首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We formulate a theoretical model to analyze the vascular remodelling process of an arterio-venous vessel network during solid tumour growth. The model incorporates a hierarchically organized initial vasculature comprising arteries, veins and capillaries, and involves sprouting angiogenesis, vessel cooption, dilation and regression as well as tumour cell proliferation and death. The emerging tumour vasculature is non-hierarchical, compartmentalized into well-characterized zones and transports efficiently an injected drug-bolus. It displays a complex geometry with necrotic zones and “hot spots” of increased vascular density and blood flow of varying size. The corresponding cluster size distribution is algebraic, reminiscent of a self-organized critical state. The intra-tumour vascular-density fluctuations correlate with pressure drops in the initial vasculature suggesting a physical mechanism underlying hot spot formation.  相似文献   

2.
Towards whole-organ modelling of tumour growth   总被引:3,自引:0,他引:3  
Multiscale approaches to modelling biological phenomena are growing rapidly. We present here some recent results on the formulation of a theoretical framework which can be developed into a fully integrative model for cancer growth. The model takes account of vascular adaptation and cell-cycle dynamics. We explore the effects of spatial inhomogeneity induced by the blood flow through the vascular network and of the possible effects of p27 on the cell cycle. We show how the model may be used to investigate the efficiency of drug-delivery protocols.  相似文献   

3.
4.
Tumors acquire sufficient oxygen and nutrient supply by coopting host vessels and neovasculature created via angiogenesis, thereby transforming a highly ordered network into chaotic heterogeneous tumor specific vasculature. Vessel regression inside the tumor leads to large regions of necrotic tissue interspersed with isolated surviving vessels. We extend our recently introduced model to incorporate Fahraeus-Lindqvist- and phase separation effects, refined tissue oxygen level computation and drug flow computations. We find, unexpectedly, that collapse and regression accelerates rather than diminishes the perfusion and that a tracer substance flowing through the remodeled network reaches all parts of the tumor vasculature very well. The reason for decreased drug delivery well known in tumors should therefore be different from collapse and vessel regression. Implications for drug delivery in real tumors are discussed.  相似文献   

5.
We develop and analyze a mathematical model, in the form of a system of ordinary differential equations (ODEs), governing cancer growth on a cell population level with combination immune, vaccine and chemotherapy treatments. We characterize the ODE system dynamics by locating equilibrium points, determining stability properties, performing a bifurcation analysis, and identifying basins of attraction. These system characteristics are useful not only to gain a broad understanding of the specific system dynamics, but also to help guide the development of combination therapies. Numerical simulations of mixed chemo-immuno and vaccine therapy using both mouse and human parameters are presented. We illustrate situations for which neither chemotherapy nor immunotherapy alone are sufficient to control tumor growth, but in combination the therapies are able to eliminate the entire tumor.  相似文献   

6.
Vascular endothelial growth factor-B (VEGFB) is an angiogenic and neuroprotective protein that reduces hypoxic and ischemic neuronal injury. To determine if VEGFB also regulates neurogenesis in the adult brain, we studied the effects of VEGFB administration in vitro and in vivo, as well as the effect of VEGFB gene knockout (KO) in mice, on bromodeoxyuridine (BrdU) incorporation and expression of immature neuronal markers in the subgranular zone (SGZ) of the hippocampal dentate gyrus and the forebrain subventricular zone (SVZ). Intracerebroventricular VEGFB administration increased BrdU incorporation into cells of neuronal lineage both in vitro and in vivo, and VEGFB-KO mice showed impaired neurogenesis, consistent with a neurogenesis-promoting effect of VEGFB. In addition, intraventricular administration of VEGFB restored neurogenesis to wild-type levels in VEGFB-KO mice. These results suggest a role for VEGFB in the regulation of adult neurogenesis, which could have therapeutic implications for diseases associated with central neuronal loss.  相似文献   

7.
In this work we investigated the role of nitric oxide (NO) in the angiogenesis mediated by vascular endothelial growth factor (VEGF) during rat liver regeneration after two-thirds partial hepatectomy. Sham operated (Sh) and partially hepatectomized (PH) male Wistar rats were randomized in three experimental groups: control (treated with vehicle); pre-treated with sodium nitroprusside (SNP: 0.25 mg/kg body weight, i.v. at a rate of 1 ml/h) and pre-treated with the preferential iNOS inhibitor, aminoguanidine (AG, 100 mg/kg body weight, i.p.). Animals were killed at 5, 24 and 72 h after surgery. At 5 h post-surgery, NO production was estimated by EPR (Sh-Control: 37.65+/-10.70; PH-Control: 88.13+/-1.60(); Sh-SNP: 90.35+/-3.11(); PH-SNP: 119.5+/-12.10()(#); Sh-AG: 33.27+/-5.23, PH-AG: 36.80+/-3.40(#)) (p<0.05 vs Sh-Control; (#)p<0.05 vs PH-Control). At 24 h after PH, VEGF levels showed no difference between PH-Control and PH-SNP animals. However, after 72 h, VEGF protein levels in PH-SNP animals were found to be increased (above 300%) with respect to PH-Control. On the other hand, aminoguanidine (AG) pre-treatment blocked the rise of inhibition of NO generation and decreased VEGF expression. Our results demonstrated that NO plays a role in modulating VEGF protein expression after hepatectomy in rats.  相似文献   

8.
Abnormal angiogenesis is associated with a broad range of medical conditions, including cancer. The formation of neovasculature with functionally defective blood vessels significantly impacts tumor progression, metastasis, and the efficacy of anticancer therapies. Vascular endothelial growth factor (VEGF) potently induces vascular permeability and vessel growth in the tumor microenvironment, and its inhibition normalizes tumor vasculature. In contrast, the signaling of the small GTPase R-Ras inhibits excessive angiogenic growth and promotes the maturation of regenerating blood vessels. R-Ras signaling counteracts VEGF-induced vessel sprouting, permeability, and invasive activities of endothelial cells. In this study, we investigated the effect of R-Ras on VEGF receptor 2 (VEGFR2) activation by VEGF, the key mechanism for angiogenic stimulation. We show that tyrosine phosphorylation of VEGFR2 is significantly elevated in the tumor vasculature and dermal microvessels of VEGF-injected skin in R-Ras knockout mice. In cultured endothelial cells, R-Ras suppressed the internalization of VEGFR2, which is required for full activation of the receptor by VEGF. Consequently, R-Ras strongly suppressed autophosphorylation of the receptor at all five major tyrosine phosphorylation sites. Conversely, silencing of R-Ras resulted in increased VEGFR2 phosphorylation. This effect of R-Ras on VEGFR2 was, at least in part, dependent on vascular endothelial cadherin. These findings identify a novel function of R-Ras to control the response of endothelial cells to VEGF and suggest an underlying mechanism by which R-Ras regulates angiogenesis.  相似文献   

9.
Vascular growth factors in cerebral ischemia   总被引:16,自引:0,他引:16  
During the past decade, there has been a surge of interest in growth factors (GFs) that act selectively on vascular endothelium and perivascular cells. Studies employing mutant mice or the administration of recombinant proteins have suggested that these factors not only mediate the proliferation of endothelial cells, but also regulate vascular differentiation, regression, and permeability. During and after cerebral ischemia, brain vasculature becomes leaky and unstable, and the normally impermeable blood-brain barrier breaks down. Several days after the ischemic insult, endothelial cells begin to proliferate, and angiogenesis occurs. Expression studies have shown that key vascular GFs are regulated, during these processes, in a complex and coordinated manner. The distinct pattern of regulation exhibited by each vascular GF suggests a unique role for each factor during the initial vascular destabilization and subsequent angiogenesis that occurs after cerebral ischemia. Data from studies in other biological systems support these suggested roles. Thus, manipulation of vascular GFs may prove to be an effective means of stabilizing or enriching brain vasculature after ischemia, and ameliorating the detrimental effects of blood-brain barrier breakdown and vessel regression after stroke.  相似文献   

10.
血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种多功能的细胞因子,其主要作用是促进血管内皮细胞增殖和增加血管通透性,是肿瘤及正常组织血管生成的中心调控因素。以VEGF为靶点的肿瘤血管靶向性治疗成为近几年肿瘤治疗的新途径。斑马鱼作为一种重要的模式生物,被广泛用于胚胎的分子发育机制、疾病模型的构建以及药物筛选等研究中。文章对斑马鱼作为心血管系统研究模型的优势及其血管研究方法做一阐述,重点对斑马鱼VEGF及其受体的最新研究进展做了介绍,并展望了其发展前景。  相似文献   

11.
Interleukin-6 (IL-6) is a proinflammatory cytokine associated with the disease status of gastric carcinoma (GC). Vascular endothelial growth factor (VEGF) is a potent tumor angiogenic factor in GC. In this study, we attempted to clarify whether IL-6 can regulate VEGF and angiogenesis in GC. GC samples from 54 surgical specimens were subjected to immunohistochemical examination of IL-6, VEGF, and tumor microvessels, and results showed that IL-6 was positively correlated with VEGF expression and tumor vasculature. We determined VEGF expression in four GC cell lines by ELISA, revealing that GC cells can produce significant amount of VEGF with increasing dose and duration of IL-6 stimulation. Next, a luciferase reporter gene assay was employed to determine the signaling pathway driving the VEGF promoter by IL-6, which showed that the JAK/STAT pathway is involved in the stimulation of VEGF gene expression. The effects of IL-6 on angiogenesis in vitro and in vivo were evaluated by HUVEC studies and the Matrigel plug assay, respectively. Results showed that IL-6 effectively promoted HUVEC proliferation and tube formation in vitro and Matrigel plug vascularization in vivo, primarily by inducing VEGF in GC. This study provides evidence that the multifunctional cytokine, IL-6, may induce VEGF expression which increases angiogenesis in gastric carcinogenesis.  相似文献   

12.
It was the aim of this study to investigate the time course of changes in the serum concentrations of vascular endothelial growth factor (VEGF) during a regular survival training programme combined with food and fluid deprivation and during a high altitude marathon run. We studied soldiers of the Austrian Special Forces performing survival training at sea-level and marathon runners of the Posta Atletica who crossed the border between Chile and Argentina at altitudes up to 4722 m. Baseline data collected before the 1-week of survival training showed that the soldiers had normal VEGF [n = 8, 246.7 (SD 118.5) pg.ml(-1)] serum concentrations which remained unchanged during the course of the study. Before the high altitude marathon the subjects showed normal VEGF serum concentrations [178 (SD 84.5) pg.ml(-1)]. After the run VEGF concentrations were found to be significantly decreased [41.0 (SD 41.6) pg ml(-1), P < 0.01]. It was concluded that prolonged physical stress during normobaric-normoxia did not alter the VEGF concentrations whereas during severe hypobaric-hypoxia decreased VEGF serum concentrations were measured, at least temporarily, after prolonged physical exercise which might have been due to changes in production, release, removal and/or binding of circulating VEGF.  相似文献   

13.
Summary In the continuously growing upper incisor of 100 g rats about 25 arterioles arise from an artery outside the tooth and pass through the apical foramen to run parallel to one another in the central part of the pulp, each supplying a well-defined sector of the migrating odontoblast layer. The arterioles pass through a cycle of proliferation, growth, remodeling, regression and decay, phase displaced in relation to each other. Proliferative and degenerative processes occur in the arteriole wall throughout the cycle, but vary considerably in intensity at different phases. Proliferation takes place by mitosis in the endothelium and the innermost smooth muscle cells. The degenerative process consists of reduction in size of smooth muscle cells by partial autodigestion and by cell death. When the odontoblasts reach the incisal extremity of the tooth, they die, and the associated regressed arteriole disappears. The system of pulpal arterioles has remarkable spatio-temporal features and each of its vessels appears to be in a state of sensitive structural equilibrium.Dedicated to the University of Copenhagen on the occasion of its 500th anniversary  相似文献   

14.
Vascular endothelial growth factor (VEGF) is fundamental in vertebrates for correct development of blood vessels. However, there are only few data about the presence of VEGF in invertebrates. In this study the role of VEGF in neovessel formation is investigated in Hirudo medicinalis. The leech is able to respond to administration of human VEGF by formation of new vessels. The response of H. medicinalis to this growth factor is explained by the presence of two specific VEGF-like receptors (Flt-1/VEGFR-1 and Flk-1/VEGFR-2) as demonstrated by immunohistochemistry and biochemical analysis. The VEGF-like produced by this annelid following surgical stimulation determines not only blood vessel formation, proliferation of vascular endothelial cells but also an increase of cytoplasmic calcium levels. The administration of specific VEGF receptor antibodies can inhibit angiogenesis in leeches previously stimulated with VEGF.  相似文献   

15.
《Cytokine》2015,72(2):385-393
Vascular endothelial growth factor (VEGF) is a notable chemokine that plays critical roles in angiogenesis and vasculogenesis. The contemporary body of literature contains a substantial amount of information regarding its chemical properties as well as its fundamental role in vascular development. Studies strongly indicate its potential use as a therapeutic agent, especially in the vascular restoration of injured and ischemic tissues. VEGF therapy could be most beneficial for diseases whose pathologies revolve around tissue inflammation and necrosis, such as myocardial infarction and stroke, as well as ischemic bowel diseases such as acute mesenteric ischemia and necrotizing enterocolitis. However, a delicate balance exists between the therapeutic benefits of VEGF and the hazards of tumor growth and neo-angiogenesis. Effective future research surrounding VEGF may allow for the development of effective therapies for ischemia which simultaneously limit its more deleterious side effects. This review will: (1) summarize the current understanding of the molecular aspects and function of VEGF, (2) review potential benefits of its use in medical therapy, (3) denote its role in tumorigenesis and inflammation when overexpressed, and (4) elucidate the qualities which make it a viable compound of study for diagnostic and therapeutic applications.  相似文献   

16.
Previous studies have shown that intracavernous injection of vascular endothelial growth factor (VEGF) restored erectile function in diabetic rats. However, the mechanism of VEGF in diabetes-related erectile dysfunction (ED) has not been fully investigated. We hypothesize that intracavernous injection of VEGF may reverse diabetes-related ED through modulation of the insulin-like growth factor system and sex hormone receptors. To test this hypothesis the erectile function of treated and control rats was analyzed by measurement of intracavernous pressure (ICP) following electrostimulation of the cavernous nerves. Mean ICP was significantly lower in non-treated diabetic rats compared to controls. After VEGF injection, ICP was significantly higher than in non-treated diabetic rats. IGFBP-3 mRNA and protein expression was significantly higher in non-treated diabetic rat crura than controls, while VEGF-treated animals had control levels. ER-beta and PR mRNA and protein expression was significantly lower in non-treated diabetic rat crura. After VEGF injection, ER-beta and PR mRNA and protein expression was similar to control levels. Expression of AR and ER-alpha was the same in all groups. These findings suggest that orthotopic injection of VEGF may improve the functional recovery of diabetes-related ED through modulation of the insulin-like growth factor system and sex hormone receptors. To our knowledge, this is the first study demonstrating that VEGF treatment restores erectile function through restoration of the insulin-like growth factor system and sex hormone receptor genes at the mRNA and protein levels in diabetic rat crura. These results may be important in understanding the pathogenesis of diabetes-related ED and also in providing better strategies for management of this disease.  相似文献   

17.
The formation of vascular networks in vitro develops along two rather distinct stages: during the early migration-dominated stage the main features of the pattern emerge, later the mechanical interaction of the cells with the substratum stretches the network. Mathematical models in the relevant literature have been focusing just on either of the aspects of this complex system. In this paper, a unified view of the morphogenetic process is provided in terms of physical mechanisms and mathematical modeling.  相似文献   

18.
We have previously reported that a universal growth law, as proposed by West and collaborators for all living organisms, appears to be able to describe also the growth of tumors in vivo after an initial exponential growth phase. In contrast to the assumption of a fixed power exponent p (assumed by West et al. to be equal to 3/4), we propose in this paper a dynamic evolution of p, using experimental data from the cancer literature. In analogy with results obtained by applying scaling laws to the study of fragmentation of solids, the dynamic behaviour of p is related to the evolution of the fractal topology of neoplastic vascular systems. Our model might be applied for diagnostic purposes to mark the emergence of an efficient neo-angiogenetic structure if the results of our in silico experiments are confirmed by clinical observations.  相似文献   

19.
A cellular automaton model for tumour growth in inhomogeneous environment   总被引:1,自引:0,他引:1  
Most of the existing mathematical models for tumour growth and tumour-induced angiogenesis neglect blood flow. This is an important factor on which both nutrient and metabolite supply depend. In this paper we aim to address this shortcoming by developing a mathematical model which shows how blood flow and red blood cell heterogeneity influence the growth of systems of normal and cancerous cells. The model is developed in two stages. First we determine the distribution of oxygen in a native vascular network, incorporating into our model features of blood flow and vascular dynamics such as structural adaptation, complex rheology and red blood cell circulation. Once we have calculated the oxygen distribution, we then study the dynamics of a colony of normal and cancerous cells, placed in such a heterogeneous environment. During this second stage, we assume that the vascular network does not evolve and is independent of the dynamics of the surrounding tissue. The cells are considered as elements of a cellular automaton, whose evolution rules are inspired by the different behaviour of normal and cancer cells. Our aim is to show that blood flow and red blood cell heterogeneity play major roles in the development of such colonies, even when the red blood cells are flowing through the vasculature of normal, healthy tissue.  相似文献   

20.
Kanda Y  Watanabe Y 《Life sciences》2007,80(15):1409-1414
Cigarette smoke has been firmly established as an independent risk factor for atherosclerosis and other vascular diseases. The proliferation and migration of vascular smooth muscle cells (VSMC) induced by growth factors have been proposed to play an important role in the progression of atherosclerosis. In the present study, we investigated the effects of nicotine, which is one of the important constituents of cigarette smoke, on vascular endothelial growth factor (VEGF) release, in rat VSMC. The stimulation of cells with nicotine resulted in a time- and concentration-dependent release of VEGF. Hexamethonium, an antagonist of nicotinic acetylcholine receptor (nAChR), inhibited nicotine-induced VEGF release. We next investigated the mechanisms by which nicotine induces VEGF release in the cells. The nicotine-induced VEGF release was inhibited by treatment with U0126, a selective inhibitor of MEK, which attenuated the nicotine-induced ERK phosphorylation. Nicotine induced a transient phosphorylation of ERK. Furthermore, AG1478, a selective inhibitor of epidermal growth factor receptor (EGFR) kinase, inhibited nicotine-induced ERK phosphorylation and VEGF release. These data suggest that nicotine releases VEGF through nAChR in VSMC. Moreover, VEGF release induced by nicotine is mediated by an EGFR-ERK pathway in VSMC. VEGF may contribute to the risk of cardiovascular diseases in cigarette smokers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号