首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GAMMA-Glutamyl transpeptidase, gamma-glutamyl cyclotransferase, L-pyrrolidone carboxylate hydrolase, gamma-glutamylcysteine synthetase and glutathione synthetase, the enzymes of the gamma-glutamyl cycle, were found in mouse brain, liver and kidney. The activity of L-pyrrolidone carboxylate hydrolase was many times lower than the activities of the other enzymes, and thus the conversion of L-pyrrolidone carboxylate to L-glutamate is likely to be the rate-limiting step of the cycle. The specificity of gamma-glutamyl cyclotransferase from mouse tissues was similar to that from rat tissues. The concentration of pyrrolidone carboxylate and gamma-glutamyl amino acids, intermediates of the gamma-glutamyl cycle, was determined by a gas chromatographic procedure coupled with electron capture detection. Administration of L-2-aminobutyrate, an amino acid that is utilized as substrate in the reaction catalyzed by gamma-glutamylcysteine synthetase, led to a large accumulation of gamma-glutamyl-2-aminobutyrate and pyrrolidone carboxylate in mouse tissues. L-Methionine-RS-sulfoximine, an inhibitor of gamma-glutamylcysteine synthetase, abolished the increase in concentration of pyrrolidone carboxylate. No accumulation of pyrrolidone carboxylate was observed after L-cysteine. The separate administration of several protein amino acids had little effect on the concentration of pyrrolidone carboxylate; however formation of small amounts of the corresponding gamma-glutamyl derivatives (e.g. gamma-glutamylmethionine and gamma-glutamylphenylalanine) was detected. These intermediates are probably formed by transpeptidation between glutathione and the corresponding amino acid, catalyzed by gamma-glutamyl transpeptidase. The concentration of pyrrolidone carboxylate increased significantly after administration of a mixture containing all protein amino acids, the highest increase occurring in the kidney. The results suggest that two separate pathways for the formation of gamma-glutamyl amino acids and pyrrolidone carboxylate exist in vivo. One of these results from the function of gamma-glutamylcysteine synthetase in glutathione synthesis. The other pathway involves the amino-acid-dependent degradation of glutathione, mediatedby gamma-glutamyl transpeptidase. Only very small amounts of free intermediates are apparently derived from the latter pathway, suggesting that the gamma-glutamyl amino acids formed in this pathway are either enzyme-bound or are directly hydrolyzed to glutamate and free amino acid.  相似文献   

2.
Modulation of gamma-glutamyl transpeptidase activity by bile acids   总被引:1,自引:0,他引:1  
The free bile acids (cholate, chenodeoxycholate, and deoxycholate) stimulate the hydrolysis and transpeptidation reactions catalyzed by gamma-glutamyl transpeptidase, while their glycine and taurine conjugates inhibit both reactions. Kinetic studies using D-gamma-glutamyl-p-nitroanilide as gamma-glutamyl donor indicate that the free bile acids decrease the Km for hydrolysis and increase the Vmax; transpeptidation is similarly activated. The conjugated bile acids increase the Km and Vmax of hydrolysis and decrease both of these for transpeptidation. This mixed type of modulation has also been shown to occur with hippurate and maleate (Thompson, G.A., and Meister, A. (1980) J. Biol. Chem. 255, 2109-2113). Glycine conjugates are substantially stronger inhibitors than the taurine conjugates. The results with free cholate indicate the presence of an activator binding domain on the enzyme with minimal overlap on the substrate binding sites. In contrast, the conjugated bile acids, like maleate and hippurate, may overlap on the substrate binding sites. The results suggest a potential feedback role for bile ductule gamma-glutamyl transpeptidase, in which free bile acids activate the enzyme to catabolize biliary glutathione and thus increase the pool of amino acid precursors required for conjugation (glycine directly and taurine through cysteine oxidation). Conjugated bile acids would have the reverse effect by inhibiting ductule gamma-glutamyl transpeptidase.  相似文献   

3.
Gamma-Glutamyl transpeptidase was purified from rat kidney by a procedure involving Lubrol extraction, acetone precipitation, ammonium sulfate fractionation, treatment with bromelain, and column chromatography on DEAE-cellulose and Sephadex G-100. The final preparation (enzyme III), which exhibits a specific activity about 8-fold higher than that of the purified rat kidney transpeptidase previously obtained in this laboratory (enzyme I), was apparently homogeneous on polyacrylamide gel electrophoresis. Enzyme III is a glycoprotein containing 10% hexose, 7% aminohexose, and 1.5% sialic acid; a tentative molecular weight value of about 70,000 was obtained by gel filtration. Enzyme III has a much lower molecular weight and a different amino acid and carbohydrate content than the less active rat kidney transpeptidase preparation previously obtained, but obtained, but the catalytic properties of these preparations are virtually identical. It is suggested that bromelain treatment may liberate the transpeptidase from a brush border complex that contains other proteins. An improved method is described for the isolation of the higher molecular weight form of the enzyme (enzyme I) in which affinity chromatography on concanavalin A-Sephrose is employed. The purified transpeptidase (enzyme III) is similar to the phosphate-independent maleate-stimulated glutaminase preparation obtained from rat kidney by Katunuma and colleagues with respect to amino acid and carbohydrate content, apparent molecular weight, and relative transpeptidase and maleate-stimulated "glutaminase" activities. Both of these enzyme preparations are much more active in transpeptidation reactions with glutathione and related gamma-glutamyl compounds than with glutamine. In the absence of maleate, the enzyme catalyzes the utilization of glutamine (by conversion to gamma-glutamylglutamine, glutamate, and ammonia) at about 2% of the rate observed for catalysis of transpeptidation between glutathione and glycylglycine; the utilization of glutamine occurs about 8 times more rapidly in the presence of 0.1 M maleate. The transpeptidation and maleate-stimulated glutaminase reactions catalyzed by both enzyme preprations are inhibited by 5 mM L-serine in the presence of 5 mM sodium borate. Studies on gamma-glutamyl transpeptidase and maleate-stimulated glutaminase in the kidneys of fetal rats, newborn rats, and rats after weaning showed parallel development of these activities. The evidence reported here and earlier work in this laboratory strongly support the conclusion that maleate-stimulated glutaminase activity is a catalytic function of gamma-glutamyl transpeptidase. The studies on the ontogeny of gamma-glutamyl transpeptidase and other data are considered in relation to the proposal that this enzyme is involved in amino acid and peptide transport. Its possible role in renal formation of ammonia is also discussed.  相似文献   

4.
The kinetics of sheep kidney gamma-glutamyl transpeptidase was studied using a novel substrate L-alpha-methyl-gamma-glutamyl-L-alpha-aminobutyrate. When the substrate was incubated with the enzyme in the presence of an amino acid or peptide acceptor, the corresponding L-alpha-methyl-gamma-glutamyl derivatives of the acceptors were formed. In the absence of acceptor only hydrolysis occurred, and no transpeptidation products were detected. The presence of the methyl group on the alpha-carbon apparently prevents enzymatic transfer of the L-alpha-methyl-gamma-glutamyl residue to the amino group of the substrate itself (autotranspeptidation). When the enzyme was incubated with conventional substrates, such as glutathione or gamma-glutamyl-p-nitroanilide and an amino acid acceptor, hydrolysis, autotranspeptidation, and transpeptidation to the acceptor occurred concurrently. Initial velocity measurements in which the concentration of L-alpha-methyl-gamma-glutamyl-L-alpha-aminobutyrate was varied at several fixed acceptor concentrations, and either the release of alpha-aminobutyrate or the formation of the transpeptidation products was determined, yielded results which are consistent with a ping-pong mechanism modified by a hydrolytic shunt. A scheme of such a mechanism is presented. This mechanism predicts the formation of an alpha-methyl-gamma-glutamyl-enzyme intermediate, which can react with an amino acid to form the transpeptidation product; or in the absence of, or in the presence of low concentrations of amino acids, can react with water to form the hydrolytic products. Kinetic derivations for the reaction of the enzyme with the conventional substrate gamma-glutamyl-p-nitroanilide predict either linear or nonlinear double-reciprocal plots, depending on the prevalence of the hydrolytic, autotranspeptidation, or transpeptidation reactions. The results of kinetic experiments confirmed these predictions.  相似文献   

5.
Transport of gamma-glutamyl amino acids, a step in the proposed glutathione-gamma-glutamyl transpeptidase-mediated amino acid transport pathway, was examined in mouse kidney. The transport of gamma-glutamyl amino acids was demonstrated in vitro in studies on kidney slices. Transport was followed by measuring uptake of 35S after incubation of the slices in media containing gamma-glutamyl methionine [35S]sulfone. The experimental complication associated with extracellular conversion of the gamma-glutamyl amino acid to amino acid and uptake of the latter by slices was overcome by using 5-oxoproline formation (catalyzed by intracellular gamma-glutamyl-cyclotransferase) as an indicator of gamma-glutamyl amino acid transport. This method was also successfully applied to studies on transport of gamma-glutamyl amino acids in vivo. Transport of gamma-glutamyl amino acids in vitro and in vivo is inhibited by several inhibitors of gamma-glutamyl transpeptidase and also by high extracellular levels of glutathione. This seems to explain urinary excretion of gamma-glutamylcystine by humans with gamma-glutamyl transpeptidase deficiency and by mice treated with inhibitors of this enzyme. Mice depleted of glutathione by treatment with buthionine sulfoximine (which inhibits glutathione synthesis) or by treatment with 2,6-dimethyl-2,5-heptadiene-4-one (which effectively interacts with tissue glutathione) exhibited significantly less transport of gamma-glutamyl amino acids than did untreated controls. The findings suggest that intracellular glutathione functions in transport of gamma-glutamyl amino acids. Evidence was also obtained for transport of gamma-glutamyl gamma-glutamylphenylalanine into kidney slices.  相似文献   

6.
The reinterpretation of the kinetics of the gamma-glutamyl cycle-mediated uptake of amino acids in the light of the cycle's wave mechanical properties shows that its oscillatory periods are modulated by the chemical nature and the concentrations of amino acids. The periods of the cycle are the half-lives of glutathione whose function is to synchronize the oscillations of the two pathways of the cycle. gamma-glutamyl transpeptidase, an amphipathic membrane protein and the master oscillator of the cycle degrades glutathione and translocates amino acids in a discontinuous manner suggesting that it flip-flops across the membrane, the periods of the flip-flops being the oscillatory periods of the gamma-glutamyl transpeptidase/amino acid complexes. The energies of the flip-flops are quantized and independent of metabolic energy. The principal quantum numbers are dependent on the amino acids being translocated. In their translocation, those amino acids which are good substrates of the gamma-glutamyl transpeptidase possess higher principal quantum numbers than those which are poor substrates, an observation which gives support to the flip-flopping of the gamma-glutamyl transpeptidase/amino acid complexes across the cell membrane.  相似文献   

7.
Gamma-glutamyl-glutathione. Natural occurrence and enzymology   总被引:2,自引:0,他引:2  
The natural occurrence of gamma-glutamyl-glutathione (gamma-glutamyl-gamma-glutamylcysteinylglycine) in bile was established by analytical and chromatographic studies on the isolated and chemically synthesized materials. Evidence that it is formed in kidney was obtained. The origin of gamma-glutamyl-glutathione was explored through studies on the interaction of glutathione with gamma-glutamyl transpeptidase. When purified gamma-glutamyl transpeptidase was incubated with various concentrations (4 microM-50 mM) of glutathione, the initial rates of formation of gamma-glutamyl-glutathione were substantial at all concentrations of glutathione studied and were greater than the rates of formation of glutamate at physiological levels of glutathione (1-10 mM). The findings indicate that gamma-glutamyl transpeptidase catalyzes transpeptidation in vivo. That gamma-glutamyl-glutathione is formed in vivo and that it is a significant product of the reaction between glutathione and gamma-glutamyl transpeptidase under physiological conditions suggest that this polyanionic tetrapeptide may have a physiological role. gamma-Glutamyl-glutathione is not a substrate of glutathione reductase or of glutathione S-transferase, but it is a substrate of gamma-glutamyl-cyclotransferase. That gamma-glutamyl-glutathione has an additional negative charge as compared to glutathione suggests that it may be more effective than glutathione in forming complexes with certain metal ions and other cations.  相似文献   

8.
Gamma-glutamyl transpeptidase (E.C. 2.3.2.2; GGT) catalyses hydrolysis of gamma-glutamyl linkages in gamma-glutamyl peptides and transfer of the gamma-glutamyl group to amino acids and peptides. Although plant gamma-glutamyl peptide metabolism is important in biosynthesis and metabolism of secondary products and xenobiotics, plant GGTs are poorly characterised. We purified a membrane-associated GGT from sprouting onion bulbs that catalyses transpeptidation of methionine by the synthetic substrate gamma-glutamyl-p-nitroanilide (GGPNA) and obtained N-terminal peptide sequence. We also cloned the full-length coding region of an onion GGT by homology with the Arabidopsis enzyme and confirmed that this shared the same N-terminal sequence. Enzyme kinetic studies show that the enzyme has high affinity for glutathione and glutathione conjugates, and that affinity for S-substituted glutathione analogs decreases as the substituted chain length increases. The major onion gamma-glutamyl peptide, gamma-glutamyl trans-S-1-propenyl cysteine sulfoxide (GGPrCSO) exhibited uncompetitive inhibition of transpeptidation by GGPNA. This suggests that GGPrCSO is a poor glutamyl donor and therefore unlikely to be an in vivo substrate for peptidase activity by this enzyme.  相似文献   

9.
The rate of degradation of glutathione by rat kidney slices has been analysed. In the absence of exogenous amino acids a half-life of 84 min is found. In the presence of the L-isomer of three amino acids which are good substrates for gamma-glutamyl transpeptidase the rate of degradation is increased in a concentration-dependent manner. The stimulatory effect is not stereospecific, the D-isomers having a similar effect to their L-enantiomers. These findings indicate that perturbations in glutathione metabolism need not be due to the stimulation of active transport mediated by gamma-glutamyl transpeptidase.  相似文献   

10.
Glutathione labeled in each of its amino acid residues, the corresponding free amino acids, and gamma-glutamyl-amino acids were used to evaluate their renal basolateral transport and metabolism at physiological levels of glutathione. Recovery of label in the venous outflow was compared to that of co-administered inulin after a single-pass in vivo infusion of rat kidney. Metabolites of glutathione and of its constituent amino acids were determined. No net basolateral transport of glutathione was detected; instead there was extensive breakdown of glutathione by the actions of basolateral gamma-glutamyl transpeptidase and dipeptidase. Glutamate and 5-oxoproline showed net basolateral uptake. Recoveries of 35S greater than those of inulin were found after perfusion of [35S]cysteine and [35S]glutathione suggesting rapid net tubular reabsorption of cyst(e)ine. Recovery of label from perfused [U-14C]glycine was equivalent to that of inulin consistent with little or no net flux. Co-administration of large amounts of unlabeled metabolites together with the labeled glutathiones led to label recoveries closer to those of inulin, consistent with competitive inhibition of labeled metabolite transport. Treatment of rats with an inhibitor of gamma-glutamyl transpeptidase decreased basolateral glutathione metabolism and thus indirectly decreased transport of labeled metabolites. No net basolateral transport of gamma-glutamyl-amino acids was detected. Significant amounts of label perfused as [Glu-U-14C]glutathione appeared in the gamma-glutamyl-amino acid fraction of the renal venous outflows, providing direct evidence that glutathione is used in vivo for the formation of gamma-glutamyl-amino acids.  相似文献   

11.
The effect of amino acid deprivation on the activities of D-alanine carboxypeptidase (CPase) and peptidoglycan transpeptidase in Escherichia coli was determined. Enzymes were assayed in ether-treated bacteria (ETB) which were permeable to peptidoglycan nucleotide precursors. ETB were prepared at intervals from cultures grown in the presence and absence of a required amino acid. The specific activity of CPase in ETB decreased 50 to 85% during amino acid deprivation. This was paralleled by a 60 to 70% decrease in the specific activity of peptidoglycan transpeptidase. Both enzymes reached their lowest level of activity about 40 min after the onset of amino acid deprivation. The decrease in CPase activity apparently was not due to degradation of the enzyme, since full activity was restored after disruption of ETB by sonication. A decrease in CPase activity was associated with an enhancement of transpeptidation. The peptidoglycan synthesized in vitro by amino acid-deprived ETB was 1.7 times more cross-linked than the peptidoglycan synthesized by control ETB These results support the proposal that CPase may be involved in regulating transpeptidation in E. coli.  相似文献   

12.
J D Butler  S P Spielberg 《Life sciences》1982,31(23):2563-2570
Cystinotic and normal skin fibroblasts in tissue culture were treated with varying concentrations of reduced glutathione, oxidized glutathione and glutathione-cysteine mixed disulfide, substrates of gamma-glutamyl transpeptidase, the catabolic enzyme of the gamma-glutamyl cycle. Cystine accumulated more rapidly and to a greater extent from the glutathione-cysteine mixed disulfide in cystinotic than in normal cells. Inhibition of gamma-glutamyl transpeptidase activity by serine in a borate buffer partially blocked this accumulation of cystine. Reduced glutathione and oxidized glutathione have lesser effects on cystine accumulation. Stored cystine in cystinotic tissues may derive in part from glutathione-cysteine mixed disulfide via transpeptidation.  相似文献   

13.
gamma-Glutamyltranspeptidase was purified ca. 15,200-fold from cell-free extracts of Proteus mirabilis to electrophoretic homogeneity and then crystallized. The enzyme has an estimated molecular weight of 80,000 and consists of two different subunits with molecular weights of ca. 47,000 and 28,000. The purified enzyme catalyzed hydrolysis and transpeptidation of various gamma-glutamyl compounds, including the oxidized and reduced forms of glutathione, gamma-glutamyl compounds of L-phenylalanine, L-tyrosine, L-histidine, L-alpha-aminobutyrate, L-leucine, and p-nitroaniline. Glycylglycine, L-phenylalanine, L-methionine, L-histidine, L-tryptophan, and L-isoleucine were good acceptors of the gamma-glutamyl moiety in the transpeptidation reaction. Km values for gamma-glutamyl compounds were on the order of 10(-4) to 10(-5) M, and those for acceptor peptides and amino acids were on the order of 10(-2) to 10(-3) M. The enzyme was inhibited by L-serine plus borate and 6-diazo-5-oxo-L-norleucine, which are inhibitors of gamma-glutamyltranspeptidases isolated from mammals. Various amino acids alone were found to inhibit the transpeptidation competitively with a gamma-glutamyl donor. Kinetic analysis suggested that the reaction sequence of substrate binding and product release proceeds according to a ping pong bi bi mechanism.  相似文献   

14.
Cystine content of skin fibroblasts derived from patients with cystinosis was decreased by inhibitors of gamma-glutamyl transpeptidase, the initial enzyme in glutathione catabolism. The addition of maleate or the gamma-glutamyl hydrazone of alpha-ketobutyric acid to culture medium (1-20 mM) resulted in dose-dependent decreases of up to 55% on intracellular cystine content of cystinotic cells in 24 h. L-Serine in sodium borate buffer (40 mM each) produced similar results and further decreased cystine levels to 14% of cystinotic control values after 10 days incubation. Analysis of intracellular amino acids showed that, in general, other amino acids remained unchanged following serine-borate treatment. These results suggest that cystine storage in cystinotic tissues may be related to metabolism of glutathione.  相似文献   

15.
The uptake kinetics for four amino acids (cystine, glutamine, methionine, and alanine) which are among the best gamma-glutamyl acceptors have been determined for normal human fibroblasts and for a cell line containing undetectable quantities (< 0.5% normal mean) of gamma-glutamyl transpeptidase activity. Apparent Km and V(max) for uptake for each of the four amino acids were normal in the mutant fibroblasts. Insulin increased the uptake of alpha-aminoisobutyrate as in control cells. levels of 16 amino acids were also normal in this cell strain; the intracellular concentrations of phenylalanine, cystine, and cysteine were increased. In human fibroblasts, amino acid transport appears to proceed normally in the absence of active gamma-glutamyl transpeptidase.  相似文献   

16.
gamma-Glutamyl transpeptidase purified from hog kidney cortex was implanted in the human erythrocyte membrane by incubation of erythrocytes at 37 degrees c with gamma-glutamyl transpeptidase-incorporated dipalmitoyl phosphatidylcholine vesicles. Membranes prepared from these implanted cells exhibited 4- to 5-fold increase in gamma-glutamyl transpeptidase activity. The association/insertion of gamma-glutamyl transpeptidase into erythrocyte membrane was further demonstrated by antibody to gamma-glutamyl transpeptidase. Implantation of gamma-glutamyl transpeptidase into erythrocyte membrane led to stimulation of uptake of glutamate and alanine, which are normally transported at a slow rate in human erythrocytes. The uptake of these amino acids in the implanted system was inhibited by inhibitors (serine-borate and azaserine) of transpeptidase activity as well as by antibody to gamma-glutamyl transpeptidase. These results in the implanted human erythrocytes demonstrate that gamma-glutamyl transpeptidase enzyme can mediate the translocation of amino acids and provide further evidence in support of its postulated role in the transport of amino acids in natural membranes.  相似文献   

17.
The metabolism in vivo of gamma-glutamyl amino acids and peptides was studied in the mouse after administration of loading doses of L-gamma-glutamyl-2-aminobutyrate and several other gamma-glutamyl compounds, including glutathione. A great and rapid accumulation of glutamate, glutamine, aspartate and pyrrolidone carboxylate was observed in the kidney. Similarly, after administration of a tracer dose of L-gamma-[14C]glutamyl-L-2-aminobutyrate a rapid incorporation of label into kidney glutamate, glutamine and aspartate was found. These results suggest that both the hydrolytic and gamma-glutamyl transfer reactions catalyzed by gamma-glutamyl transpeptidase are active in the renal handling of gamma-glutamyl compounds. Indirect evidence was obtained that L-gamma-glutamyl-2-aminobutyrate is partially taken up by the kidney cell in an intact form. In contrast to the kidney, administration of several gamma-glutamyl derivatives did not cause an increase in liver glutamate, glutamine and pyrrolidone carboxylate. After administration of L-gamma-glutamyl-2-aminobutyrate only a slight increase in liver aspartate and pyrrolidone carboxylate was observed. Experiments with L-gamma-[14C]glutamyl-L-2-aminobutyrate suggest that this derivative is largely first degraded to its component amino acids (probably in the kidney) before entering into the metabolism of the liver cell. gamma-Glutamyl transpeptidase may function in the metabolism and transport of glutathione and other gamma-glutamyl compounds in a manner analogous to the function of dipeptidases and disaccharidases in the metabolism and transport of dipeptides and disaccharides respectively.  相似文献   

18.
N P Curthoys  R P Hughey 《Enzyme》1979,24(6):383-403
Rat renal gamma-glutamyltranspeptidase is an intrinsic membrane glycoprotein. The larger of its two subunits is apparently folded into two distinguishable domains which are separated by a protease-sensitive sequence of amino acids. Membrane binding of gamma-glutamyltranspeptidase results from the hydrophobic interaction of the nonpolar domain of the amphipathic subunit with the lipid bilayer. Localization of at least a portion of the gamma-glutamyl binding site on the smaller subunit limits the active site of the enzyme to one side of the membrane. Within the kidney, the enzyme is primarily associated with the luminal surface of the brush border membrane of the proximal straight tubule. Comparison of the kinetic properties of gamma-glutamyltranspeptidase with the pH and the substrates available within the tubular fluid suggests that the physiologically significant reaction catalyzed by the transpeptidase is the hydrolysis of glutathione and its S-derivatives. The glutathionemia and glutathionuria observed in a patient who lacks detectable gamma-glutamyltranspeptidase activity and in mice following specific inhibition of transpeptidase, support the hypothesis that the enzyme plays a major role in glutathione catabolism. It now appears that the activities attributed to the gamma-glutamyl cycle do not participate in amino acid transport, but instead constitute three separate metabolic pathways; the intracellular synthesis of glutathione, the intracellular degradation of gamma-glutamyl peptides and the extracellular hydrolysis of glutathione. The finding that various cells release reduced and oxidized glutathione indicates that glutathione turnover may be a process of intracellular synthesis, excretion and extracellular degradation.  相似文献   

19.
gamma-Glutamyl transpeptidase, present in various mammalian tissues, transfers the gamma-glutamyl moiety of glutathione to a variety of acceptor amino acids and peptides. This enzyme has been purified from human kidney cortex about 740-fold to a specific activity of 200 units/mg of protein. The purification steps involved incubation of the homogenate at 37 degrees followed by centrifugation and extraction of the sediment with 0.1 M Tris-HCl buffer, pH 8.0, containing 1% sodium deoxycholate; batchwise absorption on DEAE-cellulose; DEAE-cellulose (DE52) column chromatography; Sephadex G-200 gel filtration; and affinity chromatography using concanavalin A insolubilized on beaded Agarose. Detergents were used throughout the purification of the enzyme. The purified enzyme separated into three protein bands, all of which had enzyme activity, on polyacrylamide disc electrophoresis in the presence of Triton X-100. The enzyme has an apparent molecular weight of about 90,000 as shown by Sephadex G-200 gel filtration, and appears to be a tetramer with subunits of molecular weights of about 21,000. The Km for gamma-glutamyl transpeptidase using the artificial substrate, gamma-glutamyl-p-nitroanilide, with glycylglycine as the acceptor amino acid was found to be about 0.8 mM. The optimum pH for the enzyme activity is 8.2 and the isoelectric point is 4.5. Both GSH and GSSG competitively inhibited the activity of gamma-glutamyl transpeptidase when gamma-glutamyl-p-nitroanilide was used as the substrate. Treatment of the purified enzyme with papain has no effect on the enzyme activity or mobility on polyacrylamide disc electrophoresis. The purified gamma-glutamyl transpeptidase had no phosphate-independent glutaminase activity. The ratio of gamma-glutamyl transpeptidase to phosphate-independent glutaminase changed significantly through the initial steps of gamma-glutamyl transpeptidase purification. These studies indicate that the transpeptidase and phosphate-independent glutaminase activities are not exhibited by the same protein in human kidney.  相似文献   

20.
Recently, gamma-glutamyl transpeptidase, which initiates cleavage of extracellular glutathione, has been shown to promote oxidative damage to cells. Here we examined a murine disease model of glomerulosclerosis, involving loss of the Mpv17 gene coding for a peroxisomal protein. In Mpv17-/- cells, enzyme activity and mRNA expression (examined by quantitative RT-PCR) of membrane-bound gamma-glutamyl transpeptidase were increased, while plasma glutathione peroxidase and superoxide dismutase levels were lowered. Superoxide anion production in these cells was increased as documented by electron spin resonance spectroscopy. In the presence of Mn(III)tetrakis(4-benzoic acid)porphyrin, the activities of gamma-glutamyl transpeptidase and plasma glutathione peroxidase were unchanged, suggesting a relationship between enzyme expression and the amount of reactive oxygen species. Inhibition of gamma-glutamyl transpeptidase by acivicin reverted the lowered plasma glutathione peroxidase and superoxide dismutase activities, indicating reciprocal control of gene expression for these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号