首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The iron uptake by red cell precursors has been studied in the presence of the carboxylic ionophore monensin, which achieves a concentration dependent inhibition of iron uptake, without influencing the transferrin uptake. It seems that two mechanisms are involved: Iron is released from endocytosed transferrin by acid vesicles. Iron is released from surface-receptor-bound transferrin at the plasma membrane, without internalization of the transferrin receptor complex.  相似文献   

2.
The effect of the known inhibitors of iron uptake, n-butylamine and NH4Cl, was examined at the molecular level to more precisely define the mechanisms by which these lysosomotropic agents block iron uptake by rabbit reticulocytes. Utilizing a rapid pulse-chase technique to follow the handling of a cohort of 59Fe, 125I-transferrin bound to rabbit reticulocytes, both amines were observed to have no effect on the cell-mediated release of 59Fe from internalized transferrin. The results indicated, however, that both agents acted to 1) retard the internalization of transferrin bound to transferrin receptors on the plasma membrane of reticulocytes, 2) retard the externalization of internalized transferrin, and 3) block the transport into the cytosol of iron released from transferrin.  相似文献   

3.
NH4Cl and monensin, two agents which neutralize intracellular acidic compartments, block the segregation of iron from transferrin after endocytosis, while neither of these reagents affects internalization of diferric transferrin into the cell. In conclusion the molecular separation of iron from transferrin inside the cell requires a non-lysosomal acidic compartment  相似文献   

4.
Iron uptake and metabolism by hepatocytes   总被引:1,自引:0,他引:1  
The hepatocytes form part of the iron storage system of the body. In serving this function they exchange iron bidirectionally with the plasma iron transport protein transferrin (Tf). Iron uptake involves binding of the iron-Tf complex to cell membrane receptors and endocytosis into low-density vesicles, where the iron is released from its carrier protein before the Tf is returned undegraded to the extracellular medium. Two components of the iron uptake process can be distinguished, one saturable at low concentrations of diferric Tf and the other not saturable by increasing the Tf concentration. Both result in net uptake of iron by the cells and both appear to depend on specific binding to the cell membrane and endocytosis. Hepatocytes also obtain some iron from haptoglobin-hemoglobin, heme-hemopexin, and ferritin (Fn), in each case by interaction with membrane receptors and endocytosis. Within the cell iron from all sources enters one or more transit pools, where it is available for exchange with the iron storage protein Fn, and for release from the cell to plasma Tf or to iron chelators administered therapeutically or experimentally. Chelator-mediated iron release occurs to the plasma and/or to the bile, depending on the nature of the chelator and the source of the iron.  相似文献   

5.
H A Huebers  E Csiba  B Josephson  C A Finch 《Blut》1990,60(6):345-351
Iron absorption in the iron-deficient rat was compared with that in the normal rat to better understand the regulation of this dynamic process. It was found that: Iron uptake by the iron-deficient intestinal mucosa was prolonged as a result of slower gastric release, particularly when larger doses of iron were employed. The increased mucosal uptake of ionized iron was not the result of increased adsorption, but instead appeared related to a metabolically active uptake process, whereas the increased mucosal uptake of transferrin iron was associated with increased numbers of mucosal cell membrane transferrin receptors. Mucosal ferritin acted as an iron storage protein, but its iron uptake did not explain the lower iron absorption in the normal rat. Iron loading the mucosal cell (by presenting a large iron dose to the intestinal lumen) decreased absorption for 3 to 4 days. Iron loading of the mucosal cell from circulating plasma transferrin was proportionate to the plasma iron concentration. Mucosal iron content was the composite of iron loading from the lumen and loading from plasma transferrin versus release of iron into the body. These studies imply that an enhanced uptake-throughout mechanism causes the increased iron absorption in the iron-deficient rat. Results were consistent with the existence of a regulating mechanism for iron absorption that responds to change in mucosal cell iron, which is best reflected by mucosal ferritin.  相似文献   

6.
7.
Effect of iron chelators on the transferrin receptor in K562 cells   总被引:16,自引:0,他引:16  
Delivery of iron to K562 cells by diferric transferrin involves a cycle of binding to surface receptors, internalization into an acidic compartment, transfer of iron to ferritin, and release of apotransferrin from the cell. To evaluate potential feedback effects of iron on this system, we exposed cells to iron chelators and monitored the activity of the transferrin receptor. In the present study, we found that chelation of extracellular iron by the hydrophilic chelators desferrioxamine B, diethylenetriaminepentaacetic acid, or apolactoferrin enhanced the release from the cells of previously internalized 125I-transferrin. Presaturation of these compounds with iron blocked this effect. These chelators did not affect the uptake of iron from transferrin. In contrast, the hydrophobic chelator 2,2-bipyridine, which partitions into cell membranes, completely blocked iron uptake by chelating the iron during its transfer across the membrane. The 2,2-bipyridine did not, however, enhance the release of 125I-transferrin from the cells, indicating that extracellular iron chelation is the key to this effect. Desferrioxamine, unlike the other hydrophilic chelators, can enter the cell and chelate an intracellular pool of iron. This produced a parallel increase in surface and intracellular transferrin receptors, reaching 2-fold at 24 h and 3-fold at 48 h. This increase in receptor number required ongoing protein synthesis and could be blocked by cycloheximide. Diethylenetriaminepentaacetic acid or desferrioxamine presaturated with iron did not induce new transferrin receptors. The new receptors were functionally active and produced an increase in 59Fe uptake from 59Fe-transferrin. We conclude that the transferrin receptor in the K562 cell is regulated in part by chelatable iron: chelation of extracellular iron enhances the release of apotransferrin from the cell, while chelation of an intracellular iron pool results in the biosynthesis of new receptors.  相似文献   

8.
Growing human choriocarcinoma BeWo b24 cells contain 1.5 X 10(6) functional cell surface transferrin binding sites and 2.0 X 10(6) intracellular binding sites. These cells rapidly accumulate iron at a rate of 360,000 iron atoms/min/cell. During iron uptake the transferrin and its receptor recycle at least each 19 min. The accumulated iron is released from the BeWo cells at a considerable rate. The time required to release 50% of previously accumulated iron into the extracellular medium is 30 h. This release process is cell line-specific as HeLa cells release very little if any iron. The release of iron by BeWo cells is stimulated by exogenous chelators such as apotransferrin, diethylenetriaminepenta-acetic acid, desferral, and apolactoferrin. The time required to release 50% of the previously accumulated iron into medium supplemented with chelator is 15 h. In the absence of added chelators iron is released as a low molecular weight complex, whereas in the presence of chelator the iron is found complexed to the chelator. Uptake of iron is inhibited by 250 microM primaquine or 2.5 microM monensin. However, the release of iron is not inhibited by these drugs. Intracellular iron is stored bound to ferritin. A model for the release of iron by BeWo cells and its implication for transplacental iron transport is discussed.  相似文献   

9.
The mechanism by which bipyridine and phenanthroline types of iron chelator inhibit iron uptake from transferrin and iron efflux mediated by pyridoxal isonicotinoyl hydrazone was investigated using rabbit reticulocytes with the aim of providing more information on the normal process of iron uptake by developing erythroid cells. It was shown that the chelators block cellular uptake by chelating the iron immediately after release from transferrin while it is still in the membrane fraction of the cells. The iron-chelator is then released from the cells by a process which is very similar to that of transferrin release with respect to kinetics and sensitivity to incubation temperature and the effects of metabolic inhibitors and other chemical reagents. These results are compatible with the conclusion that both transferrin and the iron-chelators in the cells are mainly present in endocytotic vesicles and are released from the cells by exocytosis. The chelators were also shown to block the pyridoxal isonicotinoyl hydrazone-mediated efflux of iron from cells which had taken up iron in the presence of isoniazid, an inhibitor of haem synthesis, by chelating the iron in the cytosol and the mitochondria. In this case, the iron-chelator complexes were not released from the cells. Measurement of the diethyl ether/water partition coefficients of bipyridine and 1,10-phenanthroline and their iron complexes gave much higher values for the free chelators, supporting the concept that the chelators trap the iron intracellularly because of differences in the lipid solubility and, hence, membrane permeability to the free chelators and their iron complexes.  相似文献   

10.
The intravesicular pH of intact rabbit reticulocytes was measured by two methods; one based on the intracellular:extracellular distribution of DMO (5, 5, dimethyl + oxazolidin-2,4-dione), methylamine, and chloroquine and the other by quantitative fluorescence microscopy of cell-bound transferrin. The latter method was also applied to nucleated erythroid cells from the fetal rat liver. A pH value of approximately 5.4 was obtained with both methods and in both types of cells. Treatment of the cells with lysosomotrophic agents, metabolic inhibitors, and ionophores elevated the intravesicular pH and inhibited iron uptake from transferrin. When varying concentrations of NH4Cl were used, a close correlation was observed between the inhibition of iron uptake and elevation of the intravesicular pH. At pH 5.4 iron release from rabbit iron-bicarbonate transferrin in vitro was much more rapid than from iron-oxalate transferrin. The bicarbonate complex donates its iron to rabbit reticulocytes approximately twice as quickly as the oxalate complex. It is concluded that the acidic conditions within the vesicles provide the mechanism for iron release from the transferrin molecule after its endocytosis and that the low vesicular pH is dependent on cellular metabolism.  相似文献   

11.
The uptake of iron from transferrin by isolated rat hepatocytes varies in parallel with plasma membrane NADH:ferricyanide oxidoreductase activity, is inhibited by ferricyanide, ferric, and ferrous iron chelators, divalent transition metal cations, and depends on calcium ions. Iron uptake does not depend on endosomal acidification or endocytosis of transferrin. The results are compatible with a model in which iron, at transferrin concentrations above that needed to saturate the transferrin receptor, is taken up from transferrin predominantly by mechanisms located to or contiguous with the plasma membrane. The process involves labilization and reduction of transferrin-bound iron by cooperative proton and electron fluxes. A model which combines the plasma membrane mechanism and the receptor-mediated endocytosis mechanism is presented.  相似文献   

12.
Iron trafficking inside the brain   总被引:3,自引:0,他引:3  
Iron, an essential element for all cells of the body, including those of the brain, is transported bound to transferrin in the blood and the general extracellular fluid of the body. The demonstration of transferrin receptors on brain capillary endothelial cells (BCECs) more than 20 years ago provided the evidence for the now accepted view that the first step in blood to brain transport of iron is receptor-mediated endocytosis of transferrin. Subsequent steps are less clear. However, recent investigations which form the basis of this review have shed some light on them and also indicate possible fruitful avenues for future research. They provide new evidence on how iron is released from transferrin on the abluminal surface of BCECs, including the role of astrocytes in this process, how iron is transported in brain extracellular fluid, and how iron is taken up by neurons and glial cells. We propose that the divalent metal transporter 1 is not involved in iron transport through the BCECs. Instead, iron is probably released from transferrin on the abluminal surface of these cells by the action of citrate and ATP that are released by astrocytes, which form a very close relationship with BCECs. Complexes of iron with citrate and ATP can then circulate in brain extracellular fluid and may be taken up in these low-molecular weight forms by all types of brain cells or be bound by transferrin and taken up by cells which express transferrin receptors. Some iron most likely also circulates bound to transferrin, as neurons contain both transferrin receptors and divalent metal transporter 1 and can take up transferrin-bound iron. The most likely source for transferrin in the brain interstitium derives from diffusion from the ventricles. Neurons express the iron exporting carrier, ferroportin, which probably allows them to excrete unneeded iron. Astrocytes lack transferrin receptors. Their source of iron is probably that released from transferrin on the abluminal surface of BCECs. They probably to export iron by a mechanism involving a membrane-bound form of the ferroxidase, ceruloplasmin. Oligodendrocytes also lack transferrin receptors. They probably take up non-transferrin bound iron that gets incorporated in newly synthesized transferrin, which may play an important role for intracellular iron transport.  相似文献   

13.
The mechanism of iron uptake from transferrin by the rat placenta in culture has been studied. Transferrin endocytosis preceded iron accumulation by the cells. Both transferrin internalisation and iron uptake were inhibited by low temperature. Transferrin endocytosis was less susceptible to the effects of metabolic inhibitors such as sodium fluoroacetate, potassium cyanide, 2,4, dinitrophenol or carbonylcyanide M-chlorophenyl hydrazone (CCCP) than was iron uptake. Iron accumulation was decreased if the cells were incubated in the presence of weak bases such as chloroquine or ammonium chloride. These results suggest that, following internalisation, the vesicles containing the transferrin and iron became acidified, and that this acidification was a necessary prerequisite for the accumulation of iron by the cell. Further, the results indicate that the intravesicular pH was maintained at the expense of metabolic energy, suggesting that a pump may be involved. The importance of the permeability properties of the vesicle membrane in the iron uptake process was investigated by incubating the cells with labelled transferrin and iron in the presence of different cation and anion ionophores. Irrespective of the normal cation that the ionophores carried, all inhibited iron uptake without altering transferrin levels. In contrast, phloridzin, a Cl- transport inhibitor, did not affect either the levels of transferrin within the cells or the amount of iron accumulated.  相似文献   

14.
Iron, to be redox cycling active, has to be released from its macromolecular complexes (ferritin, transferrin, hemoproteins, etc.). Iron is released from hemoglobin or its derivatives in a nonprotein-bound, desferrioxamine-chelatable form (DCI) in a number of conditions in which the erythrocytes are subjected to oxidative stress. Such conditions can be related to toxicological events (haemolytic drugs) or to physiological situations (erythrocyte ageing, reproduced in a model of prolonged aerobic incubation), but can also result from more subtle circumstances in which a state of ischemia-reperfusion is imposed on erythrocytes (e.g., childbirth). The released iron could play a central role in oxidation of membrane proteins and senescent cell antigen (SCA) formation, one of the major pathways for erythrocyte removal. Iron chelators able to enter cells (such as ferrozine, quercetin, and fluor-benzoil-pyridoxal hydrazone) prevent both membrane protein oxidation and SCA formation. The increased release of iron observed in beta-thalassemia patients and newborns (particularly premature babies) suggests that fetal hemoglobin is more prone to release iron than adult hemoglobin. In newborns the release of iron in erythrocytes is correlated with plasma nonprotein-bound iron and may contribute to its appearance.  相似文献   

15.
Transferrin and iron uptake by rat reticulocytes   总被引:1,自引:0,他引:1  
The uptake of transferrin labeled with 3H and 59Fe by rat reticulocytes was studied to clarify the characteristics of the uptake process and intracellular transport. Rat reticulocytes took up transferrin in a saturable, time- and temperature-dependent manner. Scatchard analysis of the binding parameters indicated that transferrin molecules were bound to cell-surface receptors with high affinity. Monodansyl- cadaverine, a potent inhibitor of transglutaminase, reduced the amount of internalized transferrin but has no effect on the total amount of cell-associated transferrin, suggesting that transferrin is taken up by rat reticulocytes via receptor-mediated endocytosis. About 50% of the internalized 3H label was released from the cells after reincubation for 1 h in fresh medium. In contrast, no release of 59Fe label was observed. By immunoprecipitation and subsequent SDS-PAGE the released 3H-labeled product was identified as apotransferrin. Lysosomotropic reagents and a proton ionophore reduced the uptake of 59Fe. These results indicated that iron was removed from transferrin at an intracellular site in an acidic environment. The released iron was found not to associate with any intermediate ligands before it was utilized for heme synthesis in mitochondria.  相似文献   

16.
F J Carver  E Frieden 《Biochemistry》1978,17(1):167-172
The release of iron from transferrin was investigated by incubating the diferric protein in the presence of potential iron-releasing agents. The effective chemical group appears to be pyrophosphate, which is present in blood cells as nucleoside di- and triphosphates, notably adenosine triphosphate (ATP). An alternative structure with comparable activity is represented by 2,3-diphosphoglycerate. Neither 1 mM adenosine monophosphate (AMP) nor 1 mM orthophosphate released iron from transferrin. The ATP-induced iron-releasing activity was dependent on weak acidic conditions and was sensitive to temperature and sodium chloride concentration. The rate of iron release rapidly increased as transferrin was titrated with HCl from pH 6.8 to 6.1 in the presence of 1 mM ATP and 160 mM NaCl at 20 degrees C. Iron release from transferrin without ATP was observed below pH 5.5. Ascorbate (10(-4) M) reduced Fe(III), but only after iron release from transferrin by a physiological concentration of ATP. A proposal for the mechanism of iron release from transferrin by ATP and the utilization of reduced iron by erythroid cells is described.  相似文献   

17.
Meira Weiss  Uri Pick 《Planta》1991,185(4):494-501
The fluorescent indicator atebrin (3-chloro-9-(4-diethylamino-1-methylbutyl)-7-methyoxy-acridine) is taken up by Dunaliella salina cells at alkaline external pH and accumulates in acidic vacuoles. The uptake is unaffected by light, by photosynthetic inhibitors, by protonophores or by ionophores; however, the dye can be released by amines, indicating that it is specifically accumulating in acidic vacuoles. Amines induce a biphasic enhancement of atebrin fluorescence — a fast phase, accompanied by redistribution within the cell, consistent with release of the dye from the vacuoles to the cytoplasm, and a slow phase, correlated with release of atebrin from the cells. These results are interpreted to indicate a slow equilibration of atebrin across the plasma membrane and a fast equilibration across the vacuolar membrane. Part of the dye cannot be released by the amines, and appears to be internally bound. Atebrin uptake is inhibited by cholesteryl hemisuccinate and is stimulated by lysophosphatidylcholine, indicating that modification of the lipid composition of the plasma membrane affects the permeability to atebrin. Analysis of the pH dependence of atebrin uptake indicates that the dye enters the cells by fluid-phase permeation. Different stresses enhance the rate of atebrin uptake and release, indicating that they modify plasma-membrane structure or composition. Atebrin may serve as a specific marker for acidic vacuoles, as an indicator for amine uptake, and as a probe for subtle changes in the permeability of the plasma membrane.Abbreviations Atebrin 3-chloro-9-(4-diethylamino-1-methylbutyl)-7-methoxy-acridine - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea - SF-6847 3,5-ditertbutyl-4-hydroxybenzylidenemalonitrile  相似文献   

18.
Bovine serum albumin inhibits binding of transferrin by hepatocytes in suspension by 60-70%. Iron uptake is inhibited by less than 20%. A Scatchard analysis of the transferrin-binding data reveals a biphasic plot in the absence of bovine serum albumin, but a monophasic plot in the presence of bovine serum albumin. Bovine serum albumin inhibits low-affinity binding of transferrin (125000 molecules/cell), but has no effect on high-affinity binding (38000 molecules/cell). In pronase-treated cells, transferrin binding is reduced by 40%, and when bovine serum albumin is added, the binding is reduced by a further 40%. Corresponding figures for iron uptake are 70 and 10%, respectively. The results are strong evidence that the major part of iron uptake by hepatocytes occurs from transferrin bound to the plasma membrane transferrin receptor.  相似文献   

19.
Redox properties of human transferrin bound to its receptor   总被引:3,自引:0,他引:3  
Virtually all organisms require iron, and iron-dependent cells of vertebrates (and some more ancient species) depend on the Fe(3+)-binding protein of the circulation, transferrin, to meet their needs. In its iron-donating cycle, transferrin is first captured by the transferrin receptor on the cell membrane, and then internalized to a proton-pumping endosome where iron is released. Iron exits the endosome to enter the cytoplasm via the ferrous iron transporter DMT1, a molecule that accepts only Fe(2+), but the reduction potential of ferric iron in free transferrin at endosomal pH (approximately 5.6) is below -500 mV, too low for reduction by physiological agents such as the reduced pyridine nucleotides with reduction potentials of -284 mV. We now show that in its complex with the transferrin receptor, which persists throughout the transferrin-to-cell cycle of iron uptake, the potential is raised by more than 200 mV. Reductive release of iron from transferrin, which binds Fe(2+) very weakly, is therefore physiologically feasible, a further indication that the transferrin receptor is more than a passive conveyor of transferrin and its iron.  相似文献   

20.
Ram spermatozoa incubated in the presence of Ca2+ and the Ca2+-ionophore A23187 undergo a process which is known as the acrosome reaction. This reaction is characterized by fusion of the outer acrosomal membrane and the overlying plasma membrane to form mixed vesicles which can be seen in the electron microscope. As a result, the trypsin-like acrosin is released from the cells to the medium. The occurrence of the acrosome reaction was determined by following acrosin activity in the medium. After 2 h of incubation of the cells in the presence of ionophore and Ca2+, the released acrosin activity is related to the ionophores according to the sequence: A23187 greater than monensin greater than valinomycin greater than FCCP = without ionophore. The study of Ca2+ uptake by the cells revealed that Ca2+ enters the cell prior to the release of acrosin. Monensin can induce Ca2+ uptake and acrosin release only when Na+ is present in the incubation medium. There is no increase in Ca2+ uptake with carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). We suggest that the Na+/H+ exchange induced by monensin causes an increase in intracellular Na which is the driving force for the Ca2+ entry via a Ca2+/Na+ antiporter. Since monensin can induce an increase in Ca2+ uptake only in the presence of Na+, FCCP enhances Ca2+ uptake in the presence of valinomycin, and A23187 is a Ca2+/2H+ exchanger, we suggest that alkalization of the intracellular space is involved in the acrosome reaction. Calcium uptake in the presence of monensin is not affected by the uncoupler FCCP, a result which indicates that Ca2+ is not accumulated in the mitochondria. Incubation of cells for 3 h in the absence of Ca2+ or ionophore caused a 3-fold increase in the rate of acrosin release when monensin and Ca2+ were added together. There was no change in this rate when A23187 was used. We suggest that during the preincubation time (known as capacitation) the permeability of the plasma membrane to Ca2+ is enhanced. This study shows that acrosin release and Ca2+ uptake can be used as a quantitative asay for the determination of the acrosome reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号