidine 5'-diphosphate choline, is a major precursor in the synthesis of phosphatidylcholine in cell membranes. In the present study, we examined the relationships between extracellular levels of cytidine, the conversion of [14C]choline to [14C]phosphatidylcholine, and the net syntheses of phosphatidylcholine and phosphatidylethanolamine by PC12 cells. The rate at which cytidine (as [3H]cytidine) was incorporated into the PC12 cells followed normal Michaelis-Menten kinetics (Km = 5 microM; Vmax = 12 x 10(-3) mmol/mg of protein/min) when the cytidine concentrations in the medium were below 50 microM; at higher concentrations, intracellular [3H]cytidine nucleotide levels increased linearly. Once inside the cell, cytidine was converted mainly into cytidine triphosphate. In pulse-chase experiments, addition of cytidine to the medium caused a time- and dose-dependent increase (by up to 30%) in the incorporation of [14C]choline into membrane [14C]-phosphatidylcholine. When the PC12 cells were supplemented with both cytidine and choline for 14 h, small but significant elevations (p less than 0.05) were observed in their absolute contents of membrane phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine, all increasing by 10-15% relative to their levels in cells incubated with choline alone. Exogenous cytidine, acting via cytidine triphosphate, can thus affect the synthesis and levels of cell membrane phospholipids.  相似文献   

19.
Premature lambs with respiratory failure [CO2 partial pressure (PCO2) greater than 70 Torr] were treated with 50 mg/kg 3H-labeled natural surfactant by tracheal instillation. Minimum surface tensions of sequential samples suctioned from the airways fell from 25 +/- 3 dyn/cm before treatment to 8 +/- 5 dyn/cm after treatment and again rose to 32 +/- 2 dyn/cm at death. Minimum surface tensions of alveolar wash samples taken at death were 27 +/- 4 dyn/cm, whereas surfactant fractions reisolated from the alveolar washes lowered surface tension to under 10 dyn/cm. The alveolar washes, surfactant reisolated from the alveolar washes, and natural surfactant had similar phospholipid compositions; however, the alveolar washes contained about 40 times more protein per micromole phosphatidylcholine. The natural surfactant used for treatment apparently was inactivated by an inhibitor of surfactant function. After intravenous injections of [14C]palmitic acid, labeled saturated phosphatidylcholine appeared on the airways, indicating endogenous synthesis and secretion. However, the specific activity of the 3H-labeled saturated phosphatidylcholine in the natural surfactant used for treatment decreased by only 30 +/- 4% in the alveolar wash; thus the treatment dose was not diluted to a large extent by endogenous pools.  相似文献   

20.
Peritoneal macrophages from endotoxin-tolerant rats have been found to exhibit depressed metabolism of arachidonic acid (AA) to prostaglandins and thromboxane in response to endotoxin. The effect of endotoxin tolerance on AA turnover in peritoneal macrophages was investigated by measuring [14C]AA incorporation and release from membrane phospholipids. Endotoxin tolerance did not affect the amount of [14C]AA incorporated into macrophages (30 min-24 h). However, the temporal incorporation of [14C]AA into individual phospholipid pools (15 min-24 h) was altered. In endotoxin-tolerant macrophages, [14C]AA incorporation into phosphatidylcholine (PC) (2, 4, 24 h) and phosphatidylethanolamine (PE) (8 h) was increased, while the incorporation into phosphatidylserine (PS) (2-24 h) was reduced (P less than 0.005) compared to control macrophages. There was no change in [14C]AA incorporation into phosphatidylinositol (PI). Following 2 or 24 h of incorporation of [14C]AA, macrophages were incubated (3 h) with endotoxin (50 micrograms/ml) or A23187 (1 microM), and [14C]AA release was measured. Endotoxin-tolerant macrophages released decreased (P less than 0.05) amounts of [14C]AA in response to both endotoxin and the calcium ionophore A23187 compared to controls. Control macrophages in response to endotoxin released [14C]AA from PC, PI and PE. In contrast, tolerant cells released [14C]AA only from PC (P less than 0.05). A23187 released [14C]AA from all four pools in the control cells, but only from PC and PE in the tolerant cells. These data demonstrate that endotoxin tolerance alters the uptake and release of AA from specific macrophage phospholipid pools. These results suggest that changes in AA turnover and/or storage are associated with endotoxin tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号